1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Ordered Dither Screen Creation Tool. */
#include <stdlib.h>
#ifdef GS_LIB_BUILD
#define LIB_BUILD
#include "std.h"
#include "string_.h"
#include "gsmemory.h"
#include "math_.h"
#include "gp.h"
# define ALLOC(mem, size) (gs_alloc_bytes((gs_memory_t *)mem, size, "gen_ordered"))
# define FREE(mem, ptr) gs_free_object((gs_memory_t *)mem, ptr, "gen_ordered")
# define PRINTF(mem, str) outprintf((gs_memory_t *)mem, str)
# define PRINTF2(mem, str, v1, v2) outprintf((gs_memory_t *)mem, str, v1, v2)
# define PRINTF4(mem, str, v1, v2, v3, v4) outprintf((gs_memory_t *)mem, str, v1, v2, v3, v4)
# define PRINTF7(mem, str, v1, v2, v3, v4, v5, v6, v7) outprintf((gs_memory_t *)mem, str, v1, v2, v3, v4, v5, v6, v7)
# define EPRINTF(mem, str) errprintf((gs_memory_t *)mem, str)
# define EPRINTF1(mem, str, v1) errprintf((gs_memory_t *)mem, str, v1)
# define EPRINTF3(mem, str, v1, v2, v3) errprintf((gs_memory_t *)mem, str, v1, v2, v3)
# define _FILE gp_file
# define FOPEN(mem, v1, v2) gp_fopen(mem, v1, v2)
# define FCLOSE(fid) gp_fclose(fid)
# define FPRINTF(fid, str) gp_fprintf(fid, str)
# define FPRINTF1(fid, str, v1) gp_fprintf(fid, str, v1)
# define FPRINTF2(fid, str, v1, v2) gp_fprintf(fid, str, v1, v2)
# define FPRINTF6(fid, str, v1, v2, v3, v4, v5, v6) gp_fprintf(fid, str, v1, v2, v3, v4, v5, v6)
# define FWRITE(v1, v2, v3, fid) gp_fwrite(v1, v2, v3, fid)
#endif /* defined GS_LIB_BUILD */
#ifndef LIB_BUILD
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include <sys/stat.h>
#include <math.h>
typedef unsigned char byte;
#define false 0
#define true 1
#ifndef __cplusplus
typedef int bool;
#endif /* __cpluplus */
/* Needed if standalone (main) */
# define ALLOC(mem, size) (malloc(size))
# define FREE(mem, ptr) (free(ptr))
# define PRINTF(mem, str) printf(str)
# define PRINTF2(mem, str, v1, v2) printf(str, v1, v2)
# define PRINTF4(mem, str, v1, v2, v3, v4) printf(str, v1, v2, v3, v4)
# define PRINTF7(mem, str, v1, v2, v3, v4, v5, v6, v7) printf(str, v1, v2, v3, v4, v5, v6, v7)
# define EPRINTF(mem, str) fprintf(stderr, str)
# define EPRINTF1(mem, str, v1) fprintf(stderr, str, v1)
# define EPRINTF3(mem, str, v1, v2, v3) fprintf(stderr, str, v1, v2, v3)
# define _FILE FILE
# define FOPEN(mem, v1, v2) fopen(v1, v2)
# define FCLOSE(fid) fclose(fid)
# define FPRINTF(fid, str) fprintf(fid, str)
# define FPRINTF1(fid, str, v1) fprintf(fid, str, v1)
# define FPRINTF2(fid, str, v1, v2) fprintf(fid, str, v1, v2)
# define FPRINTF6(fid, str, v1, v2, v3, v4, v5, v6) fprintf(fid, str, v1, v2, v3, v4, v5, v6)
# define FWRITE(v1, v2, v3, fid) fwrite(v1, v2, v3, fid)
#endif /* ndef LIB_BUILD */
#include "gen_ordered.h"
typedef struct htsc_point_s {
double x;
double y;
} htsc_point_t;
typedef struct htsc_threshpoint {
int x;
int y;
int value;
int index;
double dist_to_center;
} htsc_threshpoint_t;
typedef struct htsc_vertices_s {
htsc_point_t lower_left;
htsc_point_t upper_left;
htsc_point_t upper_right;
htsc_point_t lower_right;
} htsc_vertices_t;
typedef struct htsc_dot_shape_search_s {
double norm;
int index_x;
int index_y;
} htsc_dot_shape_search_t;
typedef struct htsc_matrix_s {
htsc_vector_t row[2];
} htsc_matrix_t;
typedef struct htsc_dither_pos_s {
htsc_point_t *point;
int number_points;
int *locations;
} htsc_dither_pos_t;
static void htsc_determine_cell_shape(int *x, int *y, int *v, int *u,
int *N, htsc_param_t params, void *mem);
static double htsc_spot_value(spottype_t spot_type, double x, double y);
static int htsc_getpoint(htsc_dig_grid_t *dig_grid, int x, int y);
static void htsc_setpoint(htsc_dig_grid_t *dig_grid, int x, int y, int value);
static int htsc_create_dot_mask(htsc_dig_grid_t *dig_grid, int x, int y, int u, int v,
double screen_angle, htsc_vertices_t vertices);
static void htsc_find_bin_center(htsc_dig_grid_t *dot_grid, htsc_vector_t *bin_center);
static int htsc_sumsum(htsc_dig_grid_t dig_grid);
static void htsc_create_dot_profile(htsc_dig_grid_t *dig_grid, int N, int x, int y,
int u, int v, double horiz_dpi,
double vert_dpi, htsc_vertices_t vertices,
htsc_point_t *one_index, spottype_t spot_type,
htsc_matrix_t trans_matrix);
static int htsc_allocate_supercell(htsc_dig_grid_t *super_cell, int x, int y, int u,
int v, int target_size, bool use_holladay_grid,
htsc_dig_grid_t dot_grid, int N, int *S, int *H, int *L);
static void htsc_tile_supercell(htsc_dig_grid_t *super_cell, htsc_dig_grid_t *dot_grid,
int x, int y, int u, int v, int N);
int create_2d_gauss_filter(double *filter, int x_size, int y_size,
double stdvalx, double stdvaly, gs_memory_t *mem);
static int htsc_create_holladay_mask(htsc_dig_grid_t super_cell, int H, int L,
double gamma, htsc_dig_grid_t *final_mask);
static int htsc_create_dither_mask(htsc_dig_grid_t super_cell,
htsc_dig_grid_t *final_mask, int verbose,
int num_levels, int y, int x, double vert_dpi,
double horiz_dpi, int N, double gamma,
htsc_dig_grid_t dot_grid, htsc_point_t one_index,
gs_memory_t *mem);
static int htsc_create_nondithered_mask(htsc_dig_grid_t super_cell, int H, int L,
double gamma, htsc_dig_grid_t *final_mask);
static int htsc_gcd(int a, int b);
static int htsc_lcm(int a, int b);
static int htsc_matrix_inverse(htsc_matrix_t matrix_in, htsc_matrix_t *matrix_out);
static void htsc_matrix_vector_mult(htsc_matrix_t matrix_in, htsc_vector_t vector_in,
htsc_vector_t *vector_out);
static int htsc_mask_to_tos(htsc_dig_grid_t *final_mask);
#if RAW_SCREEN_DUMP
static int htsc_dump_screen(htsc_dig_grid_t *dig_grid, char filename[], gs_memory_t *mem);
static int htsc_dump_float_image(double *image, int height, int width, double max_val,
char filename[], gs_memory_t *mem);
static int htsc_dump_byte_image(byte *image, int height, int width, double max_val,
char filename[], gs_memory_t *mem);
#endif
/* Initialize default values */
void htsc_set_default_params(htsc_param_t *params)
{
params->scr_ang = 0;
params->targ_scr_ang = 0;
params->targ_lpi = 75;
params->vert_dpi = 300;
params->horiz_dpi = 300;
params->targ_quant_spec = false;
params->targ_quant = 256;
params->targ_size = 1;
params->targ_size_spec = false;
params->spot_type = CIRCLE;
params->holladay = false;
params->gamma = 1.0;
params->output_format = OUTPUT_TOS;
params->verbose = 0;
}
int
htsc_gen_ordered(htsc_param_t params, int *S, htsc_dig_grid_t *final_mask, gs_memory_t *mem)
{
int num_levels;
int x=0, y=0, v=0, u=0, N=0;
htsc_vertices_t vertices;
htsc_vector_t bin_center;
htsc_point_t one_index = { 0., 0. };
htsc_dig_grid_t dot_grid;
htsc_dig_grid_t super_cell;
int code;
int H, L;
htsc_matrix_t trans_matrix, trans_matrix_inv;
int min_size;
dot_grid.data = NULL;
dot_grid.memory = final_mask->memory;
super_cell.data = NULL;
super_cell.memory = final_mask->memory;
final_mask->data = NULL;
params.targ_scr_ang = params.targ_scr_ang % 90;
params.scr_ang = params.targ_scr_ang;
/* Get the vector values that define the small cell shape */
htsc_determine_cell_shape(&x, &y, &v, &u, &N, params, final_mask->memory);
/* Figure out how many levels to dither across. */
if (params.targ_quant_spec) {
num_levels = ROUND((double) params.targ_quant / (double)N);
} else {
num_levels = 1;
}
if (num_levels < 1) num_levels = 1;
if (num_levels == 1) {
if (params.verbose > 0)
PRINTF(final_mask->memory, "No additional dithering , creating minimal sized periodic screen\n");
