1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Default device bitmap copying implementation */
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gsbittab.h"
#include "gsrect.h"
#include "gsropt.h"
#include "gxdcolor.h"
#include "gxdevice.h"
#include "gxdevmem.h"
#include "gdevmem.h"
#include "gxgetbit.h"
#undef mdev
#include "gxcpath.h"
/* Implement copy_mono by filling lots of small rectangles. */
/* This is very inefficient, but it works as a default. */
int
gx_default_copy_mono(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index zero, gx_color_index one)
{
bool invert;
gx_color_index color;
gx_device_color devc;
if (!data)
return gs_throw_code(gs_error_unknownerror);
fit_copy(dev, data, dx, raster, id, x, y, w, h);
if (!data)
return gs_throw_code(gs_error_unknownerror);
if (one != gx_no_color_index) {
invert = false;
color = one;
if (zero != gx_no_color_index) {
int code = (*dev_proc(dev, fill_rectangle))
(dev, x, y, w, h, zero);
if (code < 0)
return code;
}
} else {
invert = true;
color = zero;
}
if (!data)
return gs_throw_code(gs_error_unknownerror);
set_nonclient_dev_color(&devc, color);
if (!data)
return gs_throw_code(gs_error_unknownerror);
return gx_dc_default_fill_masked
(&devc, data, dx, raster, id, x, y, w, h, dev, rop3_T, invert);
}
/* Implement copy_color by filling lots of small rectangles. */
/* This is very inefficient, but it works as a default. */
int
gx_default_copy_color(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id,
int x, int y, int w, int h)
{
int depth = dev->color_info.depth;
byte mask;
dev_proc_fill_rectangle((*fill));
const byte *row;
int iy;
if (depth == 1)
return (*dev_proc(dev, copy_mono)) (dev, data, dx, raster, id,
x, y, w, h,
(gx_color_index) 0, (gx_color_index) 1);
fit_copy(dev, data, dx, raster, id, x, y, w, h);
fill = dev_proc(dev, fill_rectangle);
mask = (byte) ((1 << depth) - 1);
for (row = data, iy = 0; iy < h; row += raster, ++iy) {
int ix;
gx_color_index c0 = gx_no_color_index;
const byte *ptr = row + ((dx * depth) >> 3);
int i0;
for (i0 = ix = 0; ix < w; ++ix) {
gx_color_index color;
if (depth >= 8) {
color = *ptr++;
switch (depth) {
case 64:
color = (color << 8) + *ptr++;
case 56:
color = (color << 8) + *ptr++;
case 48:
color = (color << 8) + *ptr++;
case 40:
color = (color << 8) + *ptr++;
case 32:
color = (color << 8) + *ptr++;
case 24:
color = (color << 8) + *ptr++;
case 16:
color = (color << 8) + *ptr++;
}
} else {
uint dbit = (-(ix + dx + 1) * depth) & 7;
color = (*ptr >> dbit) & mask;
if (dbit == 0)
ptr++;
}
if (color != c0) {
if (ix > i0) {
int code = (*fill)
(dev, i0 + x, iy + y, ix - i0, 1, c0);
if (code < 0)
return code;
}
c0 = color;
i0 = ix;
}
}
if (ix > i0) {
int code = (*fill) (dev, i0 + x, iy + y, ix - i0, 1, c0);
if (code < 0)
return code;
}
}
return 0;
}
int
gx_no_copy_alpha(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{
return_error(gs_error_unknownerror);
}
/* Currently we really should only be here if the target device is planar
AND it supports devn colors AND is 8 or 16 bit. For example tiffsep
and psdcmyk may make use of this if AA is enabled. It is basically
designed for devices that need more than 64 bits for color support
So that I can follow things and make it readable for future generations,
I am not using the macro nightmare that default_copy_alpha uses. */
int
gx_default_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
const gx_drawing_color *pdcolor, int depth)
{
const byte *row_alpha;
gs_memory_t *mem = dev->memory;
int bpp = dev->color_info.depth;
