1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* CIE color rendering cache management */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gsmatrix.h" /* for gscolor2.h */
#include "gxcspace.h" /* for gxcie.c */
#include "gscolor2.h" /* for gs_set/currentcolorrendering */
#include "gxarith.h"
#include "gxcie.h"
#include "gxdevice.h" /* for gxcmap.h */
#include "gxcmap.h"
#include "gzstate.h"
#include "gsicc.h"
/*
* Define whether to optimize the CIE mapping process by combining steps.
* This should only be disabled (commented out) for debugging.
*/
#define OPTIMIZE_CIE_MAPPING
/* Forward references */
static int cie_joint_caches_init(gx_cie_joint_caches *,
const gs_cie_common *,
gs_cie_render *);
static void cie_joint_caches_complete(gx_cie_joint_caches *,
const gs_cie_common *,
const gs_cie_abc *,
const gs_cie_render *);
static void cie_cache_restrict(cie_cache_floats *, const gs_range *);
static void cie_invert3(const gs_matrix3 *, gs_matrix3 *);
static void cie_matrix_init(gs_matrix3 *);
/* Allocator structure types */
private_st_joint_caches();
extern_st(st_gs_gstate);
#define RESTRICTED_INDEX(v, n, itemp)\
((uint)(itemp = (int)(v)) >= (n) ?\
(itemp < 0 ? 0 : (n) - 1) : itemp)
/* Define cache interpolation threshold values. */
#ifdef CIE_CACHE_INTERPOLATE
# ifdef CIE_INTERPOLATE_THRESHOLD
# define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD
# else
# define CACHE_THRESHOLD 0 /* always interpolate */
# endif
#else
# define CACHE_THRESHOLD 1.0e6 /* never interpolate */
#endif
#ifdef CIE_RENDER_TABLE_INTERPOLATE
# define RENDER_TABLE_THRESHOLD 0
#else
# define RENDER_TABLE_THRESHOLD 1.0e6
#endif
/*
* Determine whether a function is a linear transformation of the form
* f(x) = scale * x + origin.
*/
static bool
cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf)
{
double origin = pcf->values[0];
double diff = pcf->values[countof(pcf->values) - 1] - origin;
double scale = diff / (countof(pcf->values) - 1);
int i;
double test = origin + scale;
for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale)
if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values))
return (params->is_linear = false);
params->origin = origin - pcf->params.base;
params->scale =
diff * pcf->params.factor / (countof(pcf->values) - 1);
return (params->is_linear = true);
}
static void
cache_set_linear(cie_cache_floats *pcf)
{
if (pcf->params.is_identity) {
if_debug1('c', "[c]is_linear("PRI_INTPTR") = true (is_identity)\n",
(intptr_t)pcf);
pcf->params.linear.is_linear = true;
pcf->params.linear.origin = 0;
pcf->params.linear.scale = 1;
} else if (cache_is_linear(&pcf->params.linear, pcf)) {
if (pcf->params.linear.origin == 0 &&
fabs(pcf->params.linear.scale - 1) < 0.00001)
pcf->params.is_identity = true;
if_debug4('c',
"[c]is_linear("PRI_INTPTR") = true, origin = %g, scale = %g%s\n",
(intptr_t)pcf, pcf->params.linear.origin,
pcf->params.linear.scale,
(pcf->params.is_identity ? " (=> is_identity)" : ""));
}
#ifdef DEBUG
else
if_debug1('c', "[c]linear("PRI_INTPTR") = false\n", (intptr_t)pcf);
#endif
}
static void
cache3_set_linear(gx_cie_vector_cache3_t *pvc)
{
cache_set_linear(&pvc->caches[0].floats);
cache_set_linear(&pvc->caches[1].floats);
cache_set_linear(&pvc->caches[2].floats);
}
#ifdef DEBUG
static void
if_debug_vector3(const char *str, const gs_vector3 *vec)
{
if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w);
}
static void
if_debug_matrix3(const char *str, const gs_matrix3 *mat)
{
if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str,
mat->cu.u, mat->cu.v, mat->cu.w,
mat->cv.u, mat->cv.v, mat->cv.w,
mat->cw.u, mat->cw.v, mat->cw.w);
}
#else
# define if_debug_vector3(str, vec) DO_NOTHING
# define if_debug_matrix3(str, mat) DO_NOTHING
#endif
/* ------ Default values for CIE dictionary elements ------ */
/* Default transformation procedures. */
float
a_identity(double in, const gs_cie_a * pcie)
{
return in;
}
static float
a_from_cache(double in, const gs_cie_a * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats);
}
float
abc_identity(double in, const gs_cie_abc * pcie)
{
return in;
}
static float
abc_from_cache_0(double in, const gs_cie_abc * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats);
}
static float
abc_from_cache_1(double in, const gs_cie_abc * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats);
}
static float
abc_from_cache_2(double in, const gs_cie_abc * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats);
}
static float
def_identity(double in, const gs_cie_def * pcie)
{
return in;
}
static float
def_from_cache_0(double in, const gs_cie_def * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats);
}
static float
def_from_cache_1(double in, const gs_cie_def * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats);
}
static float
def_from_cache_2(double in, const gs_cie_def * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats);
}
static float
defg_identity(double in, const gs_cie_defg * pcie)
{
return in;
}
static float
defg_from_cache_0(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats);
}
static float
defg_from_cache_1(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats);
}
static float
defg_from_cache_2(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats);
}
static float
defg_from_cache_3(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats);
}
float
common_identity(double in, const gs_cie_common * pcie)
{
return in;
}
static float
lmn_from_cache_0(double in, const gs_cie_common * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats);
}
static float
lmn_from_cache_1(double in, const gs_cie_common * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats);
}
static float
lmn_from_cache_2(double in, const gs_cie_common * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats);
}
/* Transformation procedures for accessing an already-loaded cache. */
float
gs_cie_cached_value(double in, const cie_cache_floats *pcache)
{
/*
* We need to get the same results when we sample an already-loaded
* cache, so we need to round the index just a tiny bit.
