1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Structures for CIE color algorithms */
/* (requires gscspace.h, gscolor2.h) */
#ifndef gscie_INCLUDED
# define gscie_INCLUDED
#include "std.h"
#include "gsstype.h" /* for extern_st */
#include "gstypes.h" /* for gs_range_t */
#include "gxctable.h"
#include "gscspace.h"
/* ---------------- Configuration parameters ---------------- */
/* Define the size of the Encode/Decode/Transform procedure value caches. */
/* With the current design, these caches must all have the same size. */
#ifndef CIE_LOG2_CACHE_SIZE
# define CIE_LOG2_CACHE_SIZE 9
#endif
/* Define whether to use fixed- or floating-point values in the caches. */
/*#define CIE_CACHE_USE_FIXED */
/* If we are using fixed-point values, define the number of fraction bits. */
#define CIE_FIXED_FRACTION_BITS 12
/*
* Interpolation between adjacent cached values is computationally very
* expensive, but it is necessary in numerically sensitive areas. We
* characterize this by a threshold value V >= 0: we interpolate
* between adjacent cache values A = C[i] and B = C[i+1] if |B-A| >= V *
* min(|A|,|B|). V = 0 means always interpolate; if V is undefined,
* we never interpolate.
*/
/*
* Define whether to interpolate between cached values.
*/
#define CIE_CACHE_INTERPOLATE
/*
* Define the threshold for interpolating.
* This is computationally expensive.
*/
#define CIE_INTERPOLATE_THRESHOLD 0.001
/*
* Define whether to interpolate in the RenderTable. Currently this is a
* Boolean rather than a threshold. This is computationally very expensive,
* but unfortunately it seems to be necessary.
*/
#define CIE_RENDER_TABLE_INTERPOLATE
/* ------ Derived values ------ */
/* from CIE_LOG2_CACHE_SIZE */
#define gx_cie_log2_cache_size CIE_LOG2_CACHE_SIZE
#define gx_cie_cache_size (1 << gx_cie_log2_cache_size)
/* From CIE_FIXED_FRACTION_BITS 12 */
#ifndef CIE_FIXED_FRACTION_BITS
/* Take as many bits as we can without having to multiply in two pieces. */
# define CIE_FIXED_FRACTION_BITS\
((ARCH_SIZEOF_LONG * 8 - gx_cie_log2_cache_size) / 2 - 1)
#endif
/* From CIE_RENDER_TABLE_INTERPOLATE */
#ifdef CIE_RENDER_TABLE_INTERPOLATE
# define CIE_CACHE_INTERPOLATE
#endif
#define float_lshift(v, nb) ((v) * (1L << (nb)))
#define float_rshift(v, nb) ((v) * (1.0 / (1L << (nb))))
#ifdef CIE_CACHE_INTERPOLATE
/* We have to have room for both a cache index and the interpolation bits */
/* in a positive int (i.e., leaving 1 bit for the sign), plus a little slop. */
/* The values for interpolation are cie_cached_values by default. */
# define _cie_interpolate_bits\
min(ARCH_SIZEOF_INT * 8 - gx_cie_log2_cache_size - 2, 10)
# define _cix(i) ((i) >> _cie_interpolate_bits)
# define _cif(i) ((int)(i) & ((1 << _cie_interpolate_bits) - 1))
# define cie_interpolate_between(v0, v1, i)\
((v0) + cie_cached_rshift(((v1) - (v0)) * _cif(i) +\
(1 << (_cie_interpolate_bits - 1)),\
_cie_interpolate_bits))
# define cie_interpolate(p, i)\
((i) >= (gx_cie_cache_size - 1) << _cie_interpolate_bits ? \
(p)[gx_cie_cache_size - 1] : \
cie_interpolate_between((p)[_cix(i)], (p)[_cix(i) + 1], i))
# define cie_interpolate_fracs(p, i)\
((i) >= (gx_cie_cache_size - 1) << _cie_interpolate_bits ? \
(p)[gx_cie_cache_size - 1] : \
((p)[_cix(i)] + \
(frac)arith_rshift((long)((p)[_cix(i) + 1] - (p)[_cix(i)]) * _cif(i), _cie_interpolate_bits)))
#else
# define _cie_interpolate_bits 0
# define cie_interpolate_between(v0, v1, i) (v0)
# define cie_interpolate(p, i) ((p)[i])
# define cie_interpolate_fracs(p, i) ((p)[i])
#endif
#ifdef CIE_CACHE_USE_FIXED
typedef long cie_cached_value;
# define _cie_fixed_shift CIE_FIXED_FRACTION_BITS
# define float2cie_cached(v)\
((cie_cached_value)float_lshift(v, _cie_fixed_shift))
# define cie_cached2float(v)\
float_rshift(v, _cie_fixed_shift)
# define cie_cached2int(v, fbits)\
arith_rshift(v, _cie_fixed_shift - (fbits))
/* We are multiplying two cie_cached_values to produce a result that */
/* lies between 0 and gx_cie_cache_size - 1. If the intermediate result */