params.targ_size = 1;
}
/* Lower left of the cell is at the origin. Define the other vertices */
vertices.lower_left.x = 0;
vertices.lower_left.y = 0;
vertices.upper_left.x = x;
vertices.upper_left.y = y;
vertices.upper_right.x = x + u;
vertices.upper_right.y = y + v;
vertices.lower_right.x = u;
vertices.lower_right.y = v;
/* Create the matrix that is used to get us correctly into the dot shape function */
trans_matrix.row[0].xy[0] = u;
trans_matrix.row[0].xy[1] = x;
trans_matrix.row[1].xy[0] = v;
trans_matrix.row[1].xy[1] = y;
code = htsc_matrix_inverse(trans_matrix, &trans_matrix_inv);
if (code < 0) {
EPRINTF(final_mask->memory, "ERROR! Singular Matrix Inversion!\n");
return -1;
}
/* Create a binary mask that indicates where we need to define the dot turn
on sequence or dot profile */
code = htsc_create_dot_mask(&dot_grid, x, y, u, v, params.scr_ang, vertices);
if (code < 0) {
return code;
}
#if RAW_SCREEN_DUMP
code = htsc_dump_screen(&dot_grid, "mask", mem);
if (code < 0)
return code;
#endif
/* A sanity check */
if (htsc_sumsum(dot_grid) != -N) {
EPRINTF(final_mask->memory, "ERROR! grid size problem!\n");
return -1;
}
/* From the binary mask, find the center point. This is needed to remove
ambiguity during the TOS calculation from the dot profile. We want to
turn on those dots that are closests to the center first when there
are ties */
htsc_find_bin_center(&dot_grid, &bin_center);
/* Now actually determine the turn on sequence */
htsc_create_dot_profile(&dot_grid, N, x, y, u, v, params.horiz_dpi,
params.vert_dpi, vertices, &one_index,
params.spot_type, trans_matrix_inv);
#if RAW_SCREEN_DUMP
code = htsc_dump_screen(&dot_grid, "dot_profile", mem);
if (code < 0)
return code;
#endif
/* Allocate super cell */
code = htsc_allocate_supercell(&super_cell, x, y, u, v, params.targ_size,
params.holladay, dot_grid, N, S, &H, &L);
if (code < 0) {
EPRINTF(final_mask->memory, "ERROR! grid size problem!\n");
return -1;
}
/* Make a warning about large requested quantization levels with no -s set */
if (params.targ_size == 1 && num_levels > 1) {
min_size = (int)ceil((double)params.targ_quant / (double)N);
EPRINTF1(final_mask->memory, "To achieve %d quantization levels with the desired lpi,\n", params.targ_quant);
EPRINTF1(final_mask->memory, "it is necessary to specify a SuperCellSize (-s) of at least %d.\n", min_size);
EPRINTF(final_mask->memory, "Note that an even larger size may be needed to reduce pattern artifacts.\n");
EPRINTF(final_mask->memory, "Because no SuperCellSize was specified, the minimum possible size\n");
EPRINTF(final_mask->memory, "that can approximate the requested angle and lpi will be created\n");
EPRINTF1(final_mask->memory, "with %d quantization levels.\n", N);
}
/* Go ahead and fill up the super cell grid with our growth dot values */
htsc_tile_supercell(&super_cell, &dot_grid, x, y, u, v, N);
#if RAW_SCREEN_DUMP
code = htsc_dump_screen(&super_cell, "super_cell_tiled", mem);
if (code < 0)
return code;
#endif
/* If we are using the Holladay grid (non dithered) then we are done. */
if (params.holladay) {
htsc_create_holladay_mask(super_cell, H, L, params.gamma, final_mask);
} else {
if ((super_cell.height == dot_grid.height &&
super_cell.width == dot_grid.width) || num_levels == 1) {
htsc_create_nondithered_mask(super_cell, H, L, params.gamma, final_mask);
} else {
/* Dont allow nonsense settings */
if (num_levels * N > super_cell.height * super_cell.width) {
EPRINTF3(final_mask->memory,
"Notice, %d quantization levels not possible with super cell of %d by %d\n",
num_levels, super_cell.height, super_cell.width);
num_levels = ROUND((super_cell.height * super_cell.width) / (double)N);
EPRINTF1(final_mask->memory, "Reducing dithering quantization to %d\n",
num_levels);
EPRINTF1(final_mask->memory, "For an effective quantization of %d\n",
super_cell.height * super_cell.width);
}
code = htsc_create_dither_mask(super_cell, final_mask, params.verbose, num_levels,
y, x, params.vert_dpi, params.horiz_dpi, N,
params.gamma, dot_grid, one_index, mem);
}
}
final_mask->bin_center = bin_center;
/* Now if the requested format is turn-on-sequence, convert the "data" */
if (code == 0 && params.output_format == OUTPUT_TOS) {
code = htsc_mask_to_tos(final_mask);
}
/* result in in final_mask, clean up working arrays allocated. */
FREE(final_mask->memory, dot_grid.data);
FREE(final_mask->memory, super_cell.data);
return code;
}
/* comparison for use in qsort */
static int
compare(const void * a, const void * b)
{
const htsc_threshpoint_t *val_a = a;
const htsc_threshpoint_t *val_b = b;
double cost = val_a->value - val_b->value;
/* If same value, use distance to center for decision */
if (cost == 0)
cost = val_a->dist_to_center - val_b->dist_to_center;
if (cost == 0)
return 0;
if (cost < 0)
return -1;
return 1;
}
static int
htsc_mask_to_tos(htsc_dig_grid_t *final_mask)
{
int width = final_mask->width;
int height = final_mask->height;
htsc_vector_t center = final_mask->bin_center;
int *buff_ptr = final_mask->data;
int x, y, k = 0;
int count = height * width;
htsc_threshpoint_t *values;
int *tos;
values = (htsc_threshpoint_t *) ALLOC(final_mask->memory,
sizeof(htsc_threshpoint_t) * width * height);
if (values == NULL) {
EPRINTF(final_mask->memory, "ERROR! malloc failure in htsc_mask_to_tos!\n");
return -1;
}
tos = (int *) ALLOC(final_mask->memory, sizeof(int) * 2 * height * width);
if (tos == NULL) {
FREE(final_mask->memory, values);
EPRINTF(final_mask->memory, "ERROR! malloc failure in htsc_mask_to_tos!\n");
return -1;
}
/* Do a sort on the values and then output the coordinates */
/* First get a list made with the unsorted values and coordinates */
for (y = 0; y < height; y++) {
for ( x = 0; x < width; x++ ) {
values[k].value = *buff_ptr;
values[k].x = x;
values[k].y = y;
values[k].index = k;
values[k].dist_to_center = (x - center.xy[0]) * (x - center.xy[0]) +
(y - center.xy[1]) * (y - center.xy[1]);
buff_ptr++;
k = k + 1;
}
}
#if RAW_SCREEN_DUMP
EPRINTF(final_mask->memory, "Unsorted\n");
for (k = 0; k < count; k++) {
EPRINTF(final_mask->memory, "Index %d : x = %d y = %d dist = %4.2lf value = %d \n",
values[k].index, values[k].x, values[k].y, values[k].dist_to_center, values[k].value);
}
#endif
/* Sort */
qsort(values, (size_t)height * width, sizeof(htsc_threshpoint_t), compare);
#if RAW_SCREEN_DUMP
EPRINTF(final_mask->memory, "Sorted\n");
for (k = 0; k < count; k++) {
EPRINTF(final_mask->memory, "Index %d : x = %d y = %d dist = %4.2lf value = %d \n",
values[k].index, values[k].x, values[k].y, values[k].dist_to_center, values[k].value);
}
#endif
FREE(final_mask->memory, final_mask->data);
final_mask->data = tos;
buff_ptr = tos;
for (k=0; k < count; k++) {
*buff_ptr++ = values[count - 1 - k].x;
*buff_ptr++ = values[count - 1 - k].y;
}
FREE(final_mask->memory, values);
return 0;
}
static void
htsc_determine_cell_shape(int *x_out, int *y_out, int *v_out,
int *u_out, int *N_out, htsc_param_t params, void *mem)
{
double x = 0., y = 0., v = 0., u = 0., N = 0.;
double frac, scaled_x;
double ratio;
const double pi = 3.14159265358979323846f;
double true_angle, lpi;
double prev_lpi, max_lpi = 0.;
bool use = false;
double x_use = 0.,y_use = 0.;
/* Go through and find the rational angle options that gets us to the
best LPI. Pick the one that is just over what is requested.