*/
int index =
(int)((in - pcache->params.base) * pcache->params.factor + 0.0001);
CIE_CLAMP_INDEX(index);
return pcache->values[index];
}
/* Default vectors and matrices. */
const gs_range3 Range3_default = {
{ {0, 1}, {0, 1}, {0, 1} }
};
const gs_range4 Range4_default = {
{ {0, 1}, {0, 1}, {0, 1}, {0, 1} }
};
const gs_cie_defg_proc4 DecodeDEFG_default = {
{defg_identity, defg_identity, defg_identity, defg_identity}
};
const gs_cie_defg_proc4 DecodeDEFG_from_cache = {
{defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3}
};
const gs_cie_def_proc3 DecodeDEF_default = {
{def_identity, def_identity, def_identity}
};
const gs_cie_def_proc3 DecodeDEF_from_cache = {
{def_from_cache_0, def_from_cache_1, def_from_cache_2}
};
const gs_cie_abc_proc3 DecodeABC_default = {
{abc_identity, abc_identity, abc_identity}
};
const gs_cie_abc_proc3 DecodeABC_from_cache = {
{abc_from_cache_0, abc_from_cache_1, abc_from_cache_2}
};
const gs_cie_common_proc3 DecodeLMN_default = {
{common_identity, common_identity, common_identity}
};
const gs_cie_common_proc3 DecodeLMN_from_cache = {
{lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2}
};
const gs_matrix3 Matrix3_default = {
{1, 0, 0},
{0, 1, 0},
{0, 0, 1},
1 /*true */
};
const gs_range RangeA_default = {0, 1};
const gs_cie_a_proc DecodeA_default = a_identity;
const gs_cie_a_proc DecodeA_from_cache = a_from_cache;
const gs_vector3 MatrixA_default = {1, 1, 1};
const gs_vector3 BlackPoint_default = {0, 0, 0};
/* Initialize a CIE color. */
/* This only happens on setcolorspace. */
void
gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs)
{
gx_init_paint_4(pcc, pcs);
/* (0...) may not be within the range of allowable values. */
(*pcs->type->restrict_color)(pcc, pcs);
}
/* Restrict CIE colors. */
static inline void
cie_restrict(float *pv, const gs_range *range)
{
if (*pv <= range->rmin)
*pv = range->rmin;
else if (*pv >= range->rmax)
*pv = range->rmax;
}
void
gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_defg *pcie = pcs->params.defg;
cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]);
cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]);
cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]);
cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]);
}
void
gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_def *pcie = pcs->params.def;
cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]);
cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]);
cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]);
}
void
gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_abc *pcie = pcs->params.abc;
cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]);
cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]);
cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]);
}
void
gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_a *pcie = pcs->params.a;
cie_restrict(&pcc->paint.values[0], &pcie->RangeA);
}
/* ================ Table setup ================ */
/* ------ Install a CIE color space ------ */
static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *,
const cie_cache_floats *, double);
static bool cie_cache_mult3(gx_cie_vector_cache3_t *,
const gs_matrix3 *, double);
int
gx_install_cie_abc(gs_cie_abc *pcie, gs_gstate * pgs)
{
if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC);
cie_matrix_init(&pcie->MatrixABC);
CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges,
&pcie->DecodeABC, DecodeABC_default, pcie,
"DecodeABC");
gx_cie_load_common_cache(&pcie->common, pgs);
gs_cie_abc_complete(pcie);
return gs_cie_cs_complete(pgs, true);
}
int
gx_install_CIEDEFG(gs_color_space * pcs, gs_gstate * pgs)
{
gs_cie_defg *pcie = pcs->params.defg;
CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges,
&pcie->DecodeDEFG, DecodeDEFG_default, pcie,
"DecodeDEFG");
return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
}
int
gx_install_CIEDEF(gs_color_space * pcs, gs_gstate * pgs)
{
gs_cie_def *pcie = pcs->params.def;
CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges,
&pcie->DecodeDEF, DecodeDEF_default, pcie,
"DecodeDEF");
return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
}
int
gx_install_CIEABC(gs_color_space * pcs, gs_gstate * pgs)
{
return gx_install_cie_abc(pcs->params.abc, pgs);
}
int
gx_install_CIEA(gs_color_space * pcs, gs_gstate * pgs)
{
gs_cie_a *pcie = pcs->params.a;
gs_sample_loop_params_t lp;
int i;
gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp,
&pcie->RangeA, "DecodeA");
for (i = 0; i <= lp.N; ++i) {
float in = SAMPLE_LOOP_VALUE(i, lp);
pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie);
if_debug3m('C', pgs->memory, "[C]DecodeA[%d] = %g => %g\n",
i, in, pcie->caches.DecodeA.floats.values[i]);
}
gx_cie_load_common_cache(&pcie->common, pgs);
gs_cie_a_complete(pcie);
return gs_cie_cs_complete(pgs, true);
}
/* Load the common caches when installing the color space. */
/* This routine is exported for the benefit of gsicc.c */
void
gx_cie_load_common_cache(gs_cie_common * pcie, gs_gstate * pgs)
{
if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN);
cie_matrix_init(&pcie->MatrixLMN);
CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges,
&pcie->DecodeLMN, DecodeLMN_default, pcie,
"DecodeLMN");
}
/* Complete loading the common caches. */
/* This routine is exported for the benefit of gsicc.c */
void
gx_cie_common_complete(gs_cie_common *pcie)
{
int i;
for (i = 0; i < 3; ++i)
cache_set_linear(&pcie->caches.DecodeLMN[i].floats);
}
/*
* Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to
* the dimensions of Table.
