1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Default shading drawing device procedures. */
#include "gx.h"
#include "gserrors.h"
#include "gxdevice.h"
#include "gxcindex.h"
#include "gxdevsop.h"
static bool
gx_devn_diff(frac31 devn1[], frac31 devn2[], int num)
{
int k;
for (k = 0; k < num; k++) {
if (devn1[k] != devn2[k]) {
return true;
}
}
return false;
}
int
gx_hl_fill_linear_color_scanline(gx_device *dev, const gs_fill_attributes *fa,
int i0, int j, int w, const frac31 *c0, const int32_t *c0f,
const int32_t *cg_num, int32_t cg_den)
{
frac31 c[GX_DEVICE_COLOR_MAX_COMPONENTS];
frac31 curr[GX_DEVICE_COLOR_MAX_COMPONENTS];
ulong f[GX_DEVICE_COLOR_MAX_COMPONENTS];
int i, i1 = i0 + w, bi = i0, k;
const gx_device_color_info *cinfo = &dev->color_info;
int n = cinfo->num_components;
int si, ei, di, code;
gs_fixed_rect rect;
gx_device_color devc;
/* Note: All the stepping math is done with frac color values */
devc.type = gx_dc_type_devn;
if (j < fixed2int(fa->clip->p.y) ||
j > fixed2int_ceiling(fa->clip->q.y)) /* Must be compatible to the clipping logic. */
return 0;
for (k = 0; k < n; k++) {
curr[k] = c[k] = c0[k];
f[k] = c0f[k];
}
for (i = i0 + 1, di = 1; i < i1; i += di) {
if (di == 1) {
/* Advance colors by 1 pixel. */
for (k = 0; k < n; k++) {
if (cg_num[k]) {
int32_t m = f[k] + cg_num[k];
c[k] += m / cg_den;
m -= m / cg_den * cg_den;
if (m < 0) {
c[k]--;
m += cg_den;
}
f[k] = m;
}
}
} else {
/* Advance colors by di pixels. */
for (k = 0; k < n; k++) {
if (cg_num[k]) {
int64_t M = f[k] + (int64_t)cg_num[k] * di;
int32_t m;
c[k] += (frac31)(M / cg_den);
m = (int32_t)(M - M / cg_den * cg_den);
if (m < 0) {
c[k]--;
m += cg_den;
}
f[k] = m;
}
}
}
if (gx_devn_diff(c, curr, n)) {
si = max(bi, fixed2int(fa->clip->p.x)); /* Must be compatible to the clipping logic. */
ei = min(i, fixed2int_ceiling(fa->clip->q.x)); /* Must be compatible to the clipping logic. */
if (si < ei) {
if (fa->swap_axes) {
rect.p.x = int2fixed(j);
rect.p.y = int2fixed(si);
rect.q.x = int2fixed(j + 1);
rect.q.y = int2fixed(ei);
} else {
rect.p.x = int2fixed(si);
rect.p.y = int2fixed(j);
rect.q.x = int2fixed(ei);
rect.q.y = int2fixed(j + 1);
}
for (k = 0; k < n; k++) {
devc.colors.devn.values[k] = frac312cv(curr[k]);
}
if (device_encodes_tags(dev)) {
devc.tag = (dev->graphics_type_tag & ~GS_DEVICE_ENCODES_TAGS);
} else {
devc.tag = 0;
}
code = dev_proc(dev, fill_rectangle_hl_color) (dev, &rect, NULL, &devc, NULL);
if (code < 0)
return code;
}
bi = i;
for (k = 0; k < n; k++) {
curr[k] = c[k];
}
di = 1;
} else if (i == i1) {
i++;
break;
} else {
/* Compute a color change pixel analytically. */
di = i1 - i;
for (k = 0; k < n; k++) {
int32_t a;
int64_t x;
frac31 v = 1 << (31 - cinfo->comp_bits[k]); /* Color index precision in frac31. */
frac31 u = c[k] & (v - 1);
if (cg_num[k] == 0) {
/* No change. */
continue;
} if (cg_num[k] > 0) {
/* Solve[(f[k] + cg_num[k]*x)/cg_den == v - u, x] */
a = v - u;
} else {
/* Solve[(f[k] + cg_num[k]*x)/cg_den == - u - 1, x] */
a = -u - 1;
}
x = ((int64_t)a * cg_den - f[k]) / cg_num[k];
if (i + x >= i1)
continue;
else if (x < 0)
return_error(gs_error_unregistered); /* Must not happen. */
else if (di > (int)x) {
di = (int)x;
if (di <= 1) {
di = 1;
break;
}
}
}
}
}
si = max(bi, fixed2int(fa->clip->p.x)); /* Must be compatible to the clipping logic. */
ei = min(i, fixed2int_ceiling(fa->clip->q.x)); /* Must be compatible to the clipping logic. */
if (si < ei) {
if (fa->swap_axes) {
rect.p.x = int2fixed(j);
rect.p.y = int2fixed(si);
rect.q.x = int2fixed(j + 1);
rect.q.y = int2fixed(ei);
} else {
rect.p.x = int2fixed(si);
rect.p.y = int2fixed(j);
rect.q.x = int2fixed(ei);
rect.q.y = int2fixed(j + 1);
}
for (k = 0; k < n; k++) {
devc.colors.devn.values[k] = frac312cv(curr[k]);
}
if (device_encodes_tags(dev)) {
devc.tag = (dev->graphics_type_tag & ~GS_DEVICE_ENCODES_TAGS);
} else {
devc.tag = 0;
}
return dev_proc(dev, fill_rectangle_hl_color) (dev, &rect, NULL, &devc, NULL);
}
return 0;
}
int
gx_default_fill_linear_color_scanline(gx_device *dev, const gs_fill_attributes *fa,
int i0, int j, int w,
const frac31 *c0, const int32_t *c0f, const int32_t *cg_num, int32_t cg_den)
{
/* This default implementation decomposes the area into constant color rectangles.
