File: ghmmhelper.py

package info (click to toggle)
ghmm 0.9~rc3-11
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,172 kB
  • sloc: ansic: 25,557; sh: 11,204; python: 6,739; xml: 1,515; makefile: 309
file content (305 lines) | stat: -rw-r--r-- 10,252 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#/*******************************************************************************
#*
#*       This file is part of the General Hidden Markov Model Library,
#*       GHMM version __VERSION__, see http://ghmm.org
#*
#*       Filename: ghmmhelper.py
#*       Authors:  Benjamin Georgi, Janne Grunau
#*
#*       Copyright (C) 1998-2004 Alexander Schliep
#*       Copyright (C) 1998-2001 ZAIK/ZPR, Universitaet zu Koeln
#*       Copyright (C) 2002-2004 Max-Planck-Institut fuer Molekulare Genetik,
#*                               Berlin
#*
#*       Contact: schliep@ghmm.org
#*
#*       This library is free software; you can redistribute it and/or
#*       modify it under the terms of the GNU Library General Public
#*       License as published by the Free Software Foundation; either
#*       version 2 of the License, or (at your option) any later version.
#*
#*       This library is distributed in the hope that it will be useful,
#*       but WITHOUT ANY WARRANTY; without even the implied warranty of
#*       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#*       Library General Public License for more details.
#*
#*       You should have received a copy of the GNU Library General Public
#*       License along with this library; if not, write to the Free
#*       Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#*
#*
#*       This file is version $Revision: 2259 $
#*                       from $Date: 2009-04-22 04:19:35 -0400 (Wed, 22 Apr 2009) $
#*             last change by $Author: grunau $.
#*
#*******************************************************************************/
import ghmmwrapper
import math
import os.path
from modhmmer import *
from random import *


def double_matrix2list(cmatrix, row, col):
    llist = []
    for i in range(row):
        llist.append(ghmmwrapper.double_array2list(ghmmwrapper.double_matrix_get_col(cmatrix, i), col))
    return llist


def list2double_matrix(matrix):
    """ Allocation and initialization of a double** based on a
    two dimensional Python list (list of lists).

    The number of elements in each column can vary.
    """
    cols = len(matrix)

    seq = ghmmwrapper.double_matrix_alloc_row(cols)
    col_len = []
    for i in range(cols):
        col = ghmmwrapper.list2double_array(matrix[i])
        ghmmwrapper.double_matrix_set_col(seq, i, col)
        col_len.append(len(matrix[i]))

    return (seq, col_len)

def list2int_matrix(matrix):
    """ Allocation and initialization of an int** based on a
    two dimensional Python list (list of lists).

    The number of elements in each column can vary.
    """
    rows = len(matrix)

    seq = ghmmwrapper.int_matrix_alloc_row(rows)
    col_len = []
    for i in range(rows):
        col = ghmmwrapper.list2int_array(matrix[i])
        ghmmwrapper.int_matrix_set_col(seq, i, col)
        col_len.append(len(matrix[i]))

    return (seq, col_len)


def int_matrix2list(cmatrix,row,col):
    llist = []
    for i in range(row):
        llist.append(ghmmwrapper.int_array2list(ghmmwrapper.int_matrix_get_col(cmatrix,i),col))
    return llist


def extract_out(lisprobs):
    """ Helper function for building HMMs from matrices: Used for
    transition matrices without transition classes.

    Extract out-/ingoing transitions from the row-vector resp. the
    column vector (corresponding to incoming transitions) of the
    transition matrix

    Allocates: .[out|in]_id and .[out|in]_a vectors
    """
    lis = []
    for i in range(len(lisprobs)):
        if lisprobs[i]!=0:
            lis.append(i)
    trans_id = ghmmwrapper.int_array_alloc(len(lis))
    trans_prob = ghmmwrapper.double_array_alloc(len(lis))
    for i in range(len(lis)):
        ghmmwrapper.int_array_setitem(trans_id, i, lis[i])
        ghmmwrapper.double_array_setitem(trans_prob, i, lisprobs[lis[i]])

    return [len(lis),trans_id,trans_prob]


#def extract_out_probs(lisprobs,cos):
#    """ Helper function for building HMMs from matrices: Used for
#        transition matrices with 'cos' transition classes.
#        Extract out-/ingoing transitions from a matric consiting of
#        the row-vectors resp. the column vectors (corresponding to
#        incoming transitions) of the 'cos' transition matrices.
#        Hence, input is a 'cos' x N matrix.
#        Allocates: .[out|in]_id vector and .[out|in]_a array (of size cos x N)
#    """
#    lis = []
    # parsing indixes belonging to postive probabilites
#    for j in range(cos):
#        for i in range(len(lisprobs[0])):
#            if lisprobs[j][i] != 0 and i not in lis:
#                lis.append(i)
#    print "lis: ", lis
#    trans_id   = ghmmwrapper.int_array_alloc(len(lis))
#    probsarray = ghmmwrapper.double_2d_array(cos, len(lis)) # C-function
    # creating list with positive probabilities
#    for k in range(cos):
#        for j in range(len(lis)):
#            ghmmwrapper.set_2d_arrayd(probsarray,k,j, lisprobs[k][lis[j]])
#    trans_prob = twodim_double_array(probsarray, cos, len(lis)) # python CLASS, C internal
#
#    print trans_prob
    # initializing c state index array
#    for i in range(len(lis)):
#        ghmmwrapper.int_array_setitem(trans_id,i,lis[i])
#    return [len(lis),trans_id,trans_prob]

def extract_out_cos(transmat, cos, state):
    """ Helper function for building HMMs from matrices: Used for
    transition matrices with 'cos' transition classes.