uchar ncomps = dev->color_info.num_components;
uint out_raster;
int code = 0;
gx_color_value src_cv[GS_CLIENT_COLOR_MAX_COMPONENTS];
gx_color_value curr_cv[GS_CLIENT_COLOR_MAX_COMPONENTS];
gx_color_value blend_cv[GS_CLIENT_COLOR_MAX_COMPONENTS];
int ry;
uchar k, j;
gs_get_bits_params_t gb_params;
byte *src_planes[GS_CLIENT_COLOR_MAX_COMPONENTS];
gs_int_rect gb_rect;
int byte_depth;
int shift, word_width;
gx_color_value *composite;
byte *gb_buff;
int x_curr, w_curr, gb_buff_start;
byte_depth = bpp / ncomps;
shift = 16 - byte_depth;
word_width = byte_depth >> 3;
fit_copy(dev, data, data_x, raster, id, x, y, width, height);
row_alpha = data;
out_raster = bitmap_raster(width * byte_depth);
gb_buff = gs_alloc_bytes(mem, out_raster * ncomps, "copy_alpha_hl_color(gb_buff)");
if (gb_buff == 0) {
code = gs_note_error(gs_error_VMerror);
return code;
}
for (k = 0; k < ncomps; k++) {
src_cv[k] = pdcolor->colors.devn.values[k];
}
/* Initialize the get_bits parameters. Here we just get a plane at a time. */
gb_params.options = GB_COLORS_NATIVE
| GB_ALPHA_NONE
| GB_DEPTH_ALL
| GB_PACKING_PLANAR
| GB_RETURN_COPY
| GB_ALIGN_STANDARD
| GB_OFFSET_0
| GB_RASTER_STANDARD
| GB_SELECT_PLANES;
gb_rect.p.x = x;
gb_rect.q.x = x + width;
for (ry = y; ry < y + height; row_alpha += raster, ++ry) {
int sx, rx;
gb_rect.p.y = ry;
gb_rect.q.y = ry+1;
for (k = 0; k < ncomps; k++) {
/* First set the params to zero for all planes except the one we want */
/* I am not sure why get_bits_rectangle for the planar device can
not hand back the data in a proper planar form. To get the
individual planes seems that I need to jump through some hoops
here */
for (j = 0; j < ncomps; j++)
gb_params.data[j] = 0;
gb_params.data[k] = gb_buff + k * out_raster;
code = dev_proc(dev, get_bits_rectangle) (dev, &gb_rect,
&gb_params);
src_planes[k] = gb_params.data[k];
if (code < 0) {
gs_free_object(mem, gb_buff, "copy_alpha_hl_color");
return code;
}
}
/* At this point we have to carry around some additional variables
so that we can handle any buffer flushes due to alpha == 0 values.
See below why this is needed */
x_curr = x;
w_curr = 0;
gb_buff_start = 0;
for (sx = data_x, rx = x; sx < data_x + width; ++sx, ++rx) {
int alpha2, alpha;
w_curr += 1;
switch (depth)
{
case 2:
alpha = ((row_alpha[sx >> 2] >> ((3 - (sx & 3)) << 1)) & 3) * 85;
break;
case 4:
alpha2 = row_alpha[sx >> 1];
alpha = (sx & 1 ? alpha2 & 0xf : alpha2 >> 4) * 17;
break;
case 8:
alpha = row_alpha[sx];
break;
default:
return_error(gs_error_rangecheck);
}
if (alpha == 0) {
/* With alpha 0 we want to avoid writing out this value.
* While it is true that writting it out leaves the color
* unchanged, any device that's watching what pixels are
* written (such as the pattern tile devices) may have problems.
* As in gx_default_copy_alpha the right thing to do is to write
* out what we have so far and then continue to collect when we
* get back to non zero alpha. */
code = dev_proc(dev, copy_planes)(dev, &(gb_buff[gb_buff_start]),
0, out_raster, gs_no_bitmap_id,
x_curr, ry, w_curr-1, 1, 1);
if (code < 0) {
gs_free_object(mem, gb_buff, "copy_alpha_hl_color");
return code;
}
/* reset ourselves */
gb_buff_start = gb_buff_start + w_curr * word_width;
w_curr = 0;
x_curr = rx + 1;
} else {
if (alpha == 255) {
/* Just use the new color. */
composite = &(src_cv[0]);
} else {
/* We need to do the weighting by the alpha value */
alpha += (alpha>>7); /* Expand from 0..255->0..256 */
/* First get the old color */
for (k = 0; k < ncomps; k++) {
/* We only have 8 and 16 bit depth to worry about.