*/
static void
gs_cie_defx_scale(float *values, const gs_range *range, int dim)
{
double scale = (dim - 1.0) / (range->rmax - range->rmin);
int i;
for (i = 0; i < gx_cie_cache_size; ++i) {
float value = values[i];
values[i] =
(value <= range->rmin ? 0 :
value >= range->rmax ? dim - 1 :
(value - range->rmin) * scale);
}
}
/* Complete loading a CIEBasedDEFG color space. */
/* This routine is NOT idempotent. */
void
gs_cie_defg_complete(gs_cie_defg * pcie)
{
int j;
for (j = 0; j < 4; ++j)
gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values,
&pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]);
gs_cie_abc_complete((gs_cie_abc *)pcie);
}
/* Complete loading a CIEBasedDEF color space. */
/* This routine is NOT idempotent. */
void
gs_cie_def_complete(gs_cie_def * pcie)
{
int j;
for (j = 0; j < 3; ++j)
gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values,
&pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]);
gs_cie_abc_complete((gs_cie_abc *)pcie);
}
/* Complete loading a CIEBasedABC color space. */
/* This routine is idempotent. */
void
gs_cie_abc_complete(gs_cie_abc * pcie)
{
cache3_set_linear(&pcie->caches.DecodeABC);
pcie->caches.skipABC =
cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC,
CACHE_THRESHOLD);
gx_cie_common_complete((gs_cie_common *)pcie);
}
/* Complete loading a CIEBasedA color space. */
/* This routine is idempotent. */
void
gs_cie_a_complete(gs_cie_a * pcie)
{
cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA,
&pcie->caches.DecodeA.floats,
CACHE_THRESHOLD);
cache_set_linear(&pcie->caches.DecodeA.floats);
gx_cie_common_complete((gs_cie_common *)pcie);
}
/*
* Set the ranges where interpolation is required in a vector cache.
* This procedure is idempotent.
*/
typedef struct cie_cache_range_temp_s {
cie_cached_value prev;
int imin, imax;
} cie_cache_range_temp_t;
static inline void
check_interpolation_required(cie_cache_range_temp_t *pccr,
cie_cached_value cur, int i, double threshold)
{
cie_cached_value prev = pccr->prev;
if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) {
if (i - 1 < pccr->imin)
pccr->imin = i - 1;
if (i > pccr->imax)
pccr->imax = i;
}
pccr->prev = cur;
}
static void
cie_cache_set_interpolation(gx_cie_vector_cache *pcache, double threshold)
{
cie_cached_value base = pcache->vecs.params.base;
cie_cached_value factor = pcache->vecs.params.factor;
cie_cache_range_temp_t temp[3];
int i, j;
for (j = 0; j < 3; ++j)
temp[j].imin = gx_cie_cache_size, temp[j].imax = -1;
temp[0].prev = pcache->vecs.values[0].u;
temp[1].prev = pcache->vecs.values[0].v;
temp[2].prev = pcache->vecs.values[0].w;
for (i = 0; i < gx_cie_cache_size; ++i) {
check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i,
threshold);
check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i,
threshold);
check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i,
threshold);
}
for (j = 0; j < 3; ++j) {
pcache->vecs.params.interpolation_ranges[j].rmin =
base + (cie_cached_value)((double)temp[j].imin / factor);
pcache->vecs.params.interpolation_ranges[j].rmax =
base + (cie_cached_value)((double)temp[j].imax / factor);
if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j,
cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin),
cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax));
}
}
/*
* Convert a scalar cache to a vector cache by multiplying the scalar
* values by a vector. Also set the range where interpolation is needed.
* This procedure is idempotent.
*/
static void
cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec,
const cie_cache_floats * pcf, double threshold)
{
float u = pvec->u, v = pvec->v, w = pvec->w;
int i;
pcache->vecs.params.base = float2cie_cached(pcf->params.base);
pcache->vecs.params.factor = float2cie_cached(pcf->params.factor);
pcache->vecs.params.limit =
float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor +
pcf->params.base);
for (i = 0; i < gx_cie_cache_size; ++i) {
float f = pcf->values[i];
pcache->vecs.values[i].u = float2cie_cached(f * u);
pcache->vecs.values[i].v = float2cie_cached(f * v);
pcache->vecs.values[i].w = float2cie_cached(f * w);
}
cie_cache_set_interpolation(pcache, threshold);
}
/*
* Set the interpolation ranges in a 3-vector cache, based on the ranges in
* the individual vector caches. This procedure is idempotent.
*/
static void
cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc)
{
int j, k;
/* Iterate over output components. */
for (j = 0; j < 3; ++j) {
/* Iterate over sub-caches. */
cie_interpolation_range_t *p =
&pvc->caches[0].vecs.params.interpolation_ranges[j];
cie_cached_value rmin = p->rmin, rmax = p->rmax;
for (k = 1; k < 3; ++k) {
p = &pvc->caches[k].vecs.params.interpolation_ranges[j];
rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax);
}
pvc->interpolation_ranges[j].rmin = rmin;
pvc->interpolation_ranges[j].rmax = rmax;
if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n",
j, rmin, rmax);
}
}
/*
* Convert 3 scalar caches to vector caches by multiplying by a matrix.
* Return true iff the resulting cache is an identity transformation.
* This procedure is idempotent.