    Extract outgoing transitions for 'state' from the complete list
    of transition matrices

    Allocates: .out_id vector and .out_a array (of size cos x N)
    """

    lis = []
    # parsing indixes belonging to postive probabilites
    for j in range(cos):
        for i in range(len(transmat[j][state])):
            if transmat[j][state][i] != 0.0 and i not in lis:
                lis.append(i)

    #lis.sort()
    #print "lis: ", lis

    trans_id   = ghmmwrapper.int_array_alloc(len(lis))
    probsarray = ghmmwrapper.double_matrix_alloc(cos, len(lis)) # C-function

    # creating list with positive probabilities
    for k in range(cos):
        for j in range(len(lis)):
            ghmmwrapper.double_matrix_setitem(probsarray, k, j, transmat[k][state][lis[j]])

    # initializing C state index array
    for i in range(len(lis)):
        ghmmwrapper.int_array_setitem(trans_id, i, lis[i])
    return [len(lis),trans_id,probsarray]

def extract_in_cos(transmat, cos, state):
    """ Helper function for building HMMs from matrices: Used for
    transition matrices with 'cos' transition classes.

    Extract ingoing transitions for 'state' from the complete list
    of transition matrices

    Allocates: .in_id vector and .in_a array (of size cos x N)
    """
    lis = []

    # parsing indixes belonging to postive probabilites
    for j in range(cos):
        transmat_col_state = [x[state] for x in transmat[j]]
        for i in range(len(transmat_col_state)):

            if transmat_col_state[i] != 0.0 and i not in lis:
                lis.append(i)

    #lis.sort()
    #print "lis: ", lis



    trans_id   = ghmmwrapper.int_array_alloc(len(lis))
    probsarray = ghmmwrapper.double_matrix_alloc(cos, len(lis)) # C-function

    # creating list with positive probabilities
    for k in range(cos):
        for j in range(len(lis)):
            ghmmwrapper.double_matrix_setitem(probsarray,k,j, transmat[k][lis[j]][state])

    # initializing C state index array
    for i in range(len(lis)):
        ghmmwrapper.int_array_setitem(trans_id, i, lis[i])
    return [len(lis),trans_id,probsarray]

class twodim_double_array:
    """ Two-dimensional C-Double Array """

    def __init__(self,array, rows, columns, rowlabels=None, columnlabels=None):
        """
        Constructor
        """
        self.array = array
        self.rows = rows
        self.columns = columns
        self.size = (rows,columns)
        self.rowlabels =rowlabels
        self.columnlabels = columnlabels

    def __getitem__(self,index):
        """
        defines twodim_double_array[index[0],index[1]]
        """
        return ghmmwrapper.double_matrix_getitem(self.array,index[0],index[1])

    def __setitem__(self,index,value):
        """
        defines twodim_double_array[index[0],index[1]]
        """
        if (len(index) == 2):
            ghmmwrapper.set_2d_arrayd(self.array,index[0],index[1],value)

    def __str__(self):
        """
        defines string representation
        """
        strout = "\n"
        if (self.columnlabels is not None):
            for k in range(len(self.columnlabels)):
                strout+="\t"
                strout+= str(self.columnlabels[k])
                strout += "\n"
        for i in range(self.rows):
            if (self.rowlabels is not None):
                strout += str(self.rowlabels[i])
                strout += "\t"
            for j in range(self.columns):
                strout += "%2.4f" % self[i,j]
                strout += "\t"
                strout += "\n"
        return strout


# class double_array:
#     """A C-double array"""

#     def __init__(self, array, columns, columnlabels=None):
#         """Constructor"""
#         self.array = array
#         self.rows = 1
#         self.columns = columns
#         self.size = columns
#         self.columnlabels = columnlabels

#     def __getitem__(self,index):
#         """defines double_array[index] """
#         return ghmmwrapper.get_arrayd(self.array,index)

#     def __setitem__(self,index,value):
#         """ double_array[index] = value """
#         ghmmwrapper.set_arrayd(self.array,index,value)

#     def __str__(self):
#         """defines string representation"""
#         strout = "\n"
#         if (self.columnlabels is not None):
#             for k in range(len(self.columnlabels)):
#                 strout+="\t"
#                 strout+= str(self.columnlabels[k])
#                 strout += "\n"
#         for i in range(self.columns):
#             strout += "%2.4f" % self[i]
#             strout += "\t"
#             strout += "\n"
#         return strout


def classNumber(A):
    """ Returns the number of transition classes in the matrix A   """
    cos = 0
    if type(A[0][0]) == list:
        cos = len(A)
    else:
        cos = 1
    return cos