/* might overflow, compute it in pieces (being a little sloppy). */
# define _cie_product_excess_bits\
(_cie_fixed_shift * 2 + gx_cie_log2_cache_size - (ARCH_SIZEOF_LONG * 8 - 1))
# define cie_cached_product2int(v, factor, fbits)\
(_cie_product_excess_bits > 0 ?\
arith_rshift( (v) * arith_rshift(factor, _cie_product_excess_bits) +\
arith_rshift(v, _cie_product_excess_bits) *\
((factor) & ((1 << _cie_product_excess_bits) - 1)),\
_cie_fixed_shift * 2 - _cie_product_excess_bits - (fbits)) :\
arith_rshift((v) * (factor), _cie_fixed_shift * 2 - (fbits)))
# define cie_cached_rshift(v, n) arith_rshift(v, n)
# define cie_cached_abs(v) any_abs(v) /* labs() is C89 extension */
#else
typedef float cie_cached_value;
# define float2cie_cached(v) (v)
# define cie_cached2float(v) (v)
# define cie_cached2int(v, fbits)\
((int)float_lshift(v, fbits))
# define cie_cached_product2int(v, factor, fbits)\
((int)float_lshift((v) * (factor), fbits))
# define cie_cached_rshift(v, n) float_rshift(v, n)
# define cie_cached_abs(v) fabs(v) /* intristic on MSVC and GCC */
#endif
/* ---------------- Structures ---------------- */
typedef struct gs_cie_render_s gs_cie_render;
/* ------ Common definitions ------ */
/*
* For the purposes of the CIE routines, we consider that all the vectors
* are column vectors, that the matrices are specified in column order
* (e.g., the matrix
* [ A B C ]
* [ D E F ]
* [ G H I ]
* is represented as [A D G B E H C F I]), and that to transform a vector
* V by a matrix M, we compute M * V to produce another column vector.
* Note in particular that in order to produce a matrix M that is
* equivalent to transforming by M1 and then by M2, we must compute
* M = M2 * M1.
*/
/* A 3-element vector. */
typedef struct gs_vector3_s {
float u, v, w;
} gs_vector3;
/* A 3x3 matrix, stored in column order. */
typedef struct gs_matrix3_s {
gs_vector3 cu, cv, cw;
bool is_identity;
} gs_matrix3;
/* 3- and 4-element vectors of ranges. */
/* NOTE: gs_range is deprecated for new code in favor of gs_range_t. */
typedef gs_range_t gs_range;
typedef struct gs_range3_s {
gs_range ranges[3];
} gs_range3;
typedef struct gs_range4_s {
gs_range ranges[4];
} gs_range4;
/* Client-supplied transformation procedures. */
typedef struct gs_cie_common_s gs_cie_common;
typedef struct gs_cie_wbsd_s gs_cie_wbsd;
typedef float (*gs_cie_a_proc) (double, const gs_cie_a *);
typedef float (*gs_cie_abc_proc) (double, const gs_cie_abc *);
typedef struct gs_cie_abc_proc3_s {
gs_cie_abc_proc procs[3];
} gs_cie_abc_proc3;
typedef float (*gs_cie_def_proc) (double, const gs_cie_def *);
typedef struct gs_cie_def_proc3_s {
gs_cie_def_proc procs[3];
} gs_cie_def_proc3;
typedef float (*gs_cie_defg_proc) (double, const gs_cie_defg *);
typedef struct gs_cie_defg_proc4_s {
gs_cie_defg_proc procs[4];
} gs_cie_defg_proc4;
typedef float (*gs_cie_common_proc) (double, const gs_cie_common *);
typedef struct gs_cie_common_proc3_s {
gs_cie_common_proc procs[3];
} gs_cie_common_proc3;
typedef float (*gs_cie_render_proc) (double, const gs_cie_render *);
typedef struct gs_cie_render_proc3_s {
gs_cie_render_proc procs[3];
} gs_cie_render_proc3;
/*
* The TransformPQR procedure depends on both the color space and the
* CRD, so we can't simply pass it through the band list as a table of
* sampled values, even though such a table exists as part of an
* internal cache. Instead, we use two different approaches. The
* graphics library knows that the cache must be reloaded whenever the
* color space or CRD changes, so we can simply transmit the cached
* values through the band list whenever this occurs. However, this
* still leaves the issue of how to represent the procedure in the CRD
* per se: such a representation is required in order for
* currentcolorrendering and setcolorrendering to work. For this
* purpose, we provide a procedure name and procedure data, which
* drivers can supply with their default CRDs; the driver must also be
* prepared to map the procedure name back to an actual set of
* procedures.
