1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Default polygon and image drawing device procedures */
#include "math_.h"
#include "memory_.h"
#include "stdint_.h"
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gsrect.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "gxdcolor.h"
#include "gxdevice.h"
#include "gxiparam.h"
#include "gxgstate.h"
#include "gxhldevc.h"
#include "gdevddrw.h"
/*
#include "gxdtfill.h" - Do not remove this comment.
"gxdtfill.h" is included below.
*/
#define SWAP(a, b, t)\
(t = a, a = b, b = t)
/* ---------------- Polygon and line drawing ---------------- */
/* Define the 'remainder' analogue of fixed_mult_quo. */
static fixed
fixed_mult_rem(fixed a, fixed b, fixed c)
{
/* All kinds of truncation may happen here, but it's OK. */
return a * b - fixed_mult_quo(a, b, c) * c;
}
/*
* The trapezoid fill algorithm uses trap_line structures to keep track of
* the left and right edges during the Bresenham loop.
*/
typedef struct trap_line_s {
/*
* h is the y extent of the line (edge.end.y - edge.start.y).
* We know h > 0.
*/
fixed h;
/*
* The dx/dy ratio for the line is di + df/h.
* (The quotient refers to the l.s.b. of di, not fixed_1.)
* We know 0 <= df < h.
*/
int di;
fixed df;
/*
* The intersection of the line with a scan line is x + xf/h + 1.
* (The 1 refers to the least significant bit of x, not fixed_1;
* similarly, the quotient refers to the l.s.b. of x.)
* We know -h <= xf < 0.
*
* This rational value preciselly represents the mathematical line
* (with no machine arithmetic error).
*
* Note that the fractional part is negative to simplify
* some conditions in the Bresenham algorithm.
* Due to that some expressions are inobvious.
* We believe that it's a kind of archaic
* for the modern hyperthreading architecture,
* we still keep it because the code passed a huge testing
* on various platforms.
*/
fixed x, xf;
/*
* We increment (x,xf) by (ldi,ldf) after each scan line.
* (ldi,ldf) is just (di,df) converted to fixed point.
* We know 0 <= ldf < h.
*/
fixed ldi, ldf;
} trap_line;
/*
* The linear color trapezoid fill algorithm uses trap_color structures to keep track of
* the color change during the Bresenham loop.
*/
typedef struct trap_gradient_s {
frac31 *c; /* integer part of the color in frac32 units. */
int32_t *f; /* the fraction part numerator */
int32_t *num; /* the gradient numerator */
int32_t den; /* color gradient denominator */
} trap_gradient;
/*
* Compute the di and df members of a trap_line structure. The x extent
* (edge.end.x - edge.start.x) is a parameter; the y extent (h member)
* has already been set. Also adjust x for the initial y.