That is really our limiting factor here. Pick it and
then figure out how much dithering we need to do to get to the proper
number of levels. */
frac = tan( params.scr_ang * pi / 180.0 );
ratio = frac * params.horiz_dpi / params.vert_dpi;
scaled_x = params.horiz_dpi / params.vert_dpi;
/* The minimal step is in x */
prev_lpi = 0;
if (ratio < 1 && ratio != 0) {
if (params.verbose > 0) {
PRINTF(mem, "x\ty\tu\tv\tAngle\tLPI\tLevels\n");
PRINTF(mem, "-----------------------------------------------------------\n");
}
for (x = 1; x < 11; x++) {
x_use = x;
y=ROUND((double) x_use / ratio);
true_angle = 180.0 * atan(((double) x_use / params.horiz_dpi) / ( (double) y / params.vert_dpi) ) / pi;
lpi = 1.0/( sqrt( ((double) y / params.vert_dpi) * ( (double) y / params.vert_dpi) +
( (double) x_use / params.horiz_dpi) * ((double) x_use / params.horiz_dpi) ));
v = -x_use / scaled_x;
u = y * scaled_x;
N = y *u - x_use * v;
if (prev_lpi == 0) {
prev_lpi = lpi;
if (params.targ_lpi > lpi) {
EPRINTF(mem, "Warning this lpi is not achievable!\n");
EPRINTF(mem, "Resulting screen will be poorly quantized\n");
EPRINTF(mem, "or completely stochastic!\n");
use = true;
}
max_lpi = lpi;
}
if (prev_lpi >= params.targ_lpi && lpi < params.targ_lpi) {
if (prev_lpi == max_lpi) {
EPRINTF(mem, "Notice lpi is at the maximimum level possible.\n");
EPRINTF(mem, "This may result in poor quantization. \n");
}
/* Reset these to previous x */
x_use = x - 1;
y=ROUND((double) x_use / ratio);
true_angle =
180.0 * atan(((double) x_use / params.horiz_dpi) / ( (double) y / params.vert_dpi) ) / pi;
lpi =
1.0/( sqrt( ((double) y / params.vert_dpi) * ( (double) y / params.vert_dpi) +
( (double) x_use / params.horiz_dpi) * ((double) x_use / params.horiz_dpi) ));
v = -x_use / scaled_x;
u = y * scaled_x;
N = y *u - x_use * v;
use = true;
}
if (use == true) {
if (prev_lpi == max_lpi) {
/* Print out the final one that we will use */
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x_use,y,u,v,true_angle,lpi,N);
}
break;
}
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x_use,y,u,v,true_angle,lpi,N);
prev_lpi = lpi;
}
x = x_use;
}
if (ratio >= 1) {
/* The minimal step is in y */
if (params.verbose > 0) {
PRINTF(mem, "x\ty\tu\tv\tAngle\tLPI\tLevels\n");
PRINTF(mem, "-----------------------------------------------------------\n");
}
for (y = 1, lpi = 99999999; lpi > params.targ_lpi; y++) {
y_use = y;
x = ROUND(y_use * ratio);
/* compute the true angle */
true_angle = 180.0 * atan((x / params.horiz_dpi) / (y_use / params.vert_dpi)) / pi;
lpi = 1.0 / sqrt( (y_use / params.vert_dpi) * (y_use / params.vert_dpi) +
(x / params.horiz_dpi) * (x / params.horiz_dpi));
v = ROUND(-x / scaled_x);
u = ROUND(y_use * scaled_x);
N = y_use * u - x * v;
if (prev_lpi == 0) {
prev_lpi = lpi;
if (params.targ_lpi > lpi) {
EPRINTF(mem, "Warning this lpi is not achievable!\n");
EPRINTF(mem, "Resulting screen will be poorly quantized\n");
EPRINTF(mem, "or completely stochastic!\n");
use = true;
}
max_lpi = lpi;
}
if (prev_lpi >= params.targ_lpi && lpi < params.targ_lpi) {
if (prev_lpi == max_lpi) {
EPRINTF(mem, "Warning lpi will be slightly lower than target.\n");
EPRINTF(mem, "An increase will result in poor \n");
EPRINTF(mem, "quantization or a completely stochastic screen!\n");
} else {
/* Reset these to previous x */
y_use = y - 1;
x = ROUND(y_use * ratio);
/* compute the true angle */
true_angle = 180.0 * atan((x / params.horiz_dpi) / (y_use / params.vert_dpi)) / pi;
lpi = 1.0 / sqrt( (y_use / params.vert_dpi) * (y_use / params.vert_dpi) +
(x / params.horiz_dpi) * (x / params.horiz_dpi));
v = ROUND(-x / scaled_x);
u = ROUND(y_use * scaled_x);
N = y_use * u - x * v;
}
use = true;
}
if (use == true) {
if (prev_lpi == max_lpi) {
/* Print out the final one that we will use */
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x,y_use,u,v,true_angle,lpi,N);
}
break;
}
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x,y_use,u,v,true_angle,lpi,N);
prev_lpi = lpi;
}
y = y_use;
}
if (ratio == 0) {
/* 0 degrees */
if (scaled_x >= 1) {
if (params.verbose > 0) {
PRINTF(mem, "x\ty\tu\tv\tAngle\tLPI\tLevels\n");
PRINTF(mem, "-----------------------------------------------------------\n");
}
for (y = 1, lpi=9999999; lpi > params.targ_lpi; y++) {
y_use = y;
x = ROUND( y_use * ratio );
v = ROUND(-x / scaled_x);
u = ROUND(y_use * scaled_x);
N = y_use * u - x * v;
true_angle = 0;
lpi = 1.0/(double) sqrt( (double) ((y_use / params.vert_dpi) *
(y_use / params.vert_dpi) + (x / params.horiz_dpi) * (x / params.horiz_dpi)) );
if (prev_lpi == 0) {
prev_lpi = lpi;
if (params.targ_lpi > lpi) {
EPRINTF(mem, "Warning this lpi is not achievable!\n");
EPRINTF(mem, "Resulting screen will be poorly quantized\n");
EPRINTF(mem, "or completely stochastic!\n");
use = true;
}
max_lpi = lpi;
}
if (prev_lpi >= params.targ_lpi && lpi < params.targ_lpi) {
if (prev_lpi == max_lpi) {
EPRINTF(mem, "Warning lpi will be slightly lower than target.\n");
EPRINTF(mem, "An increase will result in poor \n");
EPRINTF(mem, "quantization or a completely stochastic screen!\n");
} else {
/* Reset these to previous x */
y_use = y - 1;
x = ROUND( y_use * ratio );
v = ROUND(-x / scaled_x);
u = ROUND(y_use * scaled_x);
N = y_use * u - x * v;
true_angle = 0;
lpi = 1.0/(double) sqrt( (double) ((y_use / params.vert_dpi) *
(y_use / params.vert_dpi) + (x / params.horiz_dpi) * (x / params.horiz_dpi)) );
}
use = true;
}
if (use == true) {
if (prev_lpi == max_lpi) {
/* Print out the final one that we will use */
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x,y_use,u,v,true_angle,lpi,N);
}
break;
}
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x,y_use,u,v,true_angle,lpi,N);
prev_lpi = lpi;
}
y = y_use;
} else {
if (params.verbose > 0) {
PRINTF(mem, "x\ty\tu\tv\tAngle\tLPI\tLevels\n");
PRINTF(mem, "-----------------------------------------------------------\n");
}
for (x = 1; x < 11; x++) {
x_use = x;
y = ROUND(x_use * ratio);
true_angle = 0;
lpi = 1.0/( sqrt( (y / params.vert_dpi) * (y / params.vert_dpi) +
(x_use / params.horiz_dpi) * (x_use / params.horiz_dpi) ));
v = ROUND( -x_use / scaled_x);
u = ROUND( y * scaled_x);
N = y *u - x_use * v;
if (prev_lpi == 0) {
prev_lpi = lpi;
if (params.targ_lpi > lpi) {
EPRINTF(mem, "Warning this lpi is not achievable!\n");
EPRINTF(mem, "Resulting screen will be poorly quantized\n");
EPRINTF(mem, "or completely stochastic!\n");
use = true;
}
max_lpi = lpi;
}
if (prev_lpi > params.targ_lpi && lpi < params.targ_lpi) {
if (prev_lpi == max_lpi) {
EPRINTF(mem, "Warning lpi will be slightly lower than target.\n");
EPRINTF(mem, "An increase will result in poor \n");
EPRINTF(mem, "quantization or a completely stochastic screen!\n");
} else {
/* Reset these to previous x */
x_use = x - 1;
y = ROUND(x_use * ratio);
true_angle = 0;
lpi = 1.0/( sqrt( (y / params.vert_dpi) * (y / params.vert_dpi) +
(x_use / params.horiz_dpi) * (x_use / params.horiz_dpi) ));
v = ROUND( -x_use / scaled_x);
u = ROUND( y * scaled_x);
N = y *u - x_use * v;
}
use = true;
}
if (use == true) {
if (prev_lpi == max_lpi) {
/* Print out the final one that we will use */
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x_use,y,u,v,true_angle,lpi,N);
}
break;
}
if (params.verbose > 0)
PRINTF7(mem, "%3.0lf\t%3.0lf\t%3.0lf\t%3.0lf\t%3.1lf\t%3.1lf\t%3.0lf\n",
x_use,y,u,v,true_angle,lpi,N);
prev_lpi = lpi;
}
x = x_use;
}
}
*x_out = (int)x;
*y_out = (int)y;
*v_out = (int)v;
*u_out = (int)u;
*N_out = (int)N;
}
static void
htsc_create_dot_profile(htsc_dig_grid_t *dig_grid, int N, int x, int y, int u, int v,
double horiz_dpi, double vert_dpi, htsc_vertices_t vertices,
htsc_point_t *one_index, spottype_t spot_type, htsc_matrix_t trans_matrix)
{
int done, dot_index, hole_index, count, index_x, index_y;
htsc_dot_shape_search_t dot_search;
int k, val_min;
double dist;
int j;
htsc_vector_t vector_in, vector_out;
double x_offset = (x % 2 == 0 ? 0.5 : 0);
double y_offset = (y % 2 == 0 ? 0.5 : 0);
done = 0;
dot_index = 1;
hole_index = N;
count = 0;
val_min=MIN(0,v);
while (!done) {
/* First perform a search for largest dot value for those remaining
dots */
index_x = 0;
dot_search.index_x = 0;
dot_search.index_y = 0;
dot_search.norm = -100000000; /* Hopefully the dot func is not this small */
for (k = 0; k < x + u; k++) {
index_y = 0;
for (j = val_min; j < y; j++) {
if ( htsc_getpoint(dig_grid, index_x, index_y) == -1 ) {
/* For the spot function we want to make sure that
we are properly adjusted to be in the range from
-1 to +1. j and k are moving in the transformed
(skewed/rotated) space. First untransform the value */
vector_in.xy[0] = k + x_offset;
vector_in.xy[1] = j + y_offset;
htsc_matrix_vector_mult(trans_matrix, vector_in,
&vector_out);
/* And so now we are in the range 0, 1 get us to -.5, .5 */
vector_out.xy[0] = 2.0 * vector_out.xy[0] - 1.0;
vector_out.xy[1] = 2.0 * vector_out.xy[1] - 1.0;
dist = htsc_spot_value(spot_type, vector_out.xy[0],
vector_out.xy[1]);
if (dist > dot_search.norm) {
dot_search.norm = dist;
dot_search.index_x = index_x;
dot_search.index_y = index_y;
}
}
index_y++;
}
index_x++;
}
/* Assign the index for this position */
htsc_setpoint(dig_grid, dot_search.index_x, dot_search.index_y,
dot_index);
dot_index++;
count++;
if (count == N) {
done = 1;
break;
}
/* The ones position for the dig_grid is located at the first dot_search
entry. We need this later so grab it now */
if (count == 1) {
one_index->x = dot_search.index_x;
one_index->y = dot_search.index_y;
}
/* Now search for the closest one to a vertex (of those remaining).