*
* To simplify the driver-provided CRD machinery, we define TransformPQR as
* a single procedure taking an integer that specifies the component number,
* rather than an array of procedures. Note that if proc_name != 0,
* proc is irrelevant -- the driver will provide it by looking up proc_name.
* For this reason, the last argument of TransformPQR must be writable.
* Note also that since TransformPQR can fail (if the driver doesn't
* recognize the proc_name), it must return a failure code.
*/
typedef int (*gs_cie_transform_proc)(int, double, const gs_cie_wbsd *,
gs_cie_render *, float *);
typedef struct gs_cie_transform_proc3_s {
gs_cie_transform_proc proc;
const char *proc_name;
gs_const_string proc_data;
const char *driver_name; /* for mapping proc_name back to procs */
} gs_cie_transform_proc3;
typedef frac(*gs_cie_render_table_proc) (byte, const gs_cie_render *);
typedef struct gs_cie_render_table_procs_s {
gs_cie_render_table_proc procs[4];
} gs_cie_render_table_procs;
/* CIE white and black points. */
typedef struct gs_cie_wb_s {
gs_vector3 WhitePoint;
gs_vector3 BlackPoint;
} gs_cie_wb;
/* ------ Caches ------ */
/*
* Given that all the client-supplied procedures involved in CIE color
* mapping and rendering are monotonic, and given that we can determine
* the minimum and maximum input values for them, we can cache their values.
* This takes quite a lot of space, but eliminates the need for callbacks
* deep in the graphics code (particularly the image operator).
*
* The procedures, and how we determine their domains, are as follows:
Stage Name Domain determination
----- ---- --------------------
pre-decode DecodeDEF RangeDEF
pre-decode DecodeDEFG RangeDEFG
color space DecodeA RangeA
color space DecodeABC RangeABC
color space DecodeLMN RangeLMN
rendering TransformPQR RangePQR
(but depends on color space White/BlackPoints)
rendering EncodeLMN RangePQR transformed by the inverse of
MatrixPQR and then by MatrixLMN
rendering EncodeABC RangeLMN transformed by MatrixABC
rendering RenderTable.T [0..1]*m
* Note that we can mostly cache the results of the color space procedures
* without knowing the color rendering parameters, and vice versa,
* because of the range parameters supplied in the dictionaries.
* Unfortunately, TransformPQR is an exception.
*/
/*
* The index into a cache is (value - base) * factor, where
* factor is computed as (cie_cache_size - 1) / (rmax - rmin).
*/
/*
* We have two kinds of caches: ordinary caches, where each value is
* a scalar, and vector caches, where each value is a gs_cached_vector3.
* The latter allow us to pre-multiply the values by one column of
* a gs_matrix3, avoiding multiplications at lookup time.
*
* If the function being cached is simply a linear transformation,
* f(x) = scale * x + origin, then we can fold it into a following or
* preceding matrix.