*/
static bool
cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat,
double threshold)
{
cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold);
cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold);
cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold);
cie_cache3_set_interpolation(pvc);
return pmat->is_identity & pvc->caches[0].floats.params.is_identity &
pvc->caches[1].floats.params.is_identity &
pvc->caches[2].floats.params.is_identity;
}
/* ------ Install a rendering dictionary ------ */
bool
vector_equal(const gs_vector3 *p1, const gs_vector3 *p2)
{
if (p1->u != p2->u)
return false;
if (p1->v != p2->v)
return false;
if (p1->w != p2->w)
return false;
return true;
}
bool
matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2)
{
if (p1->is_identity != p2->is_identity)
return false;
if (!vector_equal(&(p1->cu), &(p2->cu)))
return false;
if (!vector_equal(&(p1->cv), &(p2->cv)))
return false;
if (!vector_equal(&(p1->cw), &(p2->cw)))
return false;
return true;
}
static bool
transform_equal(const gs_cie_transform_proc3 *p1, const gs_cie_transform_proc3 *p2)
{
if (p1->proc != p2->proc)
return false;
if (p1->proc_data.size != p2->proc_data.size)
return false;
if (memcmp(p1->proc_data.data, p2->proc_data.data, p1->proc_data.size) != 0)
return false;
if (p1->driver_name != p2->driver_name)
return false;
if (p1->proc_name != p2->proc_name)
return false;
return true;
}
bool
range_equal(const gs_range3 *p1, const gs_range3 *p2)
{
int k;
for (k = 0; k < 3; k++) {
if (p1->ranges[k].rmax != p2->ranges[k].rmax)
return false;
if (p1->ranges[k].rmin != p2->ranges[k].rmin)
return false;
}
return true;
}
/* setcolorrendering */
int
gs_setcolorrendering(gs_gstate * pgs, gs_cie_render * pcrd)
{
int code = gs_cie_render_complete(pcrd);
const gs_cie_render *pcrd_old = pgs->cie_render;
bool joint_ok;
if (code < 0)
return code;
if (pcrd_old != 0 && pcrd->id == pcrd_old->id)
return 0; /* detect needless reselecting */
joint_ok =
pcrd_old != 0 &&
vector_equal(&pcrd->points.WhitePoint, &pcrd_old->points.WhitePoint) &&
vector_equal(&pcrd->points.BlackPoint, &pcrd_old->points.BlackPoint) &&
matrix_equal(&pcrd->MatrixPQR, &pcrd_old->MatrixPQR) &&
range_equal(&pcrd->RangePQR, &pcrd_old->RangePQR) &&
transform_equal(&pcrd->TransformPQR, &pcrd_old->TransformPQR);
rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering");
/* Initialize the joint caches if needed. */
if (!joint_ok)
code = gs_cie_cs_complete(pgs, true);
gx_unset_dev_color(pgs);
return code;
}
/* currentcolorrendering */
const gs_cie_render *
gs_currentcolorrendering(const gs_gstate * pgs)
{
return pgs->cie_render;
}
/* Unshare (allocating if necessary) the joint caches. */
gx_cie_joint_caches *
gx_unshare_cie_caches(gs_gstate * pgs)
{
gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches,
&st_joint_caches, pgs->memory,
return 0, "gx_unshare_cie_caches");
if (pgs->cie_joint_caches != pjc) {
pjc = pgs->cie_joint_caches;
pjc->cspace_id = pjc->render_id = gs_no_id;
pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT;
}
return pjc;
}
gx_cie_joint_caches *
gx_get_cie_caches_ref(gs_gstate * pgs, gs_memory_t * mem)
{
gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
/* Take a reference here, to allow for the one that
* rc_unshare_struct might drop if it has to copy it.
* Whatever happens we will have taken 1 net new
* reference which we return to the caller. */
rc_increment(pgs->cie_joint_caches);
rc_unshare_struct(pjc, gx_cie_joint_caches,
&st_joint_caches, mem,
return NULL, "gx_unshare_cie_caches");
return pjc;
}
/* Compute the parameters for loading a cache, setting base and factor. */
/* This procedure is idempotent. */
void
gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp,
const gs_range * domain, client_name_t cname)
{
/*
We need to map the values in the range [domain->rmin..domain->rmax].
However, if rmin < 0 < rmax and the function is non-linear, this can
lead to anomalies at zero, which is the default value for CIE colors.
The "correct" way to approach this is to run the mapping functions on
demand, but we don't want to deal with the complexities of the
callbacks this would involve (especially in the middle of rendering
images); instead, we adjust the range so that zero maps precisely to a
cache slot. Define:
A = domain->rmin;
B = domain->rmax;
N = gx_cie_cache_size - 1;
R = B - A;
h(v) = N * (v - A) / R; // the index of v in the cache
X = h(0).
If X is not an integer, we can decrease A and/increase B to make it
one. Let A' and B' be the adjusted values of A and B respectively,
and let K be the integer derived from X (either floor(X) or ceil(X)).
Define
f(K) = (K * B' + (N - K) * A') / N).
We want f(K) = 0. This occurs precisely when, for any real number
C != 0,
A' = -K * C;
B' = (N - K) * C.
In order to ensure A' <= A and B' >= B, we require
C >= -A / K;
C >= B / (N - K).
Since A' and B' must be exactly representable as floats, we round C
upward to ensure that it has no more than M mantissa bits, where
M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)).