*/
static inline void
compute_dx(trap_line *tl, fixed xd, fixed ys)
{
fixed h = tl->h;
int di;
if (xd >= 0) {
if (xd < h)
tl->di = 0, tl->df = xd;
else {
tl->di = di = (int)(xd / h);
tl->df = xd - di * h;
tl->x += ys * di;
}
} else {
if ((tl->df = xd + h) >= 0 /* xd >= -h */)
tl->di = -1, tl->x -= ys;
else {
tl->di = di = (int)((xd + 1) / h - 1);
tl->df = xd - di * h;
tl->x += ys * di;
}
}
}
#define YMULT_LIMIT (max_fixed / fixed_1)
/* Compute ldi, ldf, and xf similarly. */
static inline void
compute_ldx(trap_line *tl, fixed ys)
{
int di = tl->di;
fixed df = tl->df;
fixed h = tl->h;
if ( df < YMULT_LIMIT ) {
if ( df == 0 ) /* vertical edge, worth checking for */
tl->ldi = int2fixed(di), tl->ldf = 0, tl->xf = -h;
else {
tl->ldi = int2fixed(di) + int2fixed(df) / h;
tl->ldf = int2fixed(df) % h;
tl->xf =
(ys < fixed_1 ? ys * df % h : fixed_mult_rem(ys, df, h)) - h;
}
}
else {
tl->ldi = int2fixed(di) + fixed_mult_quo(fixed_1, df, h);
tl->ldf = fixed_mult_rem(fixed_1, df, h);
tl->xf = fixed_mult_rem(ys, df, h) - h;
}
}
static inline int
init_gradient(trap_gradient *g, const gs_fill_attributes *fa,
const gs_linear_color_edge *e, const gs_linear_color_edge *e1,
const trap_line *l, fixed ybot, int num_components)
{
int i;
int64_t c;
int32_t d;
if (e->c1 == NULL || e->c0 == NULL)
g->den = 0; /* A wedge - the color is axial along another edge. */
else {
bool ends_from_fa = (e1->c1 == NULL || e1->c0 == NULL);
if (ends_from_fa)
g->den = fa->yend - fa->ystart;
else {
g->den = e->end.y - e->start.y;
if (g->den != l->h)
return_error(gs_error_unregistered); /* Must not happen. */
}
for (i = 0; i < num_components; i++) {
g->num[i] = e->c1[i] - e->c0[i];
c = (int64_t)g->num[i] * (uint32_t)(ybot -
(ends_from_fa ? fa->ystart : e->start.y));
d = (int32_t)(c / g->den);
g->c[i] = e->c0[i] + d;
c -= (int64_t)d * g->den;
if (c < 0) {
g->c[i]--;
c += g->den;
}
g->f[i] = (int32_t)c;
}
}
return 0;
}
static inline void
step_gradient(trap_gradient *g, int num_components)
{
int i;
if (g->den == 0)
return;
for (i = 0; i < num_components; i++) {
int64_t fc = g->f[i] + (int64_t)g->num[i] * fixed_1;
int32_t fc32;
g->c[i] += (int32_t)(fc / g->den);
fc32 = (int32_t)(fc - fc / g->den * g->den);
if (fc32 < 0) {
fc32 += g->den;
g->c[i]--;
}
g->f[i] = fc32;
}
}
static inline bool
check_gradient_overflow(const gs_linear_color_edge *le, const gs_linear_color_edge *re)
{
if (le->c1 == NULL || re->c1 == NULL) {
/* A wedge doesn't use a gradient by X. */
return false;
} else {
/* Check whether set_x_gradient, fill_linear_color_scanline can overflow.
dev_proc(dev, fill_linear_color_scanline) can perform its computation in 32-bit fractions,
so we assume it never overflows. Devices which implement it with no this
assumption must implement the check in gx_default_fill_linear_color_trapezoid,
gx_default_fill_linear_color_triangle with a function other than this one.
Since set_x_gradient perform computations in int64_t, which provides 63 bits
while multiplying a 32-bits color value to a coordinate,
we must restrict the X span with 63 - 32 = 31 bits.
*/
int32_t xl = min(le->start.x, le->end.x);
int32_t xr = min(re->start.x, re->end.x);
/* The pixel span boundaries : */
return arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE;
}
}
static inline int
set_x_gradient_nowedge(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg,
const trap_line *l, const trap_line *r, int il, int ir, int num_components)
{
/* Ignoring the ending coordinats fractions,
so the gridient is slightly shifted to the left (in <1 'fixed' unit). */
int32_t xl = l->x - (l->xf == -l->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */
int32_t xr = r->x - (r->xf == -r->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */
/* The pixel span boundaries : */
int32_t x0 = int2fixed(il) + fixed_half; /* Shift to the pixel center. */
int32_t x1 = int2fixed(ir) - fixed_half; /* The center of the last pixel to paint. */
int i;
# ifdef DEBUG
if (arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE) /* Can overflow ? */
return_error(gs_error_unregistered); /* Must not happen. */
# endif
/* We cannot compute the color of the 'ir' pixel
because it can overflow 'c1' due to the pixel ir center
may be greater that r->x .