However, this stuff should really be done with
the device encode/decode procedure. */
byte *ptr = ((src_planes[k]) + (sx - data_x) * word_width);
curr_cv[k] = 0;
switch (word_width) {
case 2:
curr_cv[k] += (*ptr++ << 8);
curr_cv[k] += *ptr;
break;
case 1:
curr_cv[k] += *ptr;
curr_cv[k] += curr_cv[k] << 8;
}
/* Now compute the new color which is a blend of
the old and the new */
blend_cv[k] = ((curr_cv[k]<<8) +
(((long) src_cv[k] - (long) curr_cv[k]) * alpha))>>8;
composite = &(blend_cv[0]);
}
}
/* Update our plane data buffers. Just reuse the current one */
for (k = 0; k < ncomps; k++) {
byte *ptr = ((src_planes[k]) + (sx - data_x) * word_width);
switch (word_width) {
case 2:
*ptr++ = composite[k] >> 8;
case 1:
*ptr++ = composite[k] >> shift;
}
}
} /* else on alpha != 0 */
} /* loop on x */
/* Flush what ever we have left. We may only have a partial due to
the presence of alpha = 0 values */
code = dev_proc(dev, copy_planes)(dev, &(gb_buff[gb_buff_start]),
0, out_raster, gs_no_bitmap_id,
x_curr, ry, w_curr, 1, 1);
} /* loop on y */
gs_free_object(mem, gb_buff, "copy_alpha_hl_color");
return code;
}
int
gx_default_copy_alpha(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{ /* This might be called with depth = 1.... */
if (depth == 1)
return (*dev_proc(dev, copy_mono)) (dev, data, data_x, raster, id,
x, y, width, height,
gx_no_color_index, color);
/*
* Simulate alpha by weighted averaging of RGB values.
* This is very slow, but functionally correct.
*/
{
const byte *row;
gs_memory_t *mem = dev->memory;
int bpp = dev->color_info.depth;
uchar ncomps = dev->color_info.num_components;
uint in_size = gx_device_raster_chunky(dev, false);
byte *lin;
uint out_size;
byte *lout;
int code = 0;
gx_color_value color_cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
int ry, lx;
gs_int_rect rect;
fit_copy(dev, data, data_x, raster, id, x, y, width, height);
row = data;
out_size = bitmap_raster(width * bpp);
lin = gs_alloc_bytes(mem, in_size, "copy_alpha(lin)");
lout = gs_alloc_bytes(mem, out_size, "copy_alpha(lout)");
if (lin == 0 || lout == 0) {
code = gs_note_error(gs_error_VMerror);
goto out;
}
(*dev_proc(dev, decode_color)) (dev, color, color_cv);
rect.p.x = 0;
rect.q.x = dev->width;
for (ry = y; ry < y + height; row += raster, ++ry) {
byte *line;
int sx, rx;
byte *l_dptr = lout;
int l_dbit = 0;
byte l_dbyte = ((l_dbit) ? (byte)(*(l_dptr) & (0xff00 >> (l_dbit))) : 0);
int l_xprev = x;
gs_get_bits_params_t params;
params.options = (GB_ALIGN_STANDARD |
(GB_RETURN_COPY | GB_RETURN_POINTER) |
GB_OFFSET_0 |
GB_RASTER_STANDARD | GB_PACKING_CHUNKY |
GB_COLORS_NATIVE | GB_ALPHA_NONE);
params.x_offset = 0;
params.raster = bitmap_raster(dev->width * dev->color_info.depth);
params.data[0] = lin;
rect.p.y = ry;
rect.q.y = ry+1;
code = (*dev_proc(dev, get_bits_rectangle))(dev, &rect,
¶ms);
if (code < 0)
break;
line = params.data[0];
lx = x;
for (sx = data_x, rx = x; sx < data_x + width; ++sx, ++rx) {
gx_color_index previous = gx_no_color_index;
gx_color_index composite;
int alpha2, alpha;
switch(depth)