*/
float A = domain->rmin, B = domain->rmax;
double R = B - A, delta;
#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */
#define N NN
#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE
/* Adjust the range if necessary. */
if (A < 0 && B >= 0) {
const double X = -N * A / R; /* know X > 0 */
/* Choose K to minimize range expansion. */
const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */
const double Ca = -A / K, Cb = B / (N - K); /* know Ca, Cb > 0 */
double C = max(Ca, Cb); /* know C > 0 */
const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N;
int cexp;
const double cfrac = frexp(C, &cexp);
if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n",
A, B, X, K);
/* Round C to no more than M significant bits. See above. */
C = ldexp(ceil(ldexp(cfrac, M)), cexp - M);
/* Finally, compute A' and B'. */
A = -K * C;
B = (N - K) * C;
if_debug2('c', "[c] => %8g, %8g\n", A, B);
R = B - A;
}
delta = R / N;
#ifdef CIE_CACHE_INTERPOLATE
pcache->base = A; /* no rounding */
#else
pcache->base = A - delta / 2; /* so lookup will round */
#endif
/*
* If size of the domain is zero, then use 1.0 as the scaling
* factor. This prevents divide by zero errors in later calculations.
* This should only occurs with zero matrices. It does occur with
* Genoa test file 050-01.ps.
*/
pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R);
if_debug4('c', "[c]cache %s "PRI_INTPTR" base=%g, factor=%g\n",
(const char *)cname, (intptr_t)pcache,
pcache->base, pcache->factor);
pslp->A = A;
pslp->B = B;
#undef N
pslp->N = NN;
#undef NN
}
/* ------ Complete a rendering structure ------ */
/*
* Compute the derived values in a CRD that don't involve the cached
* procedure values. This procedure is idempotent.
*/
static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *,
gs_range3 *);
int
gs_cie_render_init(gs_cie_render * pcrd)
{
gs_matrix3 PQR_inverse;
if (pcrd->status >= CIE_RENDER_STATUS_INITED)
return 0; /* init already done */
if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN);
cie_matrix_init(&pcrd->MatrixLMN);
if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC);
cie_matrix_init(&pcrd->MatrixABC);
if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR);
cie_matrix_init(&pcrd->MatrixPQR);
cie_invert3(&pcrd->MatrixPQR, &PQR_inverse);
cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse,
&pcrd->MatrixPQR_inverse_LMN);
cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN,
&pcrd->DomainLMN);
cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC,
&pcrd->DomainABC);
cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr);
cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr);
pcrd->status = CIE_RENDER_STATUS_INITED;
return 0;
}
/*
* Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
* load the caches. This procedure is idempotent.
*/
int
gs_cie_render_sample(gs_cie_render * pcrd)
{
int code;
if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED)
return 0; /* sampling already done */
code = gs_cie_render_init(pcrd);
if (code < 0)
return code;
CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges,
&pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN");
cache3_set_linear(&pcrd->caches.EncodeLMN);
CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges,
&pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC");
if (pcrd->RenderTable.lookup.table != 0) {
int i, j, m = pcrd->RenderTable.lookup.m;
gs_sample_loop_params_t lp;
bool is_identity = true;
for (j = 0; j < m; j++) {
gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params,
&lp, &Range3_default.ranges[0],
"RenderTableT");
is_identity &= pcrd->RenderTable.T.procs[j] ==
RenderTableT_default.procs[j];
}
pcrd->caches.RenderTableT_is_identity = is_identity;
/*
* Unfortunately, we defined the first argument of the RenderTable
* T procedures as being a byte, limiting the number of distinct
* cache entries to 256 rather than gx_cie_cache_size.
* We confine this decision to this loop, rather than propagating
* it to the procedures that use the cached data, so that we can
* change it more easily at some future time.
*/
for (i = 0; i < gx_cie_cache_size; i++) {
#if gx_cie_log2_cache_size >= 8
byte value = i >> (gx_cie_log2_cache_size - 8);
#else
byte value = (i << (8 - gx_cie_log2_cache_size)) +
(i >> (gx_cie_log2_cache_size * 2 - 8));
#endif
for (j = 0; j < m; j++) {
pcrd->caches.RenderTableT[j].fracs.values[i] =
(*pcrd->RenderTable.T.procs[j])(value, pcrd);
if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n",
i, j,
frac2float(pcrd->caches.RenderTableT[j].fracs.values[i]));
}
}
}
pcrd->status = CIE_RENDER_STATUS_SAMPLED;
return 0;
}
/* Transform a set of ranges. */
static void
cie_transform_range(const gs_range3 * in, double mu, double mv, double mw,
gs_range * out)
{
float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax;
float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax;
float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax;
float temp;
if (umin > umax)
temp = umin, umin = umax, umax = temp;
if (vmin > vmax)
temp = vmin, vmin = vmax, vmax = temp;
if (wmin > wmax)
temp = wmin, wmin = wmax, wmax = temp;
out->rmin = umin + vmin + wmin;
out->rmax = umax + vmax + wmax;
}
static void
cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat,
gs_range3 * out)
{
cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u,
&out->ranges[0]);
cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v,
&out->ranges[1]);
cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w,
&out->ranges[2]);
}
/*
* Finish preparing a CRD for installation, by restricting and/or
* transforming the cached procedure values.
* This procedure is idempotent.
*/
int
gs_cie_render_complete(gs_cie_render * pcrd)
{
int code;
if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED)
return 0; /* completion already done */
code = gs_cie_render_sample(pcrd);
if (code < 0)
return code;
/*
* Since range restriction happens immediately after
* the cache lookup, we can save a step by restricting
* the values in the cache entries.
*
* If there is no lookup table, we want the final ABC values
* to be fracs; if there is a table, we want them to be
* appropriately scaled ints.