Therefore we base the proportion on the pixel index ir-1 (see comment to 'x1').
Debugged with CET 12-14O.PS SpecialTestJ02Test12.
*/
xg->den = fixed2int(x1 - x0);
if (xg->den <= 0) {
/* The span contains a single pixel, will construct a degenerate gradient. */
xg->den = 1; /* Safety (against zerodivide). */
}
for (i = 0; i < num_components; i++) {
/* Ignoring the ending colors fractions,
so the color gets a slightly smaller value
(in <1 'frac31' unit), but it's not important due to
the further conversion to [0, 1 << cinfo->comp_bits[j]],
which drops the fraction anyway. */
int32_t cl = lg->c[i];
int32_t cr = rg->c[i];
int32_t c0 = (int32_t)(cl + ((int64_t)cr - cl) * (x0 - xl) / (xr - xl));
int32_t c1 = (int32_t)(cl + ((int64_t)cr - cl) * (x1 - xl) / (xr - xl));
xg->c[i] = c0;
xg->f[i] = 0; /* Insufficient bits to compute it better.
The color so the color gets a slightly smaller value
(in <1 'frac31' unit), but it's not important due to
the further conversion to [0, 1 << cinfo->comp_bits[j]],
which drops the fraction anyway.
So setting 0 appears pretty good and fast. */
xg->num[i] = c1 - c0;
}
return 0;
}
static inline int
set_x_gradient(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg,
const trap_line *l, const trap_line *r, int il, int ir, int num_components)
{
if (lg->den == 0 || rg->den == 0) {
/* A wedge doesn't use a gradient by X. */
int i;
xg->den = 1;
for (i = 0; i < num_components; i++) {
xg->c[i] = (lg->den == 0 ? rg->c[i] : lg->c[i]);
xg->f[i] = 0; /* Compatible to set_x_gradient_nowedge. */
xg->num[i] = 0;
}
return 0;
} else
return set_x_gradient_nowedge(xg, lg, rg, l, r, il, ir, num_components);
}
/*
* Fill a trapezoid.
* Since we need several statically defined variants of this algorithm,
* we stored it in gxdtfill.h and include it configuring with
* macros defined here.
*/
#define LINEAR_COLOR 0 /* Common for shading variants. */
#define EDGE_TYPE gs_fixed_edge /* Common for non-shading variants. */
#define FILL_ATTRS gs_logical_operation_t /* Common for non-shading variants. */
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_fd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 1
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_nd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 1
#define FILL_DIRECT 0
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_fd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_nd
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 0
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_fd
#define CONTIGUOUS_FILL 1
#define SWAP_AXES 0
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_nd
#define CONTIGUOUS_FILL 1
#define SWAP_AXES 0
#define FILL_DIRECT 0
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#undef EDGE_TYPE
#undef LINEAR_COLOR
#undef FILL_ATTRS
#define LINEAR_COLOR 1 /* Common for shading variants. */
#define EDGE_TYPE gs_linear_color_edge /* Common for shading variants. */
#define FILL_ATTRS const gs_fill_attributes * /* Common for non-shading variants. */
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_lc