{
case 2:
/* map 0 - 3 to 0 - 15 */
alpha = ((row[sx >> 2] >> ((3 - (sx & 3)) << 1)) & 3) * 85;
break;
case 4:
alpha2 = row[sx >> 1],
alpha = (sx & 1 ? alpha2 & 0xf : alpha2 >> 4) * 17;
break;
case 8:
alpha = row[sx];
break;
default:
return_error(gs_error_rangecheck);
}
blend:
if (alpha == 0) {
/* Previously the code used to just write out the previous
* colour when the alpha was 0, but that's wrong. It leaves
* the underlying colour unchanged, but has the effect of
* making this pixel appear solid in any device that's
* watching what pixels are written (such as the pattern
* tile devices). The right thing to do is to write out
* the buffered accumulator, and skip over any pixels that
* are completely clear. */
if (rx > l_xprev ) {
sample_store_flush(l_dptr, l_dbit, l_dbyte);
code = (*dev_proc(dev, copy_color))
(dev, lout, l_xprev - (lx), out_size,
gx_no_bitmap_id, l_xprev, ry, (rx) - l_xprev, 1);
if ( code < 0 )
return code;
}
l_dptr = lout;
l_dbit = 0;
l_dbyte = (l_dbit ? (byte)(*l_dptr & (0xff00 >> l_dbit)) : 0);
l_xprev = rx+1;
lx = rx+1;
} else {
if (alpha == 255) { /* Just write the new color. */
composite = color;
} else {
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
uchar i;
int alpha2 = alpha + (alpha>>7);
if (previous == gx_no_color_index) { /* Extract the old color. */
if (bpp < 8) {
const uint bit = rx * bpp;
const byte *src = line + (bit >> 3);
previous =
(*src >> (8 - ((bit & 7) + bpp))) &
((1 << bpp) - 1);
} else {
const byte *src = line + (rx * (bpp >> 3));
previous = 0;
switch (bpp >> 3) {
case 8:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 56);
case 7:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 48);
case 6:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 40);
case 5:
previous += (gx_color_index) * src++
<< SAMPLE_BOUND_SHIFT(previous, 32);
case 4:
previous += (gx_color_index) * src++ << 24;
case 3:
previous += (gx_color_index) * src++ << 16;
case 2:
previous += (gx_color_index) * src++ << 8;
case 1:
previous += *src++;
}
}
}
(*dev_proc(dev, decode_color)) (dev, previous, cv);
#if ARCH_INTS_ARE_SHORT
# define b_int long
#else
# define b_int int
#endif
#define make_shade(old, clr, alpha) \
(((((b_int)(old))<<8) + (((b_int)(clr) - (b_int)(old)) * (alpha)))>>8)
for (i=0; i<ncomps; i++)
cv[i] = make_shade(cv[i], color_cv[i], alpha2);
#undef b_int
#undef make_shade
composite =
(*dev_proc(dev, encode_color)) (dev, cv);
if (composite == gx_no_color_index) { /* The device can't represent this color. */
/* Move the alpha value towards 0 or 1. */
if (alpha == 127) /* move 1/2 towards 1 */
++alpha;
alpha = (alpha & 128) | (alpha >> 1);
goto blend;
}
}
if (sizeof(composite) > 4) {
if (sample_store_next64(composite, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0)
return_error(gs_error_rangecheck);
}
else {
if (sample_store_next32(composite, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0)
return_error(gs_error_rangecheck);
}
}
}
if ( rx > l_xprev ) {
sample_store_flush(l_dptr, l_dbit, l_dbyte);
code = (*dev_proc(dev, copy_color))