*/
typedef struct cie_linear_params_s {
bool is_linear;
float scale, origin; /* if is_linear = true */
} cie_linear_params_t;
typedef struct cie_cache_params_s {
bool is_identity; /* must come first */
double base, factor;
cie_linear_params_t linear; /* only used in vector_cache.floats? */
} cie_cache_params;
typedef struct cie_cache_floats_s {
cie_cache_params params;
float values[gx_cie_cache_size];
} cie_cache_floats;
typedef struct cie_cache_fracs_s {
cie_cache_params params;
frac values[gx_cie_cache_size];
} cie_cache_fracs;
typedef struct cie_cache_ints_s {
cie_cache_params params;
int values[gx_cie_cache_size];
} cie_cache_ints;
typedef union gx_cie_scalar_cache_s {
cie_cache_floats floats;
cie_cache_fracs fracs;
cie_cache_ints ints;
} gx_cie_scalar_cache;
typedef struct cie_cached_vector3_s {
cie_cached_value u, v, w;
} cie_cached_vector3;
typedef struct cie_interpolation_range_s {
cie_cached_value rmin, rmax;
} cie_interpolation_range_t;
typedef struct cie_vector_cache_params_s {
cie_cached_value base, factor, limit;
cie_interpolation_range_t interpolation_ranges[3]; /* if this cache has an interpolation threshold */
} cie_vector_cache_params;
typedef struct cie_cache_vectors_s {
cie_vector_cache_params params;
cie_cached_vector3 values[gx_cie_cache_size];
} cie_cache_vectors;
typedef struct gx_cie_vector_cache_s {
cie_cache_floats floats;
cie_cache_vectors vecs;
} gx_cie_vector_cache;
typedef struct gx_cie_vector_cache3_s {
gx_cie_vector_cache caches[3];
cie_interpolation_range_t interpolation_ranges[3]; /* indexed by output component */
} gx_cie_vector_cache3_t;
/* ------ Color space dictionaries ------ */
/* Elements common to all CIE color space dictionaries. */
struct gs_cie_common_s {
int (*install_cspace)(gs_color_space *, gs_gstate *);
void *client_data;
gs_range3 RangeLMN;
gs_cie_common_proc3 DecodeLMN;
gs_matrix3 MatrixLMN;
gs_cie_wb points;
/* Following are computed when structure is initialized. */
struct {
gx_cie_scalar_cache DecodeLMN[3];
} caches;
};
/* st_cie_common and st_cie_common_elements_t are exported for gsicc.c */
#define public_st_cie_common() /* in gscscie.c */\
gs_public_st_ptrs1(st_cie_common, gs_cie_common, "gs_cie_common",\
cie_common_enum_ptrs, cie_common_reloc_ptrs, client_data)
/* extern_st(st_cie_common); */ /* in gxcie.h */
#define gs_cie_common_elements\
gs_cie_common common; /* must be first */\
rc_header rc
typedef struct gs_cie_common_elements_s {
gs_cie_common_elements;
} gs_cie_common_elements_t;
#define public_st_cie_common_elements() /* in gscscie.c */ \
gs_public_st_suffix_add0_local( st_cie_common_elements_t,\
gs_cie_common_elements_t,\
"gs_cie_common_elements_t",\
cie_common_enum_ptrs,\
cie_common_reloc_ptrs,\
st_cie_common)
/* extern_st(st_cie_common_elements_t); */ /* in gxcie.h */
/* A CIEBasedA dictionary. */
struct gs_cie_a_s {
gs_cie_common_elements; /* must be first */
gs_range RangeA;
gs_cie_a_proc DecodeA;
gs_vector3 MatrixA;
/* Following are computed when structure is initialized. */
struct {
gx_cie_vector_cache DecodeA; /* mult. by MatrixA */
} caches;
};
#define private_st_cie_a() /* in gscscie.c */\
gs_private_st_suffix_add0_local(st_cie_a, gs_cie_a, "gs_cie_a",\
cie_common_enum_ptrs,\
cie_common_reloc_ptrs,\
st_cie_common_elements_t)