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_lc
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 1
#define FILL_DIRECT 1
#include "gxdtfill.h"
#undef GX_FILL_TRAPEZOID
#undef CONTIGUOUS_FILL
#undef SWAP_AXES
#undef FILL_DIRECT
#undef EDGE_TYPE
#undef LINEAR_COLOR
#undef FILL_ATTRS
int
gx_default_fill_trapezoid(gx_device * dev, const gs_fixed_edge * left,
const gs_fixed_edge * right, fixed ybot, fixed ytop, bool swap_axes,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
bool fill_direct = color_writes_pure(pdevc, lop);
if (swap_axes) {
if (fill_direct)
return gx_fill_trapezoid_as_fd(dev, left, right, ybot, ytop, 0, pdevc, lop);
else
return gx_fill_trapezoid_as_nd(dev, left, right, ybot, ytop, 0, pdevc, lop);
} else {
if (fill_direct)
return gx_fill_trapezoid_ns_fd(dev, left, right, ybot, ytop, 0, pdevc, lop);
else
return gx_fill_trapezoid_ns_nd(dev, left, right, ybot, ytop, 0, pdevc, lop);
}
}
static inline int
fill_linear_color_trapezoid_nocheck(gx_device *dev, const gs_fill_attributes *fa,
const gs_linear_color_edge *le, const gs_linear_color_edge *re)
{
fixed y02 = max(le->start.y, re->start.y), ymin = max(y02, fa->clip->p.y);
fixed y13 = min(le->end.y, re->end.y), ymax = min(y13, fa->clip->q.y);
int code;
code = (fa->swap_axes ? gx_fill_trapezoid_as_lc : gx_fill_trapezoid_ns_lc)(dev,
le, re, ymin, ymax, 0, NULL, fa);
if (code < 0)
return code;
return !code;
}
/* Fill a trapezoid with a linear color.
[p0 : p1] - left edge, from bottom to top.
[p2 : p3] - right edge, from bottom to top.
The filled area is within Y-spans of both edges.
This implemetation actually handles a bilinear color,
in which the generatrix keeps a parallelizm to the X axis.
In general a bilinear function doesn't keep the generatrix parallelizm,
so the caller must decompose/approximate such functions.
Return values :
1 - success;
0 - Too big. The area isn't filled. The client must decompose the area.
<0 - error.
*/
int
gx_default_fill_linear_color_trapezoid(gx_device *dev, const gs_fill_attributes *fa,
const gs_fixed_point *p0, const gs_fixed_point *p1,
const gs_fixed_point *p2, const gs_fixed_point *p3,
const frac31 *c0, const frac31 *c1,
const frac31 *c2, const frac31 *c3)
{
gs_linear_color_edge le, re;
le.start = *p0;
le.end = *p1;
le.c0 = c0;
le.c1 = c1;
le.clip_x = fa->clip->p.x;
re.start = *p2;
re.end = *p3;
re.c0 = c2;
re.c1 = c3;
re.clip_x = fa->clip->q.x;
if (check_gradient_overflow(&le, &re))
return 0;
return fill_linear_color_trapezoid_nocheck(dev, fa, &le, &re);
}
static inline int
fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa,
const gs_fixed_point *p0, const gs_fixed_point *p1,
const gs_fixed_point *p2,
const frac31 *c0, const frac31 *c1, const frac31 *c2)
{ /* p0 must be the lowest vertex. */
int code;
gs_linear_color_edge e0, e1, e2;
if (p0->y == p1->y)
return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p1, p2, c0, c2, c1, c2);
if (p1->y == p2->y)
return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p0, p1, c0, c2, c0, c1);
e0.start = *p0;
e0.end = *p2;