and assign the current largest index */
index_x = 0;
dot_search.index_x = 0;
dot_search.index_y = 0;
dot_search.norm = 10000000000; /* Or this large */
for (k = 0; k < x + u; k++) {
index_y = 0;
for (j = val_min; j < y; j++) {
if ( htsc_getpoint(dig_grid, index_x, index_y) == -1 ) {
/* For the spot function we want to make sure that
we are properly adjusted to be in the range from
-1 to +1. j and k are moving in the transformed
(skewed/rotated) space. First untransform the value */
vector_in.xy[0] = k + x_offset;
vector_in.xy[1] = j + y_offset;
htsc_matrix_vector_mult(trans_matrix, vector_in,
&vector_out);
/* And so now we are in the range 0, 1 get us to -.5, .5 */
vector_out.xy[0] = 2.0 * vector_out.xy[0] - 1.0;
vector_out.xy[1] = 2.0 * vector_out.xy[1] - 1.0;
dist = htsc_spot_value(spot_type, vector_out.xy[0],
vector_out.xy[1]);
if (dist < dot_search.norm) {
dot_search.norm = dist;
dot_search.index_x = index_x;
dot_search.index_y = index_y;
}
}
index_y++;
}
index_x++;
}
/* Assign the index for this position */
htsc_setpoint(dig_grid, dot_search.index_x, dot_search.index_y, hole_index);
hole_index--;
count++;
if (count == N) {
done = 1;
break;
}
}
}
/* This creates a mask for creating the dot shape */
static int
htsc_create_dot_mask(htsc_dig_grid_t *dot_grid, int x, int y, int u, int v,
double screen_angle, htsc_vertices_t vertices)
{
int k,j,val_min,index_x,index_y;
double slope1, slope2;
int t1,t2,t3,t4,point_in;
double b3, b4;
htsc_point_t test_point;
if (screen_angle != 0) {
slope1 = (double) y / (double) x;
slope2 = (double) v / (double) u;
val_min=MIN(0,v);
dot_grid->height = abs(val_min) + y;
dot_grid->width = x + u;
dot_grid->data =
(int *) ALLOC(dot_grid->memory, (size_t)dot_grid->height * dot_grid->width * sizeof(int));
if (dot_grid->data == NULL)
return -1;
memset(dot_grid->data,0,(size_t)dot_grid->height * dot_grid->width * sizeof(int));
index_x = 0;
for (k = 0; k < (x+u); k++) {
index_y=0;
for (j = val_min; j < y; j++) {
test_point.x = k + 0.5;
test_point.y = j + 0.5;
/* test 1 and 2 */
t1 = (slope1 * test_point.x >= test_point.y);
t2 = (slope2 * test_point.x <= test_point.y);
/* test 3 */
b3 = vertices.upper_left.y - slope2 * vertices.upper_left.x;
t3 = ((slope2 * test_point.x + b3) > test_point.y);
/* test 4 */
b4 = vertices.lower_right.y - slope1 * vertices.lower_right.x;
t4=((slope1 * test_point.x + b4) < test_point.y);
point_in = (t1 && t2 && t3 && t4);
if (point_in) {
htsc_setpoint(dot_grid, index_x, index_y, -1);
}
index_y++;
}
index_x++;
}
} else {
/* All points are valid */
dot_grid->height = y;
dot_grid->width = u;
dot_grid->data = (int *) ALLOC(dot_grid->memory, (size_t)y * u * sizeof(int));
if (dot_grid->data == NULL)
return -1;
memset(dot_grid->data, -1, (size_t)y * u * sizeof(int));
val_min = 0;
}
return 0;
}
static void
htsc_find_bin_center(htsc_dig_grid_t *dot_grid, htsc_vector_t *bin_center)
{
int h = dot_grid->height;
int w = dot_grid->width;
int min_y = h + 1;
int min_x = w + 1;
int max_y = -1;
int max_x = -1;
int x, y;
for (x = 0; x < w; x++) {
for (y = 0; y < h; y++) {
if (htsc_getpoint(dot_grid, x, y) == -1)
{
if (x < min_x)
min_x = x;
if (x > max_x)
max_x = x;
if (y < min_y)
min_y = y;
if (y > max_y)
max_y = y;
}
}
}
bin_center->xy[0] = (max_x - min_x) / 2.0;
bin_center->xy[1] = (max_y - min_y) / 2.0;
}
static int
htsc_getpoint(htsc_dig_grid_t *dig_grid, int x, int y)
{
return dig_grid->data[ y * dig_grid->width + x];
}
static void
htsc_setpoint(htsc_dig_grid_t *dig_grid, int x, int y, int value)
{
int kk = 0;;
if (x < 0 || x > dig_grid->width-1 || y < 0 || y > dig_grid->height-1) {
kk++; /* Here to catch issues during debug */
}
dig_grid->data[ y * dig_grid->width + x] = value;
}
static int
htsc_sumsum(htsc_dig_grid_t dig_grid)
{
int pos;
int grid_size = dig_grid.width * dig_grid.height;
int value = 0;
int *ptr = dig_grid.data;
for (pos = 0; pos < grid_size; pos++) {
value += (*ptr++);
}
return value;
}
static int
htsc_gcd(int a, int b)
{
if ( a == 0 && b == 0 ) return 0;
if ( b == 0 ) return a;
if ( a == 0 ) return b;
while (1) {
a = a % b;
if (a == 0) {
return b;
}
b = b % a;
if (b == 0) {
return a;
}
}
}
static int
htsc_lcm(int a, int b)
{
int product = a * b;
int gcd = htsc_gcd(a,b);
int lcm;
if (gcd == 0)
return -1;
lcm = product/gcd;
return lcm;
}
static int
htsc_matrix_inverse(htsc_matrix_t matrix_in, htsc_matrix_t *matrix_out)
{
double determinant;
determinant = matrix_in.row[0].xy[0] * matrix_in.row[1].xy[1] -
matrix_in.row[0].xy[1] * matrix_in.row[1].xy[0];
if (determinant == 0)
return -1;
matrix_out->row[0].xy[0] = matrix_in.row[1].xy[1] / determinant;
matrix_out->row[0].xy[1] = -matrix_in.row[0].xy[1] / determinant;
matrix_out->row[1].xy[0] = -matrix_in.row[1].xy[0] / determinant;
matrix_out->row[1].xy[1] = matrix_in.row[0].xy[0] / determinant;
return 0;
}
static void
htsc_matrix_vector_mult(htsc_matrix_t matrix_in, htsc_vector_t vector_in,
htsc_vector_t *vector_out)
{
vector_out->xy[0] = matrix_in.row[0].xy[0] * vector_in.xy[0] +
matrix_in.row[0].xy[1] * vector_in.xy[1];
vector_out->xy[1] = matrix_in.row[1].xy[0] * vector_in.xy[0] +
matrix_in.row[1].xy[1] * vector_in.xy[1];
}
static int
htsc_allocate_supercell(htsc_dig_grid_t *super_cell, int x, int y, int u,
int v, int target_size, bool use_holladay_grid,
htsc_dig_grid_t dot_grid, int N, int *S, int *H, int *L)
{
htsc_matrix_t matrix;
htsc_matrix_t matrix_inv;
int code;
int k, j;
htsc_vector_t vector_in, m_and_n;
int Dfinal;
double diff_val[2];
double m_and_n_round;
int lcm_value;
int super_size_x, super_size_y;
int min_vert_number;
int a, b;
/* Use Holladay Algorithm to create rectangular matrix for screening */
*H = htsc_gcd((int) abs(y), (int) abs(v));
if (*H == 0)
return -1;
*L = N / *H;
/* Compute the shift factor */
matrix.row[0].xy[0] = x;
matrix.row[0].xy[1] = u;
matrix.row[1].xy[0] = y;
matrix.row[1].xy[1] = v;
code = htsc_matrix_inverse(matrix, &matrix_inv);
if (code < 0) {
EPRINTF(dot_grid.memory, "ERROR! matrix singular!\n");
return -1;
}
vector_in.xy[1] = *H;
Dfinal = 0;
for (k = 1; k < *L+1; k++) {
vector_in.xy[0] = k;
htsc_matrix_vector_mult(matrix_inv, vector_in, &m_and_n);
for (j = 0; j < 2; j++) {
m_and_n_round = ROUND(m_and_n.xy[j]);
diff_val[j] = fabs((double) m_and_n.xy[j] - (double) m_and_n_round);
}
if (diff_val[0] < 0.00000001 && diff_val[1] < 0.00000001) {
Dfinal = k;
break;
}
}
if (Dfinal == 0) {
EPRINTF(dot_grid.memory, "ERROR! computing Holladay Grid\n");
return -1;
}
*S = *L - Dfinal;
/* Make a large screen of multiple cells and then vary
the growth rate of the dots to get additional quantization levels
The macrocell must be H*a by L*b where a and b are integers due to the
periodicity of the screen. */
/* To create the Holladay screen (no stocastic stuff),
select the size H and L to create the matrix i.e. super_size_x
and super_size_y need to be H by L at least and then just take an
H by L section. */
/* Force a periodicity in the screen to avoid the shift factor */
if (*S != 0) {
lcm_value = htsc_lcm(*L,*S);
if (lcm_value < 0)
return -1;
min_vert_number = *H * lcm_value / *S;
} else {
lcm_value = *L;
min_vert_number = *H;
}
a = (int)ceil((double) target_size / (double) lcm_value);
b = (int)ceil((double) target_size / (double) min_vert_number);
/* super_cell Size is b*min_vert_number by a*lcm_value
create the large cell */
if (use_holladay_grid) {
super_size_x = MAX(*L, dot_grid.width);
super_size_y = MAX(*H, dot_grid.height);
} else {
super_size_x = a * lcm_value;
super_size_y = b * min_vert_number;
}