/* Common elements for CIEBasedABC, DEF, and DEFG dictionaries. */
#define gs_cie_abc_elements\
gs_cie_common_elements; /* must be first */\
gs_range3 RangeABC;\
gs_cie_abc_proc3 DecodeABC;\
gs_matrix3 MatrixABC;\
/* Following are computed when structure is initialized. */\
struct {\
bool skipABC;\
gx_cie_vector_cache3_t DecodeABC; /* mult. by MatrixABC */\
} caches
/* A CIEBasedABC dictionary. */
struct gs_cie_abc_s {
gs_cie_abc_elements;
};
#define private_st_cie_abc() /* in gscscie.c */\
gs_private_st_suffix_add0_local(st_cie_abc, gs_cie_abc, "gs_cie_abc",\
cie_common_enum_ptrs, cie_common_reloc_ptrs,\
st_cie_common_elements_t)
/* A CIEBasedDEF dictionary. */
struct gs_cie_def_s {
gs_cie_abc_elements; /* must be first */
gs_range3 RangeDEF;
gs_cie_def_proc3 DecodeDEF;
gs_range3 RangeHIJ;
gx_color_lookup_table Table; /* [NH][NI * NJ * 3] */
struct {
gx_cie_scalar_cache DecodeDEF[3];
} caches_def;
};
#define private_st_cie_def() /* in gscscie.c */\
gs_private_st_suffix_add1(st_cie_def, gs_cie_def, "gs_cie_def",\
cie_def_enum_ptrs, cie_def_reloc_ptrs,\
st_cie_abc, Table.table)
/* A CIEBasedDEFG dictionary. */
struct gs_cie_defg_s {
gs_cie_abc_elements;
gs_range4 RangeDEFG;
gs_cie_defg_proc4 DecodeDEFG;
gs_range4 RangeHIJK;
gx_color_lookup_table Table; /* [NH * NI][NJ * NK * 3] */
struct {
gx_cie_scalar_cache DecodeDEFG[4];
} caches_defg;
};
#define private_st_cie_defg() /* in gscscie.c */\
gs_private_st_suffix_add1(st_cie_defg, gs_cie_defg, "gs_cie_defg",\
cie_defg_enum_ptrs, cie_defg_reloc_ptrs,\
st_cie_abc, Table.table)
/*
* Default values for components. Note that for some components, there are
* two sets of default procedures: _default (identity procedures) and
* _from_cache (procedures that just return the cached values).
*/
extern const gs_range3 Range3_default;
extern const gs_range4 Range4_default;
extern const gs_cie_defg_proc4 DecodeDEFG_default;
extern const gs_cie_defg_proc4 DecodeDEFG_from_cache;
extern const gs_cie_def_proc3 DecodeDEF_default;
extern const gs_cie_def_proc3 DecodeDEF_from_cache;
extern const gs_cie_abc_proc3 DecodeABC_default;
extern const gs_cie_abc_proc3 DecodeABC_from_cache;
extern const gs_cie_common_proc3 DecodeLMN_default;
extern const gs_cie_common_proc3 DecodeLMN_from_cache;
extern const gs_matrix3 Matrix3_default;
extern const gs_range RangeA_default;
extern const gs_cie_a_proc DecodeA_default;
extern const gs_cie_a_proc DecodeA_from_cache;
extern const gs_vector3 MatrixA_default;
extern const gs_vector3 BlackPoint_default;
extern const gs_cie_render_proc3 Encode_default;
extern const gs_cie_render_proc3 EncodeLMN_from_cache;
extern const gs_cie_render_proc3 EncodeABC_from_cache;
extern const gs_cie_transform_proc3 TransformPQR_default;
extern const gs_cie_transform_proc3 TransformPQR_from_cache;
extern const gs_cie_transform_proc TransformPQR_lookup_proc_name;
extern const gs_cie_render_table_procs RenderTableT_default;
extern const gs_cie_render_table_procs RenderTableT_from_cache;
/* ------ Rendering dictionaries ------ */
struct gs_cie_wbsd_s {
struct {
gs_vector3 xyz, pqr;
} ws, bs, wd, bd;
};
typedef struct gs_cie_render_table_s {
/*
* If lookup.table == 0, the other members (of both lookup and T) are
* not set. If not 0, lookup.table points to an array of
* st_const_string_elements.