e0.c0 = c0;
e0.c1 = c2;
e0.clip_x = fa->clip->p.x;
e1.start = *p0;
e1.end = *p1;
e1.c0 = c0;
e1.c1 = c1;
e1.clip_x = fa->clip->q.x;
if (p0->y < p1->y && p1->y < p2->y) {
e2.start = *p1;
e2.end = *p2;
e2.c0 = c1;
e2.c1 = c2;
e2.clip_x = fa->clip->q.x;
if (check_gradient_overflow(&e0, &e1))
return 0;
if (check_gradient_overflow(&e0, &e2))
return 0;
code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1);
if (code <= 0) /* Sic! */
return code;
return fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e2);
} else { /* p0->y < p2->y && p2->y < p1->y */
e2.start = *p2;
e2.end = *p1;
e2.c0 = c2;
e2.c1 = c1;
e2.clip_x = fa->clip->q.x;
if (check_gradient_overflow(&e0, &e1))
return 0;
if (check_gradient_overflow(&e2, &e1))
return 0;
code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1);
if (code <= 0) /* Sic! */
return code;
return fill_linear_color_trapezoid_nocheck(dev, fa, &e2, &e1);
}
}
/* Fill a triangle with a linear color. */
int
gx_default_fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa,
const gs_fixed_point *p0, const gs_fixed_point *p1,
const gs_fixed_point *p2,
const frac31 *c0, const frac31 *c1, const frac31 *c2)
{
fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
if ((int64_t)dx1 * dy2 < (int64_t)dx2 * dy1) {
const gs_fixed_point *p = p1;
const frac31 *c = c1;
p1 = p2;
p2 = p;
c1 = c2;
c2 = c;
}
if (p0->y <= p1->y && p0->y <= p2->y)
return fill_linear_color_triangle(dev, fa, p0, p1, p2, c0, c1, c2);
if (p1->y <= p0->y && p1->y <= p2->y)
return fill_linear_color_triangle(dev, fa, p1, p2, p0, c1, c2, c0);
else
return fill_linear_color_triangle(dev, fa, p2, p0, p1, c2, c0, c1);
}
/* Fill a parallelogram whose points are p, p+a, p+b, and p+a+b. */
/* We should swap axes to get best accuracy, but we don't. */
/* We must be very careful to follow the center-of-pixel rule in all cases. */
int
gx_default_fill_parallelogram(gx_device * dev,
fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
fixed t;
fixed qx, qy, ym;
dev_proc_fill_trapezoid((*fill_trapezoid));
gs_fixed_edge left, right;
int code;
/* Make a special fast check for rectangles. */
if (PARALLELOGRAM_IS_RECT(ax, ay, bx, by)) {
gs_int_rect r;
INT_RECT_FROM_PARALLELOGRAM(&r, px, py, ax, ay, bx, by);
return gx_fill_rectangle_device_rop(r.p.x, r.p.y, r.q.x - r.p.x,
r.q.y - r.p.y, pdevc, dev, lop);
}
/*
* Not a rectangle. Ensure that the 'a' line is to the left of
* the 'b' line. Testing ax <= bx is neither sufficient nor
* necessary: in general, we need to compare the slopes.
*/
/* Ensure ay >= 0, by >= 0. */
if (ay < 0)
px += ax, py += ay, ax = -ax, ay = -ay;
if (by < 0)
px += bx, py += by, bx = -bx, by = -by;
qx = px + ax + bx;
if ((ax ^ bx) < 0) { /* In this case, the test ax <= bx is sufficient. */
if (ax > bx)
SWAP(ax, bx, t), SWAP(ay, by, t);
} else { /*
* Compare the slopes. We know that ay >= 0, by >= 0,
* and ax and bx have the same sign; the lines are in the
* correct order iff
* ay/ax >= by/bx, or
* ay*bx >= by*ax
* Eventually we can probably find a better way to test this,
* without using floating point.