(dev, lout, l_xprev - lx, out_size,
gx_no_bitmap_id, l_xprev, ry, rx - l_xprev, 1);
if (code < 0)
return code;
}
}
out:gs_free_object(mem, lout, "copy_alpha(lout)");
gs_free_object(mem, lin, "copy_alpha(lin)");
return code;
}
}
int
gx_default_fill_mask(gx_device * orig_dev,
const byte * data, int dx, int raster, gx_bitmap_id id,
int x, int y, int w, int h,
const gx_drawing_color * pdcolor, int depth,
gs_logical_operation_t lop, const gx_clip_path * pcpath)
{
gx_device *dev = orig_dev;
gx_device_clip cdev;
if (w == 0 || h == 0)
return 0;
if (pcpath != 0)
{
gs_fixed_rect rect;
int tmp;
rect.p.x = int2fixed(x);
rect.p.y = int2fixed(y);
rect.q.x = int2fixed(x+w);
rect.q.y = int2fixed(y+h);
dev = gx_make_clip_device_on_stack_if_needed(&cdev, pcpath, dev, &rect);
if (dev == NULL)
return 0;
/* Clip region if possible */
tmp = fixed2int(rect.p.x);
if (tmp > x)
{
dx += tmp-x;
x = tmp;
}
tmp = fixed2int(rect.q.x);
if (tmp < x+w)
w = tmp-x;
tmp = fixed2int(rect.p.y);
if (tmp > y)
{
data += (tmp-y) * raster;
y = tmp;
}
tmp = fixed2int(rect.q.y);
if (tmp < y+h)
h = tmp-y;
}
if (depth > 1) {
/****** CAN'T DO ROP OR HALFTONE WITH ALPHA ******/
return (*dev_proc(dev, copy_alpha))
(dev, data, dx, raster, id, x, y, w, h,
gx_dc_pure_color(pdcolor), depth);
} else
return pdcolor->type->fill_masked(pdcolor, data, dx, raster, id,
x, y, w, h, dev, lop, false);
}
/* Default implementation of strip_tile_rect_devn. With the current design
only devices that support devn color will be making use of this
procedure and those are planar devices. So we have an implemenation
for planar devices and not a default implemenetation at this time. */
int
gx_default_strip_tile_rect_devn(gx_device * dev, const gx_strip_bitmap * tiles,
int x, int y, int w, int h, const gx_drawing_color * pdcolor0,
const gx_drawing_color * pdcolor1, int px, int py)
{
return_error(gs_error_unregistered);
}
/* Default implementation of strip_tile_rectangle */
int
gx_default_strip_tile_rectangle(gx_device * dev, const gx_strip_bitmap * tiles,
int x, int y, int w, int h, gx_color_index color0, gx_color_index color1,
int px, int py)
{ /* Fill the rectangle in chunks. */
int width = tiles->size.x;
int height = tiles->size.y;
int raster = tiles->raster;
int rwidth = tiles->rep_width;
int rheight = tiles->rep_height;
int shift = tiles->shift;
gs_id tile_id = tiles->id;
if (rwidth == 0 || rheight == 0)
return_error(gs_error_unregistered); /* Must not happen. */
fit_fill_xy(dev, x, y, w, h);
#ifdef DEBUG
if (gs_debug_c('t')) {
int ptx, pty;
const byte *ptp = tiles->data;
dmlprintf4(dev->memory, "[t]tile %dx%d raster=%d id=%lu;",
tiles->size.x, tiles->size.y, tiles->raster, tiles->id);
dmlprintf6(dev->memory, " x,y=%d,%d w,h=%d,%d p=%d,%d\n",
x, y, w, h, px, py);
dmlputs(dev->memory, "");
for (pty = 0; pty < tiles->size.y; pty++) {
dmprintf(dev->memory, " ");
for (ptx = 0; ptx < tiles->raster; ptx++)
dmprintf1(dev->memory, "%3x", *ptp++);
}
dmputc(dev->memory, '\n');
}
#endif
{ /*
* Note: we can't do the following computations until after
* the fit_fill_xy.
