1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/* paths.f -- translated by f2c (version 19991025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
integer latom, lparam;
doublereal react[200];
} path_;
#define path_1 path_
struct {
integer nvar, loc[720] /* was [2][360] */, idumy;
doublereal xparam[360];
} geovar_;
#define geovar_1 geovar_
struct {
char keywrd[241];
} keywrd_;
#define keywrd_1 keywrd_
struct {
doublereal time0;
} timec_;
#define timec_1 timec_
struct {
doublereal geo[360] /* was [3][120] */, xcoord[360] /* was [3][120] */;
} geom_;
#define geom_1 geom_
struct {
doublereal alparm[1080] /* was [3][360] */, x0, x1, x2;
integer iloop;
} alparm_;
#define alparm_1 alparm_
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int paths_()
{
/* Initialized data */
static char type__[10*3+1] = "ANGSTROMS DEGREES DEGREES ";
/* System generated locals */
integer i__1;
doublereal d__1, d__2, d__3, d__4;
/* Builtin functions */
integer i_indx(), s_wsfe(), do_fio(), e_wsfe();
/* Subroutine */ int s_stop();
/* Local variables */
static integer mdfp[20];
static doublereal xdfp[20], delf0, delf1;
static integer i__;
extern /* Subroutine */ int flepo_();
static doublereal funct, rnord, c3, xlast[360], x3, funct1, gd[360];
extern doublereal second_();
extern /* Subroutine */ int dfpsav_();
static doublereal cc1, cc2, cb1, totime, cb2, aconst, bconst, cconst;
extern /* Subroutine */ int writmo_();
static integer lpr;
/* Fortran I/O blocks */
static cilist io___8 = { 0, 6, 0, "(//10X,' RESTARTING AT POINT',I3)", 0 }
;
static cilist io___9 = { 0, 6, 0, "(' ABOUT TO ENTER FLEPO FROM PATH')",
0 };
static cilist io___11 = { 0, 6, 0, "(' OPTIMIZED VALUES OF PARAMETERS, \
INITIAL POINT')", 0 };
static cilist io___14 = { 0, 6, 0, "(1X,16('*****')//17X,'REACTION COORD\
INATE = ' ,F12.4,2X,A10,19X//1X,16('*****'))", 0 };
static cilist io___16 = { 0, 6, 0, "(1X,16('*****')//19X,'REACTION COORD\
INATE = ' ,F12.4,2X,A10,19X//1X,16('*****'))", 0 };
static cilist io___28 = { 0, 6, 0, "(' GEOMETRY TOO UNSTABLE FOR EXTRAPO\
LATION TO BE USED'/ ,' - THE LAST GEOMETRY IS BEING USED TO START THE NEXT' \
,' CALCULATION')", 0 };
/* COMDECK SIZES */
/* *********************************************************************** */
/* THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */
/* THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/* MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/* MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/* MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/* MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/* ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/* SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */
/* *********************************************************************** */
/* THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */
/* *********************************************************************** */
/* ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */
/* NAME DEFINITION */
/* NUMATM MAXIMUM NUMBER OF ATOMS ALLOWED. */
/* MAXORB MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXPAR MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/* N2ELEC MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/* MPACK AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/* MORB2 SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXHES AREA OF HESSIAN MATRIX */
/* MAXALL LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */
/* *********************************************************************** */
/* DECK MOPAC */
/* ***** Modified by Jiro Toyoda at 1994-05-25 ***** */
/* COMMON /TIME / TIME0 */
/* ***************************** at 1994-05-25 ***** */
/* *********************************************************************** */
/* PATH FOLLOWS A REACTION COORDINATE. THE REACTION COORDINATE IS ON */
/* ATOM LATOM, AND IS A DISTANCE IF LPARAM=1, */
/* AN ANGLE IF LPARAM=2, */
/* AN DIHEDRALIF LPARAM=3. */
/* *********************************************************************** */
alparm_1.iloop = 1;
if (i_indx(keywrd_1.keywrd, "RESTAR", (ftnlen)241, (ftnlen)6) != 0) {