*/
if ((double)ay * bx < (double)by * ax)
SWAP(ax, bx, t), SWAP(ay, by, t);
}
fill_trapezoid = dev_proc(dev, fill_trapezoid);
qy = py + ay + by;
left.start.x = right.start.x = px;
left.start.y = right.start.y = py;
left.end.x = px + ax;
left.end.y = py + ay;
right.end.x = px + bx;
right.end.y = py + by;
#define ROUNDED_SAME(p1, p2)\
(fixed_pixround(p1) == fixed_pixround(p2))
if (ay < by) {
if (!ROUNDED_SAME(py, left.end.y)) {
code = (*fill_trapezoid) (dev, &left, &right, py, left.end.y,
false, pdevc, lop);
if (code < 0)
return code;
}
left.start = left.end;
left.end.x = qx, left.end.y = qy;
ym = right.end.y;
if (!ROUNDED_SAME(left.start.y, ym)) {
code = (*fill_trapezoid) (dev, &left, &right, left.start.y, ym,
false, pdevc, lop);
if (code < 0)
return code;
}
right.start = right.end;
right.end.x = qx, right.end.y = qy;
} else {
if (!ROUNDED_SAME(py, right.end.y)) {
code = (*fill_trapezoid) (dev, &left, &right, py, right.end.y,
false, pdevc, lop);
if (code < 0)
return code;
}
right.start = right.end;
right.end.x = qx, right.end.y = qy;
ym = left.end.y;
if (!ROUNDED_SAME(right.start.y, ym)) {
code = (*fill_trapezoid) (dev, &left, &right, right.start.y, ym,
false, pdevc, lop);
if (code < 0)
return code;
}
left.start = left.end;
left.end.x = qx, left.end.y = qy;
}
if (!ROUNDED_SAME(ym, qy))
return (*fill_trapezoid) (dev, &left, &right, ym, qy,
false, pdevc, lop);
else
return 0;
#undef ROUNDED_SAME
}
/* Fill a triangle whose points are p, p+a, and p+b. */
/* We should swap axes to get best accuracy, but we don't. */
int
gx_default_fill_triangle(gx_device * dev,
fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by,
const gx_device_color * pdevc, gs_logical_operation_t lop)
{
fixed t;
fixed ym;
dev_proc_fill_trapezoid((*fill_trapezoid)) =
dev_proc(dev, fill_trapezoid);
gs_fixed_edge left, right;
int code;
/* Ensure ay >= 0, by >= 0. */
if (ay < 0)
px += ax, py += ay, bx -= ax, by -= ay, ax = -ax, ay = -ay;
if (by < 0)
px += bx, py += by, ax -= bx, ay -= by, bx = -bx, by = -by;
/* Ensure ay <= by. */
if (ay > by)
SWAP(ax, bx, t), SWAP(ay, by, t);
/*
* Make a special check for a flat bottom or top,
* which we can handle with a single call on fill_trapezoid.
*/
left.start.x = right.start.x = px;
left.start.y = right.start.y = py;
if (ay == 0) {
/* Flat top */
if (ax < 0)
left.start.x = px + ax;
else
right.start.x = px + ax;
left.end.x = right.end.x = px + bx;
left.end.y = right.end.y = py + by;
ym = py;
} else if (ay == by) {
/* Flat bottom */
if (ax < bx)
left.end.x = px + ax, right.end.x = px + bx;
else
left.end.x = px + bx, right.end.x = px + ax;
left.end.y = right.end.y = py + by;
ym = py;
} else {
ym = py + ay;
if (fixed_mult_quo(bx, ay, by) < ax) {
/* The 'b' line is to the left of the 'a' line. */
left.end.x = px + bx, left.end.y = py + by;
right.end.x = px + ax, right.end.y = py + ay;
code = (*fill_trapezoid) (dev, &left, &right, py, ym,
false, pdevc, lop);
right.start = right.end;
right.end = left.end;
} else {
/* The 'a' line is to the left of the 'b' line. */
left.end.x = px + ax, left.end.y = py + ay;
right.end.x = px + bx, right.end.y = py + by;
code = (*fill_trapezoid) (dev, &left, &right, py, ym,
false, pdevc, lop);
left.start = left.end;
left.end = right.end;
}
if (code < 0)
return code;
}
return (*fill_trapezoid) (dev, &left, &right, ym, right.end.y,
false, pdevc, lop);
}
/* Draw a one-pixel-wide line. */
int
gx_default_draw_thin_line(gx_device * dev,
fixed fx0, fixed fy0, fixed fx1, fixed fy1,
const gx_device_color * pdevc, gs_logical_operation_t lop,
fixed adjustx, fixed adjusty)
{
int ix, iy, itox, itoy;
int epsilon;
return_if_interrupt(dev->memory);
/* This function was updated in revision 10391 to fix problems with
* mispositioned thin lines. This introduced a regression (see bug
* 691030). The code was then reworked to behave in what we believe is
* the correct manner, but this causes unacceptable problems with PCL
* output. While the current PCL work is underway, we have therefore
* amended this code to take note of the fill adjust values; if non-
* zero (i.e. postscript) we do "the correct thing". If zero, we do
* what we used to.