*/
int xoff =
(shift == 0 ? px :
px + (y + py) / rheight * tiles->rep_shift);
int irx = ((rwidth & (rwidth - 1)) == 0 ? /* power of 2 */
(x + xoff) & (rwidth - 1) :
(x + xoff) % rwidth);
int ry = ((rheight & (rheight - 1)) == 0 ? /* power of 2 */
(y + py) & (rheight - 1) :
(y + py) % rheight);
int icw = width - irx;
int ch = height - ry;
byte *row = tiles->data + ry * raster;
dev_proc_copy_mono((*proc_mono));
dev_proc_copy_color((*proc_color));
dev_proc_copy_planes((*proc_planes));
int code = 0;
if (color0 == gx_no_color_index && color1 == gx_no_color_index) {
if (tiles->num_planes > 1) {
proc_mono = 0;
proc_color = 0;
proc_planes = dev_proc(dev, copy_planes);
} else {
proc_planes = 0;
proc_color = dev_proc(dev, copy_color);
proc_mono = 0;
}
} else {
proc_planes = 0;
proc_color = 0;
proc_mono = dev_proc(dev, copy_mono);
}
#define GX_DEFAULT_COPY_TILE(dev, srcx, tx, ty, tw, th, tid) do {\
if_debug6m('t', (dev)->memory, " copy id=%lu sx=%d => x=%d y=%d w=%d h=%d\n", tid, srcx, tx, ty, tw, th);\
if (tiles->num_planes > 1) {\
if (proc_planes)\
code = (*proc_planes)(dev, row, srcx, raster, tid, tx, ty, tw, th, height);\
} else {\
if (proc_color != 0) {\
code = (*proc_color)(dev, row, srcx, raster, tid, tx, ty, tw, th);\
} else {\
if (proc_mono)\
code = (*proc_mono)(dev, row, srcx, raster, tid, tx, ty, tw, th, color0, color1);\
else code = 0;\
}\
}\
if (code < 0) return_error(code);\
} while (0);
if (ch >= h) { /* Shallow operation */
if (icw >= w) { /* Just one (partial) tile to transfer. */
GX_DEFAULT_COPY_TILE(dev, irx, x, y, w, h, (w == width && h == height ? tile_id : gs_no_bitmap_id));
} else {
int ex = x + w;
int fex = ex - width;
int cx = x + icw;
ulong id = (h == height ? tile_id : gs_no_bitmap_id);
GX_DEFAULT_COPY_TILE(dev, irx, x, y, icw, h, gs_no_bitmap_id);
while (cx <= fex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, y, width, h, id);
cx += width;
}
if (cx < ex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, y, ex - cx, h, gs_no_bitmap_id);
}
}
} else if (icw >= w && shift == 0) {
/* Narrow operation, no shift */
int ey = y + h;
int fey = ey - height;
int cy = y + ch;
ulong id = (w == width ? tile_id : gs_no_bitmap_id);
GX_DEFAULT_COPY_TILE(dev, irx, x, y, w, ch, (ch == height ? id : gs_no_bitmap_id));
row = tiles->data;
do {
ch = (cy > fey ? ey - cy : height);
GX_DEFAULT_COPY_TILE(dev, irx, x, cy, w, ch,
(ch == height ? id : gs_no_bitmap_id));
}
while ((cy += ch) < ey);
} else {
/* Full operation. If shift != 0, some scan lines */
/* may be narrow. We could test shift == 0 in advance */
/* and use a slightly faster loop, but right now */
/* we don't bother. */
int ex = x + w, ey = y + h;
int fex = ex - width, fey = ey - height;
int cx, cy;
for (cy = y;;) {
ulong id = (ch == height ? tile_id : gs_no_bitmap_id);
if (icw >= w) {
GX_DEFAULT_COPY_TILE(dev, irx, x, cy, w, ch,
(w == width ? id : gs_no_bitmap_id));
} else {
GX_DEFAULT_COPY_TILE(dev, irx, x, cy, icw, ch, gs_no_bitmap_id);
cx = x + icw;
while (cx <= fex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, cy, width, ch, id);
cx += width;
}
if (cx < ex) {
GX_DEFAULT_COPY_TILE(dev, 0, cx, cy, ex - cx, ch, gs_no_bitmap_id);
}
}
if ((cy += ch) >= ey)
break;
ch = (cy > fey ? ey - cy : height);
if ((irx += shift) >= rwidth)
irx -= rwidth;
icw = width - irx;
row = tiles->data;
}
}
#undef GX_DEFAULT_COPY_TILE
}
return 0;
}
int
gx_no_strip_copy_rop2(gx_device * dev,
const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_strip_bitmap * textures, const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y, gs_logical_operation_t lop,
uint planar_height)
{
return_error(gs_error_unknownerror); /* not implemented */
}
/* ---------------- Unaligned copy operations ---------------- */
/*
* Implementing unaligned operations in terms of the standard aligned
* operations requires adjusting the bitmap origin and/or the raster to be
* aligned. Adjusting the origin is simple; adjusting the raster requires
* doing the operation one scan line at a time.