*/
gx_color_lookup_table lookup;
gs_cie_render_table_procs T;
} gs_cie_render_table_t;
typedef enum {
CIE_RENDER_STATUS_BUILT,
CIE_RENDER_STATUS_INITED,
CIE_RENDER_STATUS_SAMPLED,
CIE_RENDER_STATUS_COMPLETED
} cie_render_status_t;
typedef struct gx_cie_float_fixed_cache_s {
cie_cache_floats floats;
union if_ {
cie_cache_fracs fracs;
cie_cache_ints ints;
} fixeds;
} gx_cie_float_fixed_cache;
/* The main dictionary */
struct gs_cie_render_s {
cie_render_status_t status;
rc_header rc;
gs_id id;
void *client_data;
gs_cie_wb points;
gs_matrix3 MatrixPQR;
gs_range3 RangePQR;
gs_cie_transform_proc3 TransformPQR;
gs_matrix3 MatrixLMN;
gs_cie_render_proc3 EncodeLMN;
gs_range3 RangeLMN;
gs_matrix3 MatrixABC;
gs_cie_render_proc3 EncodeABC;
gs_range3 RangeABC;
gs_cie_render_table_t RenderTable;
/* Following are computed when structure is initialized. */
gs_range3 DomainLMN;
gs_range3 DomainABC;
gs_matrix3 MatrixABCEncode;
cie_cached_value EncodeABC_base[3];
gs_matrix3 MatrixPQR_inverse_LMN;
gs_vector3 wdpqr, bdpqr;
struct {
gx_cie_vector_cache3_t EncodeLMN; /* mult. by M'ABCEncode */
gx_cie_float_fixed_cache EncodeABC[3];
gx_cie_scalar_cache RenderTableT[4];
bool RenderTableT_is_identity;
} caches;
};
/* The CRD type is public only for a type test in zcrd.c. */
extern_st(st_cie_render1);
#define public_st_cie_render1() /* in gscrd.c */\
gs_public_st_composite(st_cie_render1, gs_cie_render, "gs_cie_render",\
cie_render1_enum_ptrs, cie_render1_reloc_ptrs)
/* ------ Joint caches ------ */
/* This cache depends on both the color space and the rendering */
/* dictionary -- see above. */
typedef enum {
CIE_JC_STATUS_BUILT,
CIE_JC_STATUS_INITED,
CIE_JC_STATUS_COMPLETED
} cie_joint_caches_status_t;
/*
* Define the procedure type for finishing CIE color mapping. This is
* replaced by a special procedure to support CIE->XYZ mapping.
* It returns the number of components of the concrete color space
* (3 if RGB, 4 if CMYK).
*/
#define GX_CIE_REMAP_FINISH_PROC(proc)\
int proc(cie_cached_vector3 vec3, frac *pconc, float *xyz,\
const gs_gstate *pgs, const gs_color_space *pcs)
struct gx_cie_joint_caches_s {
/*
* The first 4 members are the "key" in the cache. They behave as
* follows:
*
* If id_status = COMPLETED, the cache is valid with respect to the
* color space and CRD identified by cspace_id and render_id.
*
* If status = COMPLETED, then id_status = COMPLETED also, and for
* every gstate pgs that references this cache, pgs->color_space->id =
* cspace_id and pgs->cie_render->id = render_id; hence the cache is
* valid with respect to that gstate.
*
* This invariant is maintained because the PostScript CRD-setting
* operators, the library's CRD-setting procedure, and the library's
* procedures for setting CIE color spaces all unshare the joint caches
* and set status in the new copy to something other than COMPLETED.
*
* The only reason for id_status is that certain client code often
* resets the CRD and/or color space and then sets it back to its
* original value, and we want to detect that and not invalidate the
* caches. If it weren't for that, setcolorspace and setcolorrendering
* could simply invalidate the caches.
*/
gs_id cspace_id;
gs_id render_id;
cie_joint_caches_status_t id_status;
cie_joint_caches_status_t status;
rc_header rc;
GX_CIE_REMAP_FINISH_PROC((*remap_finish));
bool skipDecodeABC;
bool skipDecodeLMN;
gx_cie_vector_cache3_t DecodeLMN; /* mult. by dLMN_PQR */
gs_cie_wbsd points_sd;
bool skipPQR;
gx_cie_vector_cache3_t TransformPQR; /* mult. by PQR_inverse_LMN */
bool skipEncodeLMN;
};
typedef struct gx_cie_joint_caches_s gx_cie_joint_caches;
#define private_st_joint_caches() /* in gscie.c */\
gs_private_st_simple(st_joint_caches, gx_cie_joint_caches,\
"gx_cie_joint_caches")
/* ------ Internal procedures ------ */
/*
* Rather than using the usual PostScript for-loop paradigm, we enumerate
* cache key values using the exact computation
* v(i) = ((N - i) * A + i * B) / N
* where A and B are the range of the cache and N is the number of entries
* (currently always gx_cie_cache_size - 1).
* The boilerplate is:
* gs_sample_loop_params_t lp;
* int i;
* gs_cie_cache_init(... &lp ...);
* for (i = 0; i <= lp.N; ++i) {
* float v = SAMPLE_LOOP_VALUE(i, lp);
* ...
* }
* NOTE: This computation must match zfor_samples and for_samples_continue
* in zcontrol.c.