super_cell->height = super_size_y;
super_cell->width = super_size_x;
super_cell->data =
(int *) ALLOC(dot_grid.memory, (size_t)super_size_x * super_size_y * sizeof(int));
if (super_cell->data == NULL)
return -1;
memset(super_cell->data, 0, (size_t)super_size_x * super_size_y * sizeof(int));
return 0;
}
static void
htsc_supercell_assign_point(int new_k, int new_j, int sc_xsize, int sc_ysize,
htsc_dig_grid_t *super_cell, int val, int *num_set )
{
if (new_k >= 0 && new_j >= 0 && new_k < sc_xsize && new_j < sc_ysize) {
if (htsc_getpoint(super_cell,new_k,new_j) == 0) {
htsc_setpoint(super_cell,new_k,new_j,val);
(*num_set)++;
}
}
}
static void
htsc_tile_supercell(htsc_dig_grid_t *super_cell, htsc_dig_grid_t *dot_grid,
int x, int y, int u, int v, int N)
{
int sc_ysize = super_cell->height;
int sc_xsize = super_cell->width;
int dot_ysize = dot_grid->height;
int dot_xsize = dot_grid->width;
int total_num = sc_ysize * sc_xsize;
bool done = false;
int k,j;
int new_k, new_j;
int num_set = 0;
int val;
for (k = 0; k < dot_xsize; k++) {
for (j = 0; j < dot_ysize; j++) {
val = htsc_getpoint(dot_grid,k,j);
if (val > 0) {
htsc_setpoint(super_cell,k,j,val);
num_set++;
}
}
}
if (num_set == total_num) {
done = true;
}
while (!done) {
for (k = 0; k < sc_xsize; k++) {
for (j = 0; j < sc_ysize; j++) {
val = htsc_getpoint(super_cell,k,j);
if (val != 0) {
new_k = k - x;
new_j = j - y;
htsc_supercell_assign_point(new_k, new_j, sc_xsize, sc_ysize,
super_cell, val, &num_set);
new_k = k + x;
new_j = j + y;
htsc_supercell_assign_point(new_k, new_j, sc_xsize, sc_ysize,
super_cell, val, &num_set);
new_k = k - u;
new_j = j - v;
htsc_supercell_assign_point(new_k, new_j, sc_xsize, sc_ysize,
super_cell, val, &num_set);
new_k = k + u;
new_j = j + v;
htsc_supercell_assign_point(new_k, new_j, sc_xsize, sc_ysize,
super_cell, val, &num_set);
}
}
}
if (num_set == total_num) {
done = true;
}
}
}
/* Create 2d gaussian filter that varies with respect to coordinate
spatial resolution */
int
create_2d_gauss_filter(double *filter, int x_size, int y_size,
double stdvalx, double stdvaly, gs_memory_t *mem)
{
int x_half_size = (x_size-1)/2;
int y_half_size = (y_size-1)/2;
int k,j;
double arg, val;
double sum = 0;
double max_val = 0;
int total_size = x_size * y_size;
int index_x, index_y;
int code = 0;
for (j = -y_half_size; j < y_half_size+1; j++) {
index_y = j + y_half_size;
for (k = -x_half_size; k < x_half_size+1; k++) {
arg = -(k * k / (stdvalx * stdvalx) +
j * j / (stdvaly * stdvaly) ) /2;
val = exp(arg);
sum += val;
if (val > max_val) max_val = val;
index_x = k + x_half_size;
filter[index_y * x_size + index_x] = val;
}
}
for (j = 0; j < total_size; j++) {
filter[j]/=sum;
}
#if RAW_SCREEN_DUMP
code = htsc_dump_float_image(filter, y_size, x_size, max_val/sum, "guass_filt", mem);
#endif
return code;
}
/* 2-D convolution (or correlation) with periodic boundary condition */
static void
htsc_apply_filter(byte *screen_matrix, int num_cols_sc,
int num_rows_sc, double *filter, int num_cols_filt,
int num_rows_filt, double *screen_blur,
double *max_val, htsc_point_t *max_pos, double *min_val,
htsc_point_t *min_pos)
{
int k,j,kk,jj;
double sum;
int half_cols_filt = (num_cols_filt-1)/2;
int half_rows_filt = (num_rows_filt-1)/2;
int j_circ,k_circ;
double fmax_val = -1;
double fmin_val = 100000000;
htsc_point_t fmax_pos = { 0.0, 0.0 }, fmin_pos = { 0.0, 0.0 };
for (j = 0; j < num_rows_sc; j++) {
for (k = 0; k < num_cols_sc; k++) {
sum = 0.0;
for (jj = -half_rows_filt; jj <= half_rows_filt; jj++) {
j_circ = j + jj;
if (j_circ < 0) {
j_circ =
(num_rows_sc - ((-j_circ) % num_rows_sc)) % num_rows_sc;
}
if (j_circ > (num_rows_sc - 1)) {
j_circ = j_circ % num_rows_sc;
}
/* In case modulo is of a negative number */
if (j_circ < 0)
j_circ = j_circ + num_rows_sc;
for (kk = -half_cols_filt; kk <= half_cols_filt; kk++) {
k_circ = k + kk;
if (k_circ < 0) {
k_circ =
(num_cols_sc - ((-k_circ) % num_cols_sc)) % num_cols_sc;
}
if (k_circ > (num_cols_sc - 1)) {
k_circ = k_circ % num_cols_sc;
}
/* In case modulo is of a negative number */
if (k_circ < 0)
k_circ = k_circ + num_cols_sc;
sum += (double) screen_matrix[k_circ + j_circ * num_cols_sc] *
filter[ (jj + half_rows_filt) * num_cols_filt + (kk + half_cols_filt)];
}
}
screen_blur[j * num_cols_sc + k] = sum;
if (sum > fmax_val) {
fmax_val = sum;
fmax_pos.x = k;
fmax_pos.y = j;
}
if (sum < fmin_val) {
fmin_val = sum;
fmin_pos.x = k;
fmin_pos.y = j;
}
}
}
*max_val = fmax_val;
*min_val = fmin_val;
*max_pos = fmax_pos;
*min_pos = fmin_pos;
}
static int
htsc_add_dots(byte *screen_matrix, int num_cols, int num_rows,
double horiz_dpi, double vert_dpi, double lpi_act,
unsigned short *pos_x, unsigned short *pos_y,
int *locate, int num_dots,
htsc_dither_pos_t *dot_level_position, int level_num,
int num_dots_add, void *mem)
{
double xscale = horiz_dpi / vert_dpi;
double sigma_y = vert_dpi / lpi_act;
double sigma_x = sigma_y * xscale;
int sizefiltx, sizefilty;
double *filter;
double *screen_blur;
int white_pos;
double max_val, min_val;
htsc_point_t max_pos, min_pos;
int k,j;
int dist, curr_dist;
htsc_dither_pos_t curr_position;
int code;
sizefiltx = ROUND(sigma_x * 4);
sizefilty = ROUND(sigma_y * 4);
if ( ((double) sizefiltx / 2.0) == (sizefiltx >> 1)) {
sizefiltx += 1;
}
if ( ((double) sizefilty / 2.0) == (sizefilty >> 1)) {
sizefilty += 1;
}
filter = (double*) ALLOC(mem, sizeof(double) * sizefilty * sizefiltx);
if (filter == NULL)
return -1;
code = create_2d_gauss_filter(filter, sizefiltx, sizefilty, (double)sizefiltx, (double)sizefilty, mem);
if (code < 0)
return code;
screen_blur = (double*)ALLOC(mem, sizeof(double) * num_cols * num_rows);
if (screen_blur == NULL) {
FREE(mem, filter);
return -1;
}
for (j = 0; j < num_dots_add; j++) {
/* Perform the blur */
htsc_apply_filter(screen_matrix, num_cols, num_rows, filter, sizefiltx,
sizefilty, screen_blur, &max_val, &max_pos, &min_val, &min_pos);
/* Find the closest OFF dot to the min position. */
white_pos = 0;
dist = (num_cols) * (num_cols) + (num_rows) * (num_rows);
for (k = 0; k < num_dots; k++) {
curr_dist = (pos_y[k] - (int)min_pos.y) * (pos_y[k] - (int)min_pos.y) +
(pos_x[k] - (int)min_pos.x) * (pos_x[k] - (int)min_pos.x);
if (curr_dist < dist &&
screen_matrix[pos_x[k] + num_cols * pos_y[k]] == 0) {
white_pos = k;
dist = curr_dist;
}
}
/* Set this dot to white */
screen_matrix[pos_x[white_pos] + num_cols * pos_y[white_pos]] = 1;
/* Update position information */
curr_position = dot_level_position[level_num];
curr_position.point[j].x = pos_x[white_pos];
curr_position.point[j].y = pos_y[white_pos];
curr_position.locations[j] = locate[white_pos];
}
FREE(mem, filter);
FREE(mem, screen_blur);
return 0;
}
static int
htsc_init_dot_position(byte *screen_matrix, int num_cols, int num_rows,
double horiz_dpi, double vert_dpi, double lpi_act,
unsigned short *pos_x, unsigned short *pos_y, int num_dots,
htsc_dither_pos_t *dot_level_position, void *mem)
{
double xscale = horiz_dpi / vert_dpi;
double sigma_y = vert_dpi / lpi_act;
double sigma_x = sigma_y * xscale;
int sizefiltx, sizefilty;
double *filter;
bool done = false;
double *screen_blur;
int white_pos, black_pos;
double max_val, min_val;
htsc_point_t max_pos, min_pos;
int k;
int dist, curr_dist;
bool found_it;
int code = 0;
sizefiltx = ROUND(sigma_x * 4);
sizefilty = ROUND(sigma_y * 4);
if ( ((double) sizefiltx / 2.0) == (sizefiltx >> 1)) {
sizefiltx += 1;
}
if ( ((double) sizefilty / 2.0) == (sizefilty >> 1)) {
sizefilty += 1;
}
filter = (double*) ALLOC(mem, sizeof(double) * sizefilty * sizefiltx);