*/
pcrd->MatrixABCEncode = pcrd->MatrixABC;
{
int c;
double f;
for (c = 0; c < 3; c++) {
gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c];
cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats,
&pcrd->RangeLMN.ranges[c]);
cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats,
&pcrd->RangeABC.ranges[c]);
if (pcrd->RenderTable.lookup.table == 0) {
cie_cache_restrict(&pcache->floats,
&Range3_default.ranges[0]);
gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs);
pcache->fixeds.fracs.params.is_identity = false;
} else {
int i;
int n = pcrd->RenderTable.lookup.dims[c];
#ifdef CIE_RENDER_TABLE_INTERPOLATE
# define SCALED_INDEX(f, n, itemp)\
RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\
(n) << _cie_interpolate_bits, itemp)
#else
int m = pcrd->RenderTable.lookup.m;
int k =
(c == 0 ? 1 : c == 1 ?
m * pcrd->RenderTable.lookup.dims[2] : m);
# define SCALED_INDEX(f, n, itemp)\
(RESTRICTED_INDEX(f, n, itemp) * k)
#endif
const gs_range *prange = pcrd->RangeABC.ranges + c;
double scale = (n - 1) / (prange->rmax - prange->rmin);
for (i = 0; i < gx_cie_cache_size; ++i) {
float v =
(pcache->floats.values[i] - prange->rmin) * scale
#ifndef CIE_RENDER_TABLE_INTERPOLATE
+ 0.5
#endif
;
int itemp;
if_debug5('c',
"[c]cache[%d][%d] = %g => %g => %d\n",
c, i, pcache->floats.values[i], v,
SCALED_INDEX(v, n, itemp));
pcache->fixeds.ints.values[i] =
SCALED_INDEX(v, n, itemp);
}
pcache->fixeds.ints.params = pcache->floats.params;
pcache->fixeds.ints.params.is_identity = false;
#undef SCALED_INDEX
}
}
/* Fold the scaling of the EncodeABC cache index */
/* into MatrixABC. */
#define MABC(i, t)\
f = pcrd->caches.EncodeABC[i].floats.params.factor;\
pcrd->MatrixABCEncode.cu.t *= f;\
pcrd->MatrixABCEncode.cv.t *= f;\
pcrd->MatrixABCEncode.cw.t *= f;\
pcrd->EncodeABC_base[i] =\
float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f)
MABC(0, u);
MABC(1, v);
MABC(2, w);
#undef MABC
pcrd->MatrixABCEncode.is_identity = 0;
}
cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode,
CACHE_THRESHOLD);
pcrd->status = CIE_RENDER_STATUS_COMPLETED;
return 0;
}
/* Apply a range restriction to a cache. */
static void
cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange)
{
int i;
for (i = 0; i < gx_cie_cache_size; i++) {
float v = pcache->values[i];
if (v < prange->rmin)
pcache->values[i] = prange->rmin;
else if (v > prange->rmax)
pcache->values[i] = prange->rmax;
}
}
/* Convert a cache from floats to fracs. */
/* Note that the two may be aliased. */
void
gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs)
{
int i;
/* Loop from bottom to top so that we don't */
/* overwrite elements before they're used. */
for (i = 0; i < gx_cie_cache_size; ++i)
pfracs->values[i] = float2frac(pfloats->values[i]);
pfracs->params = pfloats->params;
}
/* ------ Fill in the joint cache ------ */
/* If the current color space is a CIE space, or has a CIE base space, */
/* return a pointer to the common part of the space; otherwise return 0. */
static const gs_cie_common *
cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc)
{
const gs_color_space *pcs = pcs_orig;
*ppabc = 0;
do {
switch (pcs->type->index) {
case gs_color_space_index_CIEDEF:
*ppabc = (const gs_cie_abc *)pcs->params.def;
return &pcs->params.def->common;
case gs_color_space_index_CIEDEFG:
*ppabc = (const gs_cie_abc *)pcs->params.defg;
return &pcs->params.defg->common;
case gs_color_space_index_CIEABC:
*ppabc = pcs->params.abc;
return &pcs->params.abc->common;
case gs_color_space_index_CIEA:
return &pcs->params.a->common;
default:
pcs = gs_cspace_base_space(pcs);
break;
}
} while (pcs != 0);
return 0;
}
const gs_cie_common *
gs_cie_cs_common(const gs_gstate * pgs)
{
const gs_cie_abc *ignore_pabc;
return cie_cs_common_abc(gs_currentcolorspace_inline(pgs), &ignore_pabc);
}
/*
* Mark the joint caches as needing completion. This is done lazily,
* when a color is being mapped. However, make sure the joint caches
* exist now.
*/
int
gs_cie_cs_complete(gs_gstate * pgs, bool init)
{
gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs);
if (pjc == 0)
return_error(gs_error_VMerror);
pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED);
return 0;
}
/* Actually complete the joint caches. */
int
gs_cie_jc_complete(const gs_gstate *pgs, const gs_color_space *pcs)
{
const gs_cie_abc *pabc;
const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc);
gs_cie_render *pcrd = pgs->cie_render;
gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
if (pjc->cspace_id == pcs->id &&
pjc->render_id == pcrd->id)
pjc->status = pjc->id_status;
switch (pjc->status) {
case CIE_JC_STATUS_BUILT: {
int code = cie_joint_caches_init(pjc, common, pcrd);
if (code < 0)
return code;
}
/* falls through */
case CIE_JC_STATUS_INITED:
cie_joint_caches_complete(pjc, common, pabc, pcrd);
pjc->cspace_id = pcs->id;
pjc->render_id = pcrd->id;
pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED;
/* falls through */
case CIE_JC_STATUS_COMPLETED:
break;
}
return 0;
}
/*
* Compute the source and destination WhitePoint and BlackPoint for
* the TransformPQR procedure.