Devices may supply optimized implementations with
the inversed nesting of the i,k cicles,
i.e. with enumerating planes first, with a direct writing to the raster,
and with a fixed bits per component.
*/
/* First determine if we are doing high level style colors or pure colors */
bool devn = dev_proc(dev, dev_spec_op)(dev, gxdso_supports_devn, NULL, 0);
frac31 c[GX_DEVICE_COLOR_MAX_COMPONENTS];
ulong f[GX_DEVICE_COLOR_MAX_COMPONENTS];
int i, i1 = i0 + w, bi = i0, k;
gx_color_index ci0 = 0, ci1;
const gx_device_color_info *cinfo = &dev->color_info;
int n = cinfo->num_components;
int si, ei, di, code;
/* If the device encodes tags, we expect the comp_shift[num_components] to be valid */
/* for the tag part of the color (usually the high order bits of the color_index). */
gx_color_index tag = device_encodes_tags(dev) ?
(gx_color_index)(dev->graphics_type_tag & ~GS_DEVICE_ENCODES_TAGS) << cinfo->comp_shift[n]
: 0;
/* Todo: set this up to vector earlier */
if (devn) /* Note, PDF14 could be additive and doing devn */
return gx_hl_fill_linear_color_scanline(dev, fa, i0, j, w, c0, c0f,
cg_num, cg_den);
if (j < fixed2int(fa->clip->p.y) ||
j > fixed2int_ceiling(fa->clip->q.y)) /* Must be compatible to the clipping logic. */
return 0;
for (k = 0; k < n; k++) {
int shift = cinfo->comp_shift[k];
int bits = cinfo->comp_bits[k];
c[k] = c0[k];
f[k] = c0f[k];
ci0 |= (gx_color_index)(c[k] >> (sizeof(c[k]) * 8 - 1 - bits)) << shift;
}
for (i = i0 + 1, di = 1; i < i1; i += di) {
if (di == 1) {
/* Advance colors by 1 pixel. */
ci1 = 0;
for (k = 0; k < n; k++) {
int shift = cinfo->comp_shift[k];
int bits = cinfo->comp_bits[k];
if (cg_num[k]) {
int32_t m = f[k] + cg_num[k];
c[k] += m / cg_den;
m -= m / cg_den * cg_den;
if (m < 0) {
c[k]--;
m += cg_den;
}
f[k] = m;
}
ci1 |= (gx_color_index)(c[k] >> (sizeof(c[k]) * 8 - 1 - bits)) << shift;
}
} else {
/* Advance colors by di pixels. */
ci1 = 0;
for (k = 0; k < n; k++) {
int shift = cinfo->comp_shift[k];
int bits = cinfo->comp_bits[k];
if (cg_num[k]) {
int64_t M = f[k] + (int64_t)cg_num[k] * di;
int32_t m;
c[k] += (frac31)(M / cg_den);
m = (int32_t)(M - M / cg_den * cg_den);
if (m < 0) {
c[k]--;
m += cg_den;
}
f[k] = m;
}
ci1 |= (gx_color_index)(c[k] >> (sizeof(c[k]) * 8 - 1 - bits)) << shift;
}
}
if (ci1 != ci0) {
si = max(bi, fixed2int(fa->clip->p.x)); /* Must be compatible to the clipping logic. */
ei = min(i, fixed2int_ceiling(fa->clip->q.x)); /* Must be compatible to the clipping logic. */
if (si < ei) {
ci0 |= tag; /* set tag (may be 0 if the device doesn't use tags) */
if (fa->swap_axes) {
code = dev_proc(dev, fill_rectangle)(dev, j, si, 1, ei - si, ci0);
} else {
code = dev_proc(dev, fill_rectangle)(dev, si, j, ei - si, 1, ci0);
}
if (code < 0)
return code;
}
bi = i;
ci0 = ci1;
di = 1;
} else if (i == i1) {
i++;
break;
} else {
/* Compute a color change pixel analitically. */
di = i1 - i;
for (k = 0; k < n; k++) {
int32_t a;
int64_t x;
frac31 v = 1 << (31 - cinfo->comp_bits[k]); /* Color index precision in frac31. */
frac31 u = c[k] & (v - 1);
if (cg_num[k] == 0) {
/* No change. */
continue;
} if (cg_num[k] > 0) {
/* Solve[(f[k] + cg_num[k]*x)/cg_den == v - u, x] */
a = v - u;
} else {
/* Solve[(f[k] + cg_num[k]*x)/cg_den == - u - 1, x] */
a = -u - 1;
}
x = ((int64_t)a * cg_den - f[k]) / cg_num[k];
if (i + x >= i1)
continue;
else if (x < 0)
return_error(gs_error_unregistered); /* Must not happen. */
else if (di > (int)x) {
di = (int)x;
if (di <= 1) {
di = 1;
break;
}
}
}
}
}
si = max(bi, fixed2int(fa->clip->p.x)); /* Must be compatible to the clipping logic. */
ei = min(i, fixed2int_ceiling(fa->clip->q.x)); /* Must be compatible to the clipping logic. */
if (si < ei) {
ci0 |= tag; /* set tag (may be 0 if the device doesn't use tags) */
if (fa->swap_axes) {
return dev_proc(dev, fill_rectangle)(dev, j, si, 1, ei - si, ci0);
} else {
return dev_proc(dev, fill_rectangle)(dev, si, j, ei - si, 1, ci0);
}
}
return 0;
}
|