if (filter == NULL)
return -1;
code = create_2d_gauss_filter(filter, sizefiltx, sizefilty, (double)sizefiltx, (double)sizefilty, mem);
if (code < 0)
return code;
screen_blur = (double*) ALLOC(mem, sizeof(double) * num_cols * num_rows);
if (screen_blur == NULL) {
FREE(mem, filter);
return -1;
}
/* Start moving dots until the whitest and darkest dot are the same */
while (!done) {
/* Blur */
htsc_apply_filter(screen_matrix, num_cols, num_rows, filter, sizefiltx,
sizefilty, screen_blur, &max_val, &max_pos, &min_val, &min_pos);
#if RAW_SCREEN_DUMP
code = htsc_dump_float_image(screen_blur, num_cols, num_rows, max_val, "blur_one", mem);
if (code < 0)
return code;
#endif
/* Find the closest on dot to the max position */
black_pos = 0;
dist = (pos_y[0] - (int)max_pos.y) * (pos_y[0] - (int)max_pos.y) +
(pos_x[0] - (int)max_pos.x) * (pos_x[0] - (int)max_pos.x);
for ( k = 1; k < num_dots; k++) {
curr_dist = (pos_y[k] - (int)max_pos.y) * (pos_y[k] - (int)max_pos.y) +
(pos_x[k] - (int)max_pos.x) * (pos_x[k] - (int)max_pos.x);
if (curr_dist < dist &&
screen_matrix[pos_x[k] + num_cols * pos_y[k]] == 1) {
black_pos = k;
dist = curr_dist;
}
}
/* Set this dot to black */
screen_matrix[pos_x[black_pos] + num_cols * pos_y[black_pos]] = 0;
/* Blur again */
htsc_apply_filter(screen_matrix, num_cols, num_rows, filter, sizefiltx,
sizefilty, screen_blur, &max_val, &max_pos, &min_val, &min_pos);
/* Find the closest OFF dot to the min position. */
white_pos = 0;
dist = (pos_y[0] - (int)min_pos.y) * (pos_y[0] - (int)min_pos.y) +
(pos_x[0] - (int)min_pos.x) * (pos_x[0] - (int)min_pos.x);
for ( k = 1; k < num_dots; k++) {
curr_dist = (pos_y[k] - (int)min_pos.y) * (pos_y[k] - (int)min_pos.y) +
(pos_x[k] - (int)min_pos.x) * (pos_x[k] - (int)min_pos.x);
if (curr_dist < dist &&
screen_matrix[pos_x[k] + num_cols * pos_y[k]] == 0) {
white_pos = k;
dist = curr_dist;
}
}
/* Set this dot to white */
screen_matrix[pos_x[white_pos] + num_cols * pos_y[white_pos]] = 1;
/* If it is the same dot as before, then we are done */
/* There could be a danger here of cycles longer than 2 */
if (white_pos == black_pos) {
done = true;
FREE(mem, screen_blur);
FREE(mem, filter);
return 0;
} else {
/* We need to update our dot position information */
/* find where the old white one was and replace it */
found_it = false;
for (k = 0; k < dot_level_position->number_points; k++) {
if (dot_level_position->point[k].x == pos_x[black_pos] &&
dot_level_position->point[k].y == pos_y[black_pos]) {
found_it = true;
dot_level_position->point[k].x = pos_x[white_pos];
dot_level_position->point[k].y = pos_y[white_pos];
dot_level_position->locations[k] =
pos_x[white_pos] + pos_y[white_pos] * num_cols;
break;
}
}
if (!found_it) {
EPRINTF(mem, "ERROR! bug in dot location accounting\n");
FREE(mem, filter);
FREE(mem, screen_blur);
return -1;
}
}
}
FREE(mem, filter);
FREE(mem, screen_blur);
return 0;
}
static int
htsc_create_dither_mask(htsc_dig_grid_t super_cell, htsc_dig_grid_t *final_mask,
int verbose, int num_levels, int y, int x, double vert_dpi,
double horiz_dpi, int N, double gamma,
htsc_dig_grid_t dot_grid, htsc_point_t dot_grid_one_index,
gs_memory_t *mem)
{
int *dot_levels = NULL;
int *locate = NULL;
double percent, perc_val;
int code = 0, k, j, h, jj, mm;
int width_supercell = super_cell.width;
int height_supercell = super_cell.height;
int number_points = width_supercell * height_supercell;
int num_dots = 0;
double step_size;
int curr_size;
int rand_pos, dots_needed;
int done;
double lpi_act;
double vert_scale = ((double) y / vert_dpi);
double horiz_scale = ((double) x / horiz_dpi);
byte *screen_matrix = NULL;
unsigned short *pos_x = NULL, *pos_y = NULL;
htsc_dither_pos_t *dot_level_pos = NULL, *curr_dot_level = NULL;
int count;
int prev_dot_level, curr_num_dots;
double mag_offset, temp_dbl;
int *thresholds = NULL, val;
int j_index, k_index, threshold_value;
int *dot_level_sort = NULL;
bool found;
lpi_act = 1.0/((double) sqrt( vert_scale * vert_scale +
horiz_scale * horiz_scale));
if (num_levels > 1) {
curr_size = 2 * MAX(height_supercell, width_supercell);
locate = (int*) ALLOC(dot_grid.memory, sizeof(int) * curr_size);
if (locate == NULL) {
code = -1;
goto out;
}
screen_matrix = (byte*) ALLOC(dot_grid.memory, sizeof(byte) * number_points);
if (screen_matrix == NULL) {
code = -1;
goto out;
}
memset(screen_matrix, 0, sizeof(byte) * number_points);
/* Determine the number of dots in the screen and their index */
for (j = 0; j < number_points; j++) {
if (super_cell.data[j] == 1) {
locate[num_dots] = j;
num_dots++;
if (num_dots == (curr_size - 1)) {
int *tmp = locate;
curr_size = curr_size * 2;
locate = (int*) ALLOC(dot_grid.memory, sizeof(int) * curr_size);
if (locate == NULL) {
code = -1;
goto out;
}
memcpy(locate, tmp, sizeof(int) * (num_dots+1));
FREE(dot_grid.memory, tmp);
}
}
}
/* Convert the 1-D locate positions to 2-D positions so that we can
use a distance metric to the dot center locations. Also allocate
the structure for our dot positioning information */
pos_x = (unsigned short*) ALLOC(dot_grid.memory, sizeof(unsigned short) * num_dots);
if (pos_x == NULL) {
code = -1;
goto out;
}
pos_y = (unsigned short*) ALLOC(dot_grid.memory, sizeof(unsigned short) * num_dots);
if (pos_y == NULL) {
code = -1;
goto out;
}
for (k = 0; k < num_dots; k++) {
pos_x[k] = locate[k] % width_supercell;
pos_y[k] = (locate[k] - pos_x[k]) / width_supercell;
}
/* Note that number of quantization levels is not tied to number of dots
in the macro screen. */
dot_level_pos =
(htsc_dither_pos_t*) ALLOC(dot_grid.memory, sizeof(htsc_dither_pos_t) * num_levels);
if (dot_level_pos == NULL) {
code = -1;
goto out;
}
dot_levels = (int*) ALLOC(dot_grid.memory, sizeof(int) * num_levels);
if (dot_levels == NULL) {
code = -1;
goto out;
}
percent = 1.0 / ((double)num_levels + 1.0);
prev_dot_level = 0;
for (k = 0; k < num_levels; k++) {
perc_val = (k + 1) * percent;
dot_levels[k] = ROUND(num_dots * perc_val);
curr_num_dots = dot_levels[k] -prev_dot_level;
prev_dot_level = dot_levels[k];
dot_level_pos[k].locations = (int*) ALLOC(dot_grid.memory, sizeof(int) * curr_num_dots);
if (dot_level_pos[k].locations == NULL) {
code = -1;
goto out;
}
dot_level_pos[k].point =
(htsc_point_t*) ALLOC(dot_grid.memory, sizeof(htsc_point_t) * curr_num_dots);
if (dot_level_pos[k].point == NULL) {
code = -1;
goto out;
}
dot_level_pos[k].number_points = curr_num_dots;
}
/* An initial random location for the first level */
dots_needed = dot_levels[0];
count = 0;
if (dots_needed > 0) {
done = 0;
while (!done) {
rand_pos = ROUND((num_dots-1) * (double) rand() / (double) RAND_MAX);
if (screen_matrix[locate[rand_pos]] != 1) {
screen_matrix[locate[rand_pos]] = 1;
dot_level_pos->locations[count] = locate[rand_pos];
dot_level_pos->point[count].x = pos_x[rand_pos];
dot_level_pos->point[count].y = pos_y[rand_pos];
dots_needed--;
count++;
}
if (dots_needed == 0) {
done = 1;
}
}
}
#if RAW_SCREEN_DUMP
code = htsc_dump_byte_image(screen_matrix, width_supercell, height_supercell,
1, "screen0_init", mem);
if (code < 0)
goto out;
#endif
/* Rearrange these dots into a pleasing pattern, but only if there is
* more than 1. Otherwise there are none to move */
if (dot_levels[0] > 1)
code = htsc_init_dot_position(screen_matrix, width_supercell,
height_supercell, horiz_dpi, vert_dpi, lpi_act,
pos_x, pos_y, num_dots, dot_level_pos, final_mask->memory);
if (code < 0)
goto out;
#if RAW_SCREEN_DUMP
code = htsc_dump_byte_image(screen_matrix, width_supercell, height_supercell,