*/
int
gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
const gs_cie_common * pcie,
const gs_cie_render * pcrd)
{
gs_cie_wbsd *pwbsd = &pjc->points_sd;
pwbsd->ws.xyz = pcie->points.WhitePoint;
cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr);
pwbsd->bs.xyz = pcie->points.BlackPoint;
cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr);
pwbsd->wd.xyz = pcrd->points.WhitePoint;
pwbsd->wd.pqr = pcrd->wdpqr;
pwbsd->bd.xyz = pcrd->points.BlackPoint;
pwbsd->bd.pqr = pcrd->bdpqr;
return 0;
}
/*
* Sample the TransformPQR procedure for the joint caches.
* This routine is idempotent.
*/
static int
cie_joint_caches_init(gx_cie_joint_caches * pjc,
const gs_cie_common * pcie,
gs_cie_render * pcrd)
{
bool is_identity;
int j;
gs_cie_compute_points_sd(pjc, pcie, pcrd);
/*
* If a client pre-loaded the cache, we can't adjust the range.
* ****** WRONG ******
*/
if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc)
return 0;
is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc;
for (j = 0; j < 3; j++) {
int i;
gs_sample_loop_params_t lp;
gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp,
&pcrd->RangePQR.ranges[j], "TransformPQR");
for (i = 0; i <= lp.N; ++i) {
float in = SAMPLE_LOOP_VALUE(i, lp);
float out;
int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd,
pcrd, &out);
if (code < 0)
return code;
pjc->TransformPQR.caches[j].floats.values[i] = out;
if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n",
j, i, in, out);
}
pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity;
}
return 0;
}
/*
* Complete the loading of the joint caches.
* This routine is idempotent.
*/
static void
cie_joint_caches_complete(gx_cie_joint_caches * pjc,
const gs_cie_common * pcie,
const gs_cie_abc * pabc /* NULL if CIEA */,
const gs_cie_render * pcrd)
{
gs_matrix3 mat3, mat2;
gs_matrix3 MatrixLMN_PQR;
int j;
pjc->remap_finish = gx_cie_real_remap_finish;
/*
* We number the pipeline steps as follows:
* 1 - DecodeABC/MatrixABC
* 2 - DecodeLMN/MatrixLMN/MatrixPQR
* 3 - TransformPQR/MatrixPQR'/MatrixLMN
* 4 - EncodeLMN/MatrixABC
* 5 - EncodeABC, RenderTable (we don't do anything with this here)
* We work from back to front, combining steps where possible.
* Currently we only combine steps if a procedure is the identity
* transform, but we could do it whenever the procedure is linear.
* A project for another day....
*/
/* Step 4 */
#ifdef OPTIMIZE_CIE_MAPPING
if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity &&
pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity &&
pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity
) {
/* Fold step 4 into step 3. */
if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n");
cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN,
&mat3);
pjc->skipEncodeLMN = true;
} else
#endif /* OPTIMIZE_CIE_MAPPING */
{
if_debug0('c', "[c]EncodeLMN is not identity.\n");
mat3 = pcrd->MatrixPQR_inverse_LMN;
pjc->skipEncodeLMN = false;
}
/* Step 3 */
cache3_set_linear(&pjc->TransformPQR);
cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN,
&MatrixLMN_PQR);
#ifdef OPTIMIZE_CIE_MAPPING
if (pjc->TransformPQR.caches[0].floats.params.is_identity &
pjc->TransformPQR.caches[1].floats.params.is_identity &
pjc->TransformPQR.caches[2].floats.params.is_identity
) {
/* Fold step 3 into step 2. */
if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n");
cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2);
pjc->skipPQR = true;
} else
#endif /* OPTIMIZE_CIE_MAPPING */
{
if_debug0('c', "[c]TransformPQR is not identity.\n");
mat2 = MatrixLMN_PQR;
for (j = 0; j < 3; j++) {
cie_cache_restrict(&pjc->TransformPQR.caches[j].floats,
&pcrd->RangePQR.ranges[j]);
}
cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD);
pjc->skipPQR = false;
}
/* Steps 2 & 1 */
#ifdef OPTIMIZE_CIE_MAPPING
if (pcie->caches.DecodeLMN[0].floats.params.is_identity &
pcie->caches.DecodeLMN[1].floats.params.is_identity &
pcie->caches.DecodeLMN[2].floats.params.is_identity
) {
if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n");
if (!pabc) {
pjc->skipDecodeLMN = mat2.is_identity;
pjc->skipDecodeABC = false;
if (!pjc->skipDecodeLMN) {
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
&pcie->caches.DecodeLMN[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
}
} else {
/*
* Fold step 2 into step 1. This is a little different because
* the data for step 1 are in the color space structure.
*/
gs_matrix3 mat1;
cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1);
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j,
&pabc->caches.DecodeABC.caches[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
pjc->skipDecodeLMN = false;
pjc->skipDecodeABC = true;
}
} else
#endif /* OPTIMIZE_CIE_MAPPING */
{
if_debug0('c', "[c]DecodeLMN is not identity.\n");
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
&pcie->caches.DecodeLMN[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
pjc->skipDecodeLMN = false;
pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
}
}
/*
* Initialize (just enough of) an gs_gstate so that "concretizing" colors
* using this gs_gstate will do only the CIE->XYZ mapping. This is a
* semi-hack for the PDF writer.
*/
int
gx_cie_to_xyz_alloc(gs_gstate **ppgs, const gs_color_space *pcs,
gs_memory_t *mem)
{
/*
* In addition to the gs_gstate itself, we need the joint caches.