*/
int
gx_copy_mono_unaligned(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index zero, gx_color_index one)
{
dev_proc_copy_mono((*copy_mono)) = dev_proc(dev, copy_mono);
uint offset = ALIGNMENT_MOD(data, align_bitmap_mod);
int step = raster & (align_bitmap_mod - 1);
/* Adjust the origin. */
data -= offset;
dx += offset << 3;
/* Adjust the raster. */
if (!step) { /* No adjustment needed. */
return (*copy_mono) (dev, data, dx, raster, id,
x, y, w, h, zero, one);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = data;
int d = dx;
int code = 0;
int i;
for (i = 0; i < h && code >= 0;
++i, p += raster - step, d += step << 3
)
code = (*copy_mono) (dev, p, d, raster, gx_no_bitmap_id,
x, y + i, w, 1, zero, one);
return code;
}
}
int
gx_copy_color_unaligned(gx_device * dev, const byte * data,
int data_x, int raster, gx_bitmap_id id,
int x, int y, int width, int height)
{
dev_proc_copy_color((*copy_color)) = dev_proc(dev, copy_color);
int depth = dev->color_info.depth;
uint offset = (uint) (data - (const byte *)0) & (align_bitmap_mod - 1);
int step = raster & (align_bitmap_mod - 1);
/*
* Adjust the origin.
* We have to do something very special for 24-bit data,
* because that is the only depth that doesn't divide
* align_bitmap_mod exactly. In particular, we need to find
* M*B + R == 0 mod 3, where M is align_bitmap_mod, R is the
* offset value just calculated, and B is an integer unknown;
* the new value of offset will be M*B + R.
*/
if (depth == 24)
offset += (offset % 3) *
(align_bitmap_mod * (3 - (align_bitmap_mod % 3)));
data -= offset;
data_x += (offset << 3) / depth;
/* Adjust the raster. */
if (!step) { /* No adjustment needed. */
return (*copy_color) (dev, data, data_x, raster, id,
x, y, width, height);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = data;
int d = data_x;
int dstep = (step << 3) / depth;
int code = 0;
int i;
for (i = 0; i < height && code >= 0;
++i, p += raster - step, d += dstep
)
code = (*copy_color) (dev, p, d, raster, gx_no_bitmap_id,
x, y + i, width, 1);
return code;
}
}
int
gx_copy_alpha_unaligned(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{
dev_proc_copy_alpha((*copy_alpha)) = dev_proc(dev, copy_alpha);
uint offset = (uint) (data - (const byte *)0) & (align_bitmap_mod - 1);
int step = raster & (align_bitmap_mod - 1);
/* Adjust the origin. */
data -= offset;
data_x += (offset << 3) / depth;
/* Adjust the raster. */
if (!step) { /* No adjustment needed. */
return (*copy_alpha) (dev, data, data_x, raster, id,
x, y, width, height, color, depth);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = data;
int d = data_x;
int dstep = (step << 3) / depth;
int code = 0;
int i;
for (i = 0; i < height && code >= 0;
++i, p += raster - step, d += dstep
)
code = (*copy_alpha) (dev, p, d, raster, gx_no_bitmap_id,
x, y + i, width, 1, color, depth);
return code;
}
}
|