1, "screen0_arrange", mem);
if (code < 0)
goto out;
#endif
/* Now we want to introduce more dots at each level */
for (k = 1; k < num_levels; k++) {
code = htsc_add_dots(screen_matrix, width_supercell, height_supercell,
horiz_dpi, vert_dpi, lpi_act, pos_x, pos_y, locate,
num_dots, dot_level_pos, k,
dot_level_pos[k].number_points, final_mask->memory);
if (code < 0)
goto out;
#if RAW_SCREEN_DUMP
{
char str_name[30];
snprintf(str_name, 30, "screen%d_arrange",k);
code = htsc_dump_byte_image(screen_matrix, width_supercell, height_supercell,
1, str_name, mem);
if (code < 0)
goto out;
}
#endif
}
if (verbose > 0)
PRINTF(final_mask->memory, "\n--Dot Positions--\n");
for (k = 0; k < num_levels; k++) {
if (verbose > 0)
PRINTF2(final_mask->memory, "dot_level_pos %d: number_points = %d\n",
k, dot_level_pos[k].number_points);
for (j = 0; j < dot_level_pos[k].number_points; j++) {
if (verbose > 0)
PRINTF4(final_mask->memory, "\tpoint: %d: locations = %d x = %3.2lf y = %3.2lf\n",
j, dot_level_pos[k].locations[j], dot_level_pos[k].point[j].x, dot_level_pos[k].point[j].y);
}
}
/* Create the threshold mask. */
step_size = (MAXVAL + 1.0) / (double) N;
thresholds = (int*) ALLOC(dot_grid.memory, sizeof(int) * N);
if (thresholds == NULL) {
code = -1;
goto out;
}
for (k = 0; k < N; k++) {
thresholds[N-1-k] = (int)((k + 1) * step_size - (step_size / 2));
}
mag_offset =
(double) (thresholds[0]-thresholds[1]) / (double) (num_levels+1);
if ( gamma != 1.0) {
for (k = 0; k < N; k++) {
temp_dbl =
(double) pow((double) thresholds[k] / MAXVAL,
(double) gamma);
thresholds[k] = ROUND(temp_dbl * MAXVAL);
}
}
/* Now use the indices from the large screen to look up the mask and
apply the offset to the threshold values to dither the rate at which
the dots turn on */
/* allocate the mask */
final_mask->height = height_supercell;
final_mask->width = width_supercell;
final_mask->data =
(int*) ALLOC(dot_grid.memory, sizeof(int) * height_supercell * width_supercell);
if (final_mask->data == NULL) {
code = -1;
goto out;
}
/* We need to associate the locate index with a particular level
for the when the dot begins to turn on. Go through the dot_level_pos
array to get the values. Probably should create this earlier and avoid
this */
dot_level_sort = (int*) ALLOC(dot_grid.memory, sizeof(int) * num_dots);
if (dot_level_sort == NULL) {
code = -1;
goto out;
}
for (h = 0; h < num_dots; h++) {
found = false;
for (jj = 0; jj < num_levels; jj++) {
curr_dot_level = &(dot_level_pos[jj]);
for (mm = 0; mm < curr_dot_level->number_points; mm++) {
if (pos_x[h] == curr_dot_level->point[mm].x &&
pos_y[h] == curr_dot_level->point[mm].y ) {
found = true;
dot_level_sort[h] = jj + 1;
break; /* Break from position search(within level) */
}
}
if (found == true) { /* break from level search */
break;
}
}
if (found == false) {
dot_level_sort[h] = 0;
}
}
for (h = 0; h < num_dots; h++) {
for (j = 0; j < dot_grid.height; j++) {
for (k = 0; k < dot_grid.width; k++) {
val = htsc_getpoint(&dot_grid, k, j);
if (val != 0) {
/* Assign a offset threshold values */
j_index =
(pos_y[h] + j - (int) dot_grid_one_index.y) % height_supercell;
/* In case we have modulo of a negative number */
if (j_index < 0) j_index = j_index + height_supercell;
k_index =
(pos_x[h] + k - (int) dot_grid_one_index.x) % width_supercell;
/* In case we have modulo of a negative number */
if (k_index < 0) k_index = k_index + width_supercell;
threshold_value = (int)(thresholds[val-1] +
mag_offset * dot_level_sort[h]);
if (threshold_value > MAXVAL) threshold_value = (int)MAXVAL;
if (threshold_value < 0) threshold_value = 0;
htsc_setpoint(final_mask,k_index,j_index,threshold_value);
}
}
}
}
out:
if (dot_level_pos) {
for (k = 0; k < num_levels; k++) {
FREE(dot_grid.memory, dot_level_pos[k].locations);
FREE(dot_grid.memory, dot_level_pos[k].point);
}
}
FREE(dot_grid.memory, locate);
FREE(dot_grid.memory, screen_matrix);
FREE(dot_grid.memory, pos_x);
FREE(dot_grid.memory, pos_y);
FREE(dot_grid.memory, dot_level_pos);
FREE(dot_grid.memory, dot_levels);
FREE(dot_grid.memory, thresholds);
FREE(dot_grid.memory, dot_level_sort);
}
return code;
}
static int
htsc_create_holladay_mask(htsc_dig_grid_t super_cell, int H, int L,
double gamma, htsc_dig_grid_t *final_mask)
{
double step_size = (MAXVAL + 1.0) /( (double) H * (double) L);
int k, j, code = 0;
double *thresholds = NULL;
int number_points = H * L;
double half_step = step_size / 2.0;
double temp;
int index_point;
int value;
double white_scale = 253.0 / 255.0; /* To ensure white is white */
final_mask->height = H;
final_mask->width = L;
final_mask->data = (int *) ALLOC(final_mask->memory, (size_t)H * L * sizeof(int));
if (final_mask->data == NULL) {
code = -1;
goto out;
}
thresholds = (double *) ALLOC(final_mask->memory, (size_t)H * L * sizeof(double));
if (final_mask->data == NULL) {
code = -1;
goto out;
}
for (k = 0; k < number_points; k++) {
temp = ((k+1) * step_size - half_step) / MAXVAL;
if ( gamma != 1.0) {
/* Possible linearization */
temp = (double) pow((double) temp, (double) gamma);
}
thresholds[number_points - k - 1] =
ROUND(temp * MAXVAL * white_scale + 1);
}
memset(final_mask->data, 0, (size_t)H * L * sizeof(int));
for (j = 0; j < H; j++) {
for (k = 0; k < L; k++) {
index_point = htsc_getpoint(&super_cell,k,j) - 1;
value = (int) floor(thresholds[index_point]);
htsc_setpoint(final_mask,k,j,value);
}
}
out:
FREE(final_mask->memory, thresholds);
return code;
}
static int
htsc_create_nondithered_mask(htsc_dig_grid_t super_cell, int H, int L,
double gamma, htsc_dig_grid_t *final_mask)
{
double step_size = (MAXVAL + 1) /( (double) H * (double) L);
int k, j, code = 0;
double *thresholds = NULL;
int number_points = H * L;
double half_step = step_size / 2.0;
double temp;
int index_point;
int value;
double white_scale = 253.0 / 255.0; /* To ensure white is white */
final_mask->height = super_cell.height;
final_mask->width = super_cell.width;
final_mask->data = (int *) ALLOC(final_mask->memory,
(size_t)super_cell.height * super_cell.width *
sizeof(int));
if (final_mask->data == NULL) {
code = -1;
goto out;
}
thresholds = (double *) ALLOC(final_mask->memory, (size_t)H * L * sizeof(double));
if (thresholds == NULL) {
code = -1;
goto out;
}
for (k = 0; k < number_points; k++) {
temp = ((k+1) * step_size - half_step) / MAXVAL;
if ( gamma != 1.0) {
/* Possible linearization */
temp = (double) pow((double) temp, (double) gamma);
}
thresholds[number_points - k - 1] =
ROUND(temp * MAXVAL * white_scale + 1);
}
memset(final_mask->data, 0, (size_t)super_cell.height * super_cell.width *
sizeof(int));
for (j = 0; j < super_cell.height; j++) {
for (k = 0; k < super_cell.width; k++) {
index_point = htsc_getpoint(&super_cell,k,j) - 1;
value = (int) floor(thresholds[index_point]);
htsc_setpoint(final_mask,k,j,value);
}
}
out:
FREE(final_mask->memory, thresholds);
return code;
}
/* Various spot functions */
static double
htsc_spot_circle(double x, double y)
{
return 1.0 - (x*x + y*y);
}
static double
htsc_spot_redbook(double x, double y)
{
return (180.0 * (double) cos(x) + 180.0 * (double) cos(y)) / 2.0;
}
static double
htsc_spot_inverted_round(double x, double y)
{
return (x*x + y*y) - 1.0;
}
static double
htsc_spot_rhomboid(double x, double y)
{
return 1.0 - ((double) fabs(y) * 0.8 + (double) fabs(x)) / 2.0;
}
static double
htsc_spot_linex(double x, double y)
{
return 1.0 - (double) fabs(y);
}
static double
htsc_spot_liney(double x, double y)
{
return 1.0 - (double) fabs(x);
}
static double