mdfp[8] = 0;
dfpsav_(&totime, geovar_1.xparam, gd, xlast, &funct1, mdfp, xdfp);
s_wsfe(&io___8);
do_fio(&c__1, (char *)&alparm_1.iloop, (ftnlen)sizeof(integer));
e_wsfe();
}
if (alparm_1.iloop > 1) {
goto L10;
}
s_wsfe(&io___9);
e_wsfe();
timec_1.time0 = second_();
flepo_(geovar_1.xparam, &geovar_1.nvar, &funct);
s_wsfe(&io___11);
e_wsfe();
writmo_(&timec_1.time0, &funct);
timec_1.time0 = second_();
L10:
if (alparm_1.iloop > 2) {
goto L40;
}
geom_1.geo[path_1.lparam + path_1.latom * 3 - 4] = path_1.react[1];
if (alparm_1.iloop == 1) {
alparm_1.x0 = path_1.react[0];
alparm_1.x1 = alparm_1.x0;
alparm_1.x2 = path_1.react[1];
if (alparm_1.x2 < -100.) {
s_stop("", (ftnlen)0);
}
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
alparm_1.alparm[i__ * 3 - 2] = geovar_1.xparam[i__ - 1];
/* L20: */
alparm_1.alparm[i__ * 3 - 3] = geovar_1.xparam[i__ - 1];
}
alparm_1.iloop = 2;
}
flepo_(geovar_1.xparam, &geovar_1.nvar, &funct);
rnord = path_1.react[1];
if (path_1.lparam > 1) {
rnord *= 57.29577951;
}
s_wsfe(&io___14);
do_fio(&c__1, (char *)&rnord, (ftnlen)sizeof(doublereal));
do_fio(&c__1, type__ + (path_1.lparam - 1) * 10, (ftnlen)10);
e_wsfe();
writmo_(&timec_1.time0, &funct);
timec_1.time0 = second_();
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L30: */
alparm_1.alparm[i__ * 3 - 1] = geovar_1.xparam[i__ - 1];
}
/* NOW FOR THE MAIN INTERPOLATION ROUTE */
if (alparm_1.iloop == 2) {
alparm_1.iloop = 3;
}
L40:
lpr = alparm_1.iloop;
for (alparm_1.iloop = lpr; alparm_1.iloop <= 100; ++alparm_1.iloop) {
if (path_1.react[alparm_1.iloop - 1] < -100.) {
return 0;
}
rnord = path_1.react[alparm_1.iloop - 1];
if (path_1.lparam > 1) {
rnord *= 57.29577951;
}
s_wsfe(&io___16);
do_fio(&c__1, (char *)&rnord, (ftnlen)sizeof(doublereal));
do_fio(&c__1, type__ + (path_1.lparam - 1) * 10, (ftnlen)10);
e_wsfe();
x3 = path_1.react[alparm_1.iloop - 1];
/* Computing 2nd power */
d__1 = alparm_1.x0;
/* Computing 2nd power */
d__2 = alparm_1.x1;
/* Computing 2nd power */
d__3 = alparm_1.x1;
/* Computing 2nd power */
d__4 = alparm_1.x2;
c3 = (d__1 * d__1 - d__2 * d__2) * (alparm_1.x1 - alparm_1.x2) - (
d__3 * d__3 - d__4 * d__4) * (alparm_1.x0 - alparm_1.x1);
/* WRITE(6,'('' C3:'',F13.7)')C3 */
if (abs(c3) < 1e-8) {
/* WE USE A LINEAR INTERPOLATION */
cc1 = 0.;
cc2 = 0.;
} else {
/* WE DO A QUADRATIC INTERPOLATION */
cc1 = (alparm_1.x1 - alparm_1.x2) / c3;
cc2 = (alparm_1.x0 - alparm_1.x1) / c3;
}
cb1 = 1. / (alparm_1.x1 - alparm_1.x2);
/* Computing 2nd power */
d__1 = alparm_1.x1;
/* Computing 2nd power */
d__2 = alparm_1.x2;
cb2 = (d__1 * d__1 - d__2 * d__2) * cb1;
/* NOW TO CALCULATE THE INTERPOLATED COORDINATES */
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
delf0 = alparm_1.alparm[i__ * 3 - 3] - alparm_1.alparm[i__ * 3 -
2];
delf1 = alparm_1.alparm[i__ * 3 - 2] - alparm_1.alparm[i__ * 3 -
1];
aconst = cc1 * delf0 - cc2 * delf1;
bconst = cb1 * delf1 - aconst * cb2;
/* Computing 2nd power */
d__1 = alparm_1.x2;
cconst = alparm_1.alparm[i__ * 3 - 1] - bconst * alparm_1.x2 -
aconst * (d__1 * d__1);
/* Computing 2nd power */
d__1 = x3;
geovar_1.xparam[i__ - 1] = cconst + bconst * x3 + aconst * (d__1 *
d__1);
alparm_1.alparm[i__ * 3 - 3] = alparm_1.alparm[i__ * 3 - 2];
/* L50: */
alparm_1.alparm[i__ * 3 - 2] = alparm_1.alparm[i__ * 3 - 1];
}
/* NOW TO CHECK THAT THE GUESSED GEOMETRY IS NOT TOO ABSURD */
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L60: */
if ((d__1 = geovar_1.xparam[i__ - 1] - alparm_1.alparm[i__ * 3 -
1], abs(d__1)) > (float).2) {
goto L70;
}
}
goto L90;
L70:
s_wsfe(&io___28);
e_wsfe();
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L80: */
geovar_1.xparam[i__ - 1] = alparm_1.alparm[i__ * 3 - 1];
}
L90:
alparm_1.x0 = alparm_1.x1;
alparm_1.x1 = alparm_1.x2;
alparm_1.x2 = x3;
geom_1.geo[path_1.lparam + path_1.latom * 3 - 4] = path_1.react[
alparm_1.iloop - 1];
flepo_(geovar_1.xparam, &geovar_1.nvar, &funct);
writmo_(&timec_1.time0, &funct);
timec_1.time0 = second_();
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L100: */
alparm_1.alparm[i__ * 3 - 1] = geovar_1.xparam[i__ - 1];
}
/* L110: */
}
} /* paths_ */
|