*
* The one case where this doesn't work is in the case where our PCL
* implementation thickens lines slightly to try and approximate HP
* printer behaviour. Here we do use a non-zero fill_adjust and hence
* have differences; tests show that these are acceptable though.
*
* It is hoped that this difference in behaviour will be short lived.
*/
epsilon = ((adjustx | adjusty) == 0 ? fixed_epsilon : 0);
{
fixed h = fy1 - fy0;
fixed w = fx1 - fx0;
fixed tf;
bool swap_axes;
gs_fixed_edge left, right;
if ((w < 0 ? -w : w) <= (h < 0 ? -h : h)) {
/* A "mostly-vertical" line */
if (h < 0)
SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf),
h = -h;
/* So we are plotting a trapezoid with horizontal thin edges.
* If we are drawing a non-axis aligned trap, then we check
* for whether a triangular extension area on the end covers an
* additional pixel centre; if so, we fill an extra pixel.
* If we are drawing an axis aligned trap and fill adjust is 0,
* then we shouldn't need to do this.
* If we are drawing an axis aligned trap, and fill adjust is non
* zero, then perform the check, but with a "butt cap" rather than
* a "triangle cap" region.
* See bug 687721 and bug 693212 for this history of this.
*/
if (w == 0 && adjusty) {
int deltay;
deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1;
if ((deltay > 0) && (deltay <= fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
fixed2int_var(fy1),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0;
if ((deltay < 0) && (deltay >= -fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
fixed2int_var(fy0),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
} else if (w != 0) {
int deltax, deltay;
deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1;
deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1;
if (deltax < 0) deltax=-deltax;
if ((deltay > 0) && (deltay <= fixed_half) &&
(deltay+deltax <= fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
fixed2int_var(fy1),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0;
deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0;
if (deltax < 0) deltax=-deltax;
if ((deltay < 0) && (deltay >= -fixed_half) &&
(-deltay+deltax <= fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
fixed2int_var(fy0),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
}
/* Can we treat it as a vertical rectangle? */
ix = fixed2int_var(fx0-epsilon);
itox = fixed2int_var(fx1-epsilon);
if (itox == ix) {
/* Figure out the start/height, allowing for our "covers
* centre of pixel" rule. */
iy = fixed2int_var(fy0+fixed_half-fixed_epsilon);
itoy = fixed2int_var(fy1+fixed_half-fixed_epsilon);
itoy = itoy - iy;
if (itoy <= 0) {
/* Zero height; drawing this as a trapezoid wouldn't
* fill any pixels, so just exit. */
return 0;
}
return gx_fill_rectangle_device_rop(ix, iy, 1, itoy,
pdevc, dev, lop);
}
left.start.x = fx0 - fixed_half + fixed_epsilon - epsilon;
right.start.x = left.start.x + fixed_1;
left.end.x = fx1 - fixed_half + fixed_epsilon - epsilon;
right.end.x = left.end.x + fixed_1;
left.start.y = right.start.y = fy0;
left.end.y = right.end.y = fy1;
swap_axes = false;
} else {
/* A "mostly-horizontal" line */
if (w < 0)
SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf),
w = -w;
/* So we are plotting a trapezoid with vertical thin edges
* Check for whether a triangular extension area on the end
* covers an additional pixel centre. */
if (h == 0 && adjustx) {
int deltax;
deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1;
if ((deltax > 0) && (deltax <= fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
fixed2int_var(fy1),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0;
if ((deltax < 0) && (deltax >= -fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
fixed2int_var(fy0),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
} else if (h != 0) {
int deltax, deltay;
deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1;
deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1;
if (deltay < 0) deltay=-deltay;
if ((deltax > 0) && (deltax <= fixed_half) &&
(deltax+deltay <= fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
fixed2int_var(fy1),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0;
deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0;
if (deltay < 0) deltay=-deltay;
if ((deltax < 0) && (deltax >= -fixed_half) &&
(-deltax+deltay <= fixed_half))
{
int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
fixed2int_var(fy0),
1,1,pdevc,dev,lop);
if (c < 0) return c;
}
}
/* Can we treat this as a horizontal rectangle? */
iy = fixed2int_var(fy0 - epsilon);
itoy = fixed2int_var(fy1 - epsilon);
if (itoy == iy) {
/* Figure out the start/width, allowing for our "covers
* centre of pixel" rule. */
ix = fixed2int_var(fx0+fixed_half-fixed_epsilon);
itox = fixed2int_var(fx1+fixed_half-fixed_epsilon);
itox = itox - ix;
if (itox <= 0) {
/* Zero width; drawing this as a trapezoid wouldn't
* fill any pixels, so just exit. */
return 0;
}
return gx_fill_rectangle_device_rop(ix, iy, itox, 1,
pdevc, dev, lop);
}
left.start.x = fy0 - fixed_half + fixed_epsilon - epsilon;
right.start.x = left.start.x + fixed_1;
left.end.x = fy1 - fixed_half + fixed_epsilon - epsilon;
right.end.x = left.end.x + fixed_1;
left.start.y = right.start.y = fx0;
left.end.y = right.end.y = fx1;
swap_axes = true;
}
return (*dev_proc(dev, fill_trapezoid)) (dev, &left, &right,
left.start.y, left.end.y,
swap_axes, pdevc, lop);
}
}
/* ---------------- Image drawing ---------------- */
/* GC structures for image enumerator */
public_st_gx_image_enum_common();
static
ENUM_PTRS_WITH(image_enum_common_enum_ptrs, gx_image_enum_common_t *eptr)
return 0;
case 0: return ENUM_OBJ(gx_device_enum_ptr(eptr->dev));
ENUM_PTRS_END
static RELOC_PTRS_WITH(image_enum_common_reloc_ptrs, gx_image_enum_common_t *eptr)
{
eptr->dev = gx_device_reloc_ptr(eptr->dev, gcst);
}
RELOC_PTRS_END
int
gx_default_begin_typed_image(gx_device * dev,
const gs_gstate * pgs, const gs_matrix * pmat,
const gs_image_common_t * pic, const gs_int_rect * prect,
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
gs_memory_t * memory, gx_image_enum_common_t ** pinfo)
{
return (*pic->type->begin_typed_image)
(dev, pgs, pmat, pic, prect, pdcolor, pcpath, memory, pinfo);
}
int
gx_default_fillpage(gx_device *dev, gs_gstate * pgs, gx_device_color *pdevc)
{
bool hl_color_available = gx_hld_is_hl_color_available(pgs, pdevc);
int code = 0;
/* Fill the page directly, ignoring clipping. */
/* Use the default RasterOp. */
if (hl_color_available) {
gs_fixed_rect rect;
rect.p.x = rect.p.y = 0;
rect.q.x = int2fixed(dev->width);
rect.q.y = int2fixed(dev->height);
code = dev_proc(dev, fill_rectangle_hl_color)(dev,
&rect, (const gs_gstate *)pgs, pdevc, NULL);
}
if (!hl_color_available || code == gs_error_rangecheck)
code = gx_fill_rectangle_device_rop(0, 0, dev->width, dev->height, pdevc, dev, lop_default);
return code;
}
|