*/
typedef struct gs_sample_loop_params_s {
float A, B;
int N;
} gs_sample_loop_params_t;
#define SAMPLE_LOOP_VALUE(i, lp)\
( (((lp).N - (i)) * (lp).A + (i) * (lp).B) / (lp).N )
void gs_cie_cache_init(cie_cache_params *, gs_sample_loop_params_t *,
const gs_range *, client_name_t);
void gs_cie_cache_to_fracs(const cie_cache_floats *, cie_cache_fracs *);
void gs_cie_defg_complete(gs_cie_defg *);
void gs_cie_def_complete(gs_cie_def *);
void gs_cie_abc_complete(gs_cie_abc *);
void gs_cie_a_complete(gs_cie_a *);
gx_cie_joint_caches *gx_unshare_cie_caches(gs_gstate *);
gx_cie_joint_caches *gx_get_cie_caches_ref(gs_gstate *, gs_memory_t *);
const gs_cie_common *gs_cie_cs_common(const gs_gstate *);
int gs_cie_cs_complete(gs_gstate *, bool);
int gs_cie_jc_complete(const gs_gstate *, const gs_color_space *);
float gs_cie_cached_value(double, const cie_cache_floats *);
int gx_install_cie_abc(gs_cie_abc *, gs_gstate *);
#define CIE_CLAMP_INDEX(index)\
index = (index < 0 ? 0 :\
index >= gx_cie_cache_size ? gx_cie_cache_size - 1 : index)
/* Define the template for loading a cache. */
/* If we had parameterized types, or a more flexible type system, */
/* this could be done with a single procedure. */
#define CIE_LOAD_CACHE_BODY(pcache, domains, rprocs, dprocs, pcie, cname)\
BEGIN\
int j;\
\
for (j = 0; j < countof(pcache); j++) {\
cie_cache_floats *pcf = &(pcache)[j].floats;\
int i;\
gs_sample_loop_params_t lp;\
\
gs_cie_cache_init(&pcf->params, &lp, &(domains)[j], cname);\
for (i = 0; i <= lp.N; ++i) {\
float v = SAMPLE_LOOP_VALUE(i, lp);\
pcf->values[i] = (*(rprocs)->procs[j])(v, pcie);\
if_debug5('C', "[C]%s[%d,%d] = %g => %g\n",\
cname, j, i, v, pcf->values[i]);\
}\
pcf->params.is_identity =\
(rprocs)->procs[j] == (dprocs).procs[j];\
}\
END
/*
* Compute the source and destination WhitePoint and BlackPoint for
* the TransformPQR procedure.
*/
int gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
const gs_cie_common * pcie,
const gs_cie_render * pcrd);
/*
* Compute the derived values in a CRD that don't involve the cached
* procedure values, moving the CRD from "built" to "inited" status.
* If the CRD is already in "inited" or a later status, do nothing.
*/
int gs_cie_render_init(gs_cie_render *);
/*
* Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
* load the caches, moving the CRD from "inited" to "sampled" status.
* If the CRD is already in "sampled" or a later status, do nothing;
* otherwise, if the CRD is not in "inited" status, return an error.
*/
int gs_cie_render_sample(gs_cie_render *);
/*
* Finish preparing a CRD for installation, by restricting and/or
* transforming the cached procedure values, moving the CRD from "sampled"
* to "completed" status. If the CRD is already in "completed" status, do
* nothing; otherwise, if the CRD is not in "sampled" status, return an
* error.
*/
int gs_cie_render_complete(gs_cie_render *);
/* ---------------- Procedures ---------------- */
/* ------ Constructors ------ */
/*
* Note that these procedures take a client_data pointer as an operand. The
* client is responsible for allocating and deleting this object; the
* color space machinery does not take ownership of it.
*
* Note that these procedures set the reference count of the (large)
* parameter structures to 1, not 0. gs_setcolorspace will increment
* the reference count again, so unless you want the parameter structures
* to stay allocated permanently (or until a garbage collection),
* you should call cs_adjust_count(pcspace, -1). THIS IS A BUG IN THE API.
*/
extern int
gs_cspace_build_CIEA(gs_color_space ** ppcspace, void *client_data,
gs_memory_t * pmem),
gs_cspace_build_CIEABC(gs_color_space ** ppcspace, void *client_data,
gs_memory_t * pmem),
gs_cspace_build_CIEDEF(gs_color_space ** ppcspace, void *client_data,
gs_memory_t * pmem),
gs_cspace_build_CIEDEFG(gs_color_space ** ppcspace, void *client_data,
gs_memory_t * pmem);
/* ------ Accessors ------ */
/*
* Note that the accessors depend heavily on "puns" between the variants
* of pcspace->params.{a,abc,def,defg}.