htsc_spot_diamond(double x, double y)
{
double abs_y = (double) fabs(y);
double abs_x = (double) fabs(x);
if ((abs_y + abs_x) <= 0.75) {
return 1.0 - (abs_x * abs_x + abs_y * abs_y);
} else {
if ((abs_y + abs_x) <= 1.23) {
return 1.0 - (0.76 * abs_y + abs_x);
} else {
return ((abs_x - 1.0) * (abs_x - 1.0) +
(abs_y - 1.0) * (abs_y - 1.0)) - 1.0;
}
}
}
static double
htsc_spot_diamond2(double x, double y)
{
double xy = (double) fabs(x) + (double) fabs(y);
if (xy <= 1.0) {
return 1.0 - xy * xy / 2.0;
} else {
return 1.0 - (2.0 * xy * xy - 4.0 * (xy - 1.0) * (xy - 1.0)) / 4.0;
}
}
static double
htsc_spot_roundspot(double x, double y)
{
double xy = (double)fabs(x) + (double)fabs(y);
if (xy <= 1.0) {
return 1.0 - (x*x + y*y);
} else {
return ((fabs(x) - 1.0) * (fabs(x) - 1.0)) + ((fabs(y) - 1.0) * (fabs(y) - 1.0)) - 1.0;
}
}
static double
htsc_spot_value(spottype_t spot_type, double x, double y)
{
switch (spot_type) {
case CIRCLE:
return htsc_spot_circle(x,y);
case REDBOOK:
return htsc_spot_redbook(x,y);
case INVERTED:
return htsc_spot_inverted_round(x,y);
case RHOMBOID:
return htsc_spot_rhomboid(x,y);
case LINE_X:
return htsc_spot_linex(x,y);
case LINE_Y:
return htsc_spot_liney(x,y);
case DIAMOND1:
return htsc_spot_diamond(x,y);
case DIAMOND2:
return htsc_spot_diamond2(x,y);
case ROUNDSPOT:
return htsc_spot_roundspot(x,y);
case CUSTOM: /* A spot (pun intended) for users to define their own */
return htsc_spot_circle(x,y);
default:
return htsc_spot_circle(x,y);
}
}
#if FINAL_SCREEN_DUMP
/* Save turn on order list, Assume that htsc_gen_ordered has already converted to TOS */
static int
htsc_save_tos(htsc_dig_grid_t *final_mask, gs_memory_t *mem)
{
int width = final_mask->width;
int height = final_mask->height;
int *buff_ptr;
_FILE *fid;
int k = 0;
int count = height * width;
fid = FOPEN(mem, "turn_on_seq.out", "w");
if (fid == NULL)
return -1;
FPRINTF2(fid, "# W=%d H=%d\n", width, height);
/* Write out */
buff_ptr = final_mask->data;
for (k = 0; k < count; k++) {
FPRINTF2(fid, "%d\t%d\n", *buff_ptr++, *buff_ptr++);
}
FCLOSE(fid);
return 0;
}
int
htsc_save_screen(htsc_dig_grid_t *final_mask, bool use_holladay_grid, int S,
htsc_param_t params, gs_memory_t *mem)
{
char full_file_name[FULL_FILE_NAME_LENGTH];
_FILE *fid;
int x, y, code = 0;
int *buff_ptr = final_mask->data;
int width = final_mask->width;
int height = final_mask->height;
byte data;
unsigned short data_short;
output_format_type output_format = params.output_format;
char *output_extension = (output_format == OUTPUT_PS) ? "ps" :
((output_format == OUTPUT_PPM) ? "ppm" :
((output_format == OUTPUT_RAW16 ? "16.raw" : "raw")));
if (output_format == OUTPUT_TOS) {
/* We need to figure out the turn-on sequence from the threshold
array */
code = htsc_save_tos(final_mask, mem);
} else {
if (use_holladay_grid) {
snprintf(full_file_name, FULL_FILE_NAME_LENGTH, "Screen_Holladay_Shift%d_%dx%d.%s", S, width,
height, output_extension);
} else {
snprintf(full_file_name, FULL_FILE_NAME_LENGTH, "Screen_Dithered_%dx%d.%s", width, height,
output_extension);
}
fid = FOPEN(mem, full_file_name, "wb");
if (fid == NULL)
return -1;
if (output_format == OUTPUT_PPM)
FPRINTF6(fid, "P5\n"
"# Halftone threshold array, %s, [%d, %d], S=%d\n"
"%d %d\n"
"255\n",
use_holladay_grid ? "Holladay_Shift" : "Dithered", width, height,
S, width, height);
if (output_format != OUTPUT_PS) {
/* Both BIN and PPM format write the same binary data */
if (output_format == OUTPUT_RAW || output_format == OUTPUT_PPM) {
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
data_short = (unsigned short)(*buff_ptr & 0xffff);
data_short = ROUND((double)data_short * 255.0 / MAXVAL);
if (data_short > 255) data_short = 255;
data = (byte)(data_short & 0xff);
FWRITE(&data, sizeof(byte), 1, fid);
buff_ptr++;
}
}
} else { /* raw16 data */
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
data_short = (unsigned short)(*buff_ptr & 0xffff);
FWRITE(&data_short, sizeof(short), 1, fid);
buff_ptr++;
}
}
}
} else { /* ps output format */
if (params.targ_quant <= 256) {
/* Output PS HalftoneType 3 dictionary */
FPRINTF2(fid, "%%!PS\n"
"<< /HalftoneType 3\n"
" /Width %d\n"
" /Height %d\n"
" /Thresholds <\n",
width, height);
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
data_short = (unsigned short)(*buff_ptr & 0xffff);
data_short = ROUND((double)data_short * 255.0 / MAXVAL);
if (data_short > 255) data_short = 255;
data = (byte)(data_short & 0xff);
FPRINTF1(fid, "%02x", data);
buff_ptr++;
if ((x & 0x1f) == 0x1f && (x != (width - 1)))
FPRINTF(fid, "\n");
}
FPRINTF(fid, "\n");
}
FPRINTF(fid, " >\n"
">>\n"
);
} else {
/* Output PS HalftoneType 16 dictionary. Single array. */
FPRINTF(fid, "%%!PS\n"
"%% Create a 'filter' from local hex data\n"
"{ currentfile /ASCIIHexDecode filter /ReusableStreamDecode filter } exec\n");
/* hex data follows, 'file' object will be left on stack */
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
data_short = (unsigned short)(*buff_ptr & 0xffff);
FPRINTF1(fid, "%04x", data_short);
buff_ptr++;
if ((x & 0x1f) == 0x1f && (x != (width - 1)))
FPRINTF(fid, "\n");
}
FPRINTF(fid, "\n"); /* end of one row */
}
FPRINTF(fid, ">\n"); /* ASCIIHexDecode EOF */
FPRINTF2(fid,
"<< /Thresholds 2 index %% file object for the 16-bit data\n"
" /HalftoneType 16\n"
" /Width %d\n"
" /Height %d\n"
">>\n"
"exch pop %% discard ResuableStreamDecode file leaving the Halftone dict.\n",
width, height);
}
}
FCLOSE(fid);
}
return code;
}
#endif
#if RAW_SCREEN_DUMP
static int
htsc_dump_screen(htsc_dig_grid_t *dig_grid, char filename[], gs_memory_t *mem)
{
char full_file_name[FULL_FILE_NAME_LENGTH];
_FILE *fid;
int x,y;
int *buff_ptr = dig_grid->data;
int width = dig_grid->width;
int height = dig_grid->height;
byte data[3];
snprintf(full_file_name, FULL_FILE_NAME_LENGTH, "Screen_%s_%dx%dx3.raw",filename,width,height);
fid = FOPEN(mem, full_file_name,"wb");
if (fid == NULL)
return -1;
for (y = 0; y < height; y++) {
for ( x = 0; x < width; x++ ) {
if (*buff_ptr < 0) {
data[0] = 255;
data[1] = 0;
data[2] = 0;
} else if (*buff_ptr > 255) {
data[0] = 0;
data[1] = 255;
data[2] = 0;
} else {
data[0] = *buff_ptr;
data[1] = *buff_ptr;
data[2] = *buff_ptr;
}
FWRITE(data,sizeof(unsigned char),3,fid);
buff_ptr++;
}
}
FCLOSE(fid);
return 0;
}
static int
htsc_dump_float_image(double *image, int height, int width, double max_val,
char filename[], gs_memory_t *mem)
{
char full_file_name[FULL_FILE_NAME_LENGTH];
_FILE *fid;
int x,y;
int data;
byte data_byte;
snprintf(full_file_name, FULL_FILE_NAME_LENGTH, "Float_%s_%dx%d.raw",filename,width,height);
fid = FOPEN(mem, full_file_name,"wb");
if (fid == NULL)
return -1;
for (y = 0; y < height; y++) {
for ( x = 0; x < width; x++ ) {
data = (255.0 * image[x + y * width] / max_val);
if (data > 255) data = 255;
if (data < 0) data = 0;
data_byte = data;
FWRITE(&data_byte,sizeof(byte),1,fid);
}
}
FCLOSE(fid);
return 0;
}
static int
htsc_dump_byte_image(byte *image, int height, int width, double max_val,
char filename[], gs_memory_t *mem)
{
char full_file_name[FULL_FILE_NAME_LENGTH];
_FILE *fid;
int x,y;
int data;
byte data_byte;
snprintf(full_file_name, FULL_FILE_NAME_LENGTH, "ByteScaled_%s_%dx%d.raw",filename,width,height);
fid = FOPEN(mem, full_file_name,"wb");
if (fid == NULL)
return -1;
for (y = 0; y < height; y++) {
for ( x = 0; x < width; x++ ) {
data = (255.0 * image[x + y * width] / max_val);
if (data > 255) data = 255;
if (data < 0) data = 0;
data_byte = data;
FWRITE(&data_byte,sizeof(byte),1,fid);
}
}
FCLOSE(fid);
return 0;
}
#endif
|