*/
gs_gstate *pgs =
gs_alloc_struct(mem, gs_gstate, &st_gs_gstate,
"gx_cie_to_xyz_alloc(gs_gstate)");
gx_cie_joint_caches *pjc;
const gs_cie_abc *pabc;
const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc);
int j;
if (pgs == 0)
return_error(gs_error_VMerror);
memset(pgs, 0, sizeof(*pgs)); /* mostly paranoia */
pgs->memory = mem;
GS_STATE_INIT_VALUES(pgs, 1.0);
gs_gstate_initialize(pgs, mem);
pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches,
"gx_cie_to_xyz_free(joint caches)");
if (pjc == 0) {
gs_free_object(mem, pgs, "gx_cie_to_xyz_alloc(gs_gstate)");
return_error(gs_error_VMerror);
}
rc_init(pjc, mem, 1);
/*
* Perform an abbreviated version of cie_joint_caches_complete.
* Don't bother with any optimizations.
*/
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j,
&pcie->caches.DecodeLMN[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
pjc->skipDecodeLMN = false;
pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
/* Mark the joint caches as completed. */
pjc->remap_finish = gx_cie_xyz_remap_finish;
pjc->cspace_id = pcs->id;
pjc->status = CIE_JC_STATUS_COMPLETED;
pgs->cie_joint_caches = pjc;
pgs->cie_to_xyz = true;
*ppgs = pgs;
return 0;
}
void
gx_cie_to_xyz_free(gs_gstate *pgs)
{
gs_memory_t *mem = pgs->memory;
rc_decrement(pgs->cie_joint_caches,"gx_cie_to_xyz_free");
/* Free up the ICC objects if created */ /* FIXME: does this need to be thread safe */
if (pgs->icc_link_cache != NULL) {
rc_decrement(pgs->icc_link_cache,"gx_cie_to_xyz_free");
}
if (pgs->icc_manager != NULL) {
rc_decrement(pgs->icc_manager,"gx_cie_to_xyz_free");
}
if (pgs->icc_profile_cache != NULL) {
rc_decrement(pgs->icc_profile_cache,"gx_cie_to_xyz_free");
}
gs_free_object(mem, pgs, "gx_cie_to_xyz_free(gs_gstate)");
}
/* ================ Utilities ================ */
/* Multiply a vector by a matrix. */
/* Note that we are computing M * V where v is a column vector. */
void
cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
gs_vector3 * out)
{
if_debug_vector3("[c]mult", in);
if_debug_matrix3(" *", mat);
{
float u = in->u, v = in->v, w = in->w;
out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u);
out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v);
out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w);
}
if_debug_vector3(" =", out);
}
/*
* Multiply two matrices. Note that the composition of the transformations
* M1 followed by M2 is M2 * M1, not M1 * M2. (See gscie.h for details.)
*/
void
cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc)
{
gs_matrix3 mprod;
gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc);
if_debug_matrix3("[c]matrix_mult", ma);
if_debug_matrix3(" *", mb);
cie_mult3(&mb->cu, ma, &mp->cu);
cie_mult3(&mb->cv, ma, &mp->cv);
cie_mult3(&mb->cw, ma, &mp->cw);
cie_matrix_init(mp);
if_debug_matrix3(" =", mp);
if (mp != mc)
*mc = *mp;
}
/*
* Transpose a 3x3 matrix. In and out can not be the same
*/
void
cie_matrix_transpose3(const gs_matrix3 *in, gs_matrix3 *out)
{
out->cu.u = in->cu.u;
out->cu.v = in->cv.u;
out->cu.w = in->cw.u;
out->cv.u = in->cu.v;
out->cv.v = in->cv.v;
out->cv.w = in->cw.v;
out->cw.u = in->cu.w;
out->cw.v = in->cv.w;
out->cw.w = in->cw.w;
}
/* Invert a matrix. */
/* The output must not be an alias for the input. */
static void
cie_invert3(const gs_matrix3 *in, gs_matrix3 *out)
{ /* This is a brute force algorithm; maybe there are better. */
/* We label the array elements */
/* [ A B C ] */
/* [ D E F ] */
/* [ G H I ] */
#define A cu.u
#define B cv.u
#define C cw.u
#define D cu.v
#define E cv.v
#define F cw.v
#define G cu.w
#define H cv.w
#define I cw.w
double coA = in->E * in->I - in->F * in->H;
double coB = in->F * in->G - in->D * in->I;
double coC = in->D * in->H - in->E * in->G;
double det = in->A * coA + in->B * coB + in->C * coC;
if_debug_matrix3("[c]invert", in);
out->A = coA / det;
out->D = coB / det;
out->G = coC / det;
out->B = (in->C * in->H - in->B * in->I) / det;
out->E = (in->A * in->I - in->C * in->G) / det;
out->H = (in->B * in->G - in->A * in->H) / det;
out->C = (in->B * in->F - in->C * in->E) / det;
out->F = (in->C * in->D - in->A * in->F) / det;
out->I = (in->A * in->E - in->B * in->D) / det;
if_debug_matrix3(" =", out);
#undef A
#undef B
#undef C
#undef D
#undef E
#undef F
#undef G
#undef H
#undef I
out->is_identity = in->is_identity;
}
/* Set the is_identity flag that accelerates multiplication. */
static void
cie_matrix_init(register gs_matrix3 * mat)
{
mat->is_identity =
mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
}
bool
gx_color_space_needs_cie_caches(const gs_color_space * pcs)
{
switch (pcs->type->index) {
case gs_color_space_index_CIEDEFG:
case gs_color_space_index_CIEDEF:
case gs_color_space_index_CIEABC:
case gs_color_space_index_CIEA:
return true;
case gs_color_space_index_ICC:
return false;
case gs_color_space_index_DevicePixel:
case gs_color_space_index_DeviceN:
case gs_color_space_index_Separation:
case gs_color_space_index_Indexed:
case gs_color_space_index_Pattern:
return gx_color_space_needs_cie_caches(pcs->base_space);
default:
return false;
}
}
|