*/
/* Generic CIE based color space parameters */
#define gs_cie_RangeLMN(pcspace) (&(pcspace)->params.a->common.RangeLMN)
#define gs_cie_DecodeLMN(pcspace) (&(pcspace)->params.a->common.DecodeLMN)
#define gs_cie_MatrixLMN(pcspace) (&(pcspace)->params.a->common.MatrixLMN)
#define gs_cie_WhitePoint(pcspace)\
((pcspace)->params.a->common.points.WhitePoint)
#define gs_cie_BlackPoint(pcspace)\
((pcspace)->params.a->common.points.BlackPoint)
/* CIEBasedA color space */
#define gs_cie_a_RangeA(pcspace) (&(pcspace)->params.a->RangeA)
#define gs_cie_a_DecodeA(pcspace) (&(pcspace)->params.a->DecodeA)
#define gs_cie_a_MatrixA(pcspace) (&(pcspace)->params.a->MatrixA)
#define gs_cie_a_RangeA(pcspace) (&(pcspace)->params.a->RangeA)
/* CIEBasedABC color space */
/* Note that these also work for CIEBasedDEF[G] spaces. */
#define gs_cie_abc_RangeABC(pcspace) (&(pcspace)->params.abc->RangeABC)
#define gs_cie_abc_DecodeABC(pcspace) (&(pcspace)->params.abc->DecodeABC)
#define gs_cie_abc_MatrixABC(pcspace) (&(pcspace)->params.abc->MatrixABC)
/* CIDBasedDEF color space */
#define gs_cie_def_RangeDEF(pcspace) (&(pcspace)->params.def->RangeDEF)
#define gs_cie_def_DecodeDEF(pcspace) (&(pcspace)->params.def->DecodeDEF)
#define gs_cie_def_RangeHIJ(pcspace) (&(pcspace)->params.def->RangeHIJ)
/* CIDBasedDEFG color space */
#define gs_cie_defg_RangeDEFG(pcspace) (&(pcspace)->params.defg->RangeDEFG)
#define gs_cie_defg_DecodeDEFG(pcspace) (&(pcspace)->params.defg->DecodeDEFG)
#define gs_cie_defg_RangeHIJK(pcspace) (&(pcspace)->params.defg->RangeHIJK)
/*
* The following routine is provided so as to avoid explicitly exporting the
* CIEBasedDEF[G] color lookup table structure. It is doubtful any
* high-level clients will ever need to get this information.
*
* The caller must make sure the number of dimensions and strings provided
* are the number expected given the number of components in the color space.
* The procedure gs_color_space_num_components is available for this purpose.
*
* For a 3 component color space (CIEBasedDEF), ptable points to an array of
* pdims[0] gs_const_string structures, each of which is of length
* 3 * pdims[1] * pdims[2].
*
* For a 4 component color space (CIEBasedDEFG), ptable points to an array of
* pdims[0] * pdims[1] strings, each of which is of length
* 3 * pdims[2] * pdims[3].
*
* NB: the caller is responsible for deallocating the color table data
* when no longer needed. */
extern int
gs_cie_defx_set_lookup_table(gs_color_space * pcspace, int *pdims,
const gs_const_string * ptable);
/* Serialize common CIE elements. */
int gx_serialize_cie_common_elements(const gs_color_space * pcs, stream * s);
bool gx_color_space_needs_cie_caches(const gs_color_space * pcs);
/* made available for gsicc_create */
float common_identity(double in, const gs_cie_common * pcie);
float abc_identity(double in, const gs_cie_abc * pcie);
float a_identity(double in, const gs_cie_a * pcie);
void cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
gs_vector3 * out);
void cie_matrix_mult3(const gs_matrix3 *, const gs_matrix3 *,
gs_matrix3 *);
void cie_matrix_transpose3(const gs_matrix3 *, gs_matrix3 *);
bool matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2);
bool range_equal(const gs_range3 *p1, const gs_range3 *p2);
bool vector_equal(const gs_vector3 *p1, const gs_vector3 *p2);
#endif /* gscie_INCLUDED */
|