1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* CIE color rendering */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxcspace.h" /* for gxcie.c */
#include "gxarith.h"
#include "gxcie.h"
#include "gxdevice.h" /* for gxcmap.h */
#include "gxcmap.h"
#include "gxgstate.h"
#include "gscolor2.h"
#include "gsicc_create.h" /* Needed for delayed creation of ICC profiles from CIE color spaces */
#include "gsicc_manage.h"
#include "gsicc.h"
#include "gscspace.h"
/*
* Compute a cache index as (vin - base) * factor.
* vin, base, factor, and the result are cie_cached_values.
* We know that the result doesn't exceed (gx_cie_cache_size - 1) << fbits.
*
* Since this operation is extremely time-critical, we don't rely on the
* compiler providing 'inline'.
*/
#define LOOKUP_INDEX_(vin, pcache, fbits)\
(cie_cached_value)\
((vin) <= (pcache)->vecs.params.base ? 0 :\
(vin) >= (pcache)->vecs.params.limit ? (gx_cie_cache_size - 1) << (fbits) :\
cie_cached_product2int( ((vin) - (pcache)->vecs.params.base),\
(pcache)->vecs.params.factor, fbits ))
#define LOOKUP_ENTRY_(vin, pcache)\
(&(pcache)->vecs.values[(int)LOOKUP_INDEX(vin, pcache, 0)])
#ifdef DEBUG
static cie_cached_value
LOOKUP_INDEX(cie_cached_value vin, const gx_cie_vector_cache *pcache,
int fbits)
{
return LOOKUP_INDEX_(vin, pcache, fbits);
}
static const cie_cached_vector3 *
LOOKUP_ENTRY(cie_cached_value vin, const gx_cie_vector_cache *pcache)
{
return LOOKUP_ENTRY_(vin, pcache);
}
#else /* !DEBUG */
# define LOOKUP_INDEX(vin, pcache, fbits) LOOKUP_INDEX_(vin, pcache, fbits)
# define LOOKUP_ENTRY(vin, pcache) LOOKUP_ENTRY_(vin, pcache)
#endif /* DEBUG */
/*
* Call the remap_finish procedure in the structure without going through
* the extra level of procedure.
*/
#ifdef DEBUG
# define GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs)\
gx_cie_remap_finish(vec3, pconc, cie_xyz, pgs, pcs)
#else
# define GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs)\
((pgs)->cie_joint_caches->remap_finish(vec3, pconc, cie_xyz, pgs, pcs))
#endif
/* Forward references */
static void cie_lookup_mult3(cie_cached_vector3 *,
const gx_cie_vector_cache3_t *);
#ifdef DEBUG
static void
cie_lookup_map3(cie_cached_vector3 * pvec,
const gx_cie_vector_cache3_t * pc, const char *cname)
{
if_debug5('c', "[c]lookup %s "PRI_INTPTR" [%g %g %g]\n",
(const char *)cname, (intptr_t)pc,
cie_cached2float(pvec->u), cie_cached2float(pvec->v),
cie_cached2float(pvec->w));
cie_lookup_mult3(pvec, pc);
if_debug3('c', " =[%g %g %g]\n",
cie_cached2float(pvec->u), cie_cached2float(pvec->v),
cie_cached2float(pvec->w));
}
#else
# define cie_lookup_map3(pvec, pc, cname) cie_lookup_mult3(pvec, pc)
#endif
/* Check used for internal ranges to determine if we need to create a
CLUT for the ICC profile and if we need to rescale the incoming
CIE data.*/
bool
check_range(gs_range *ranges, int num_colorants)
{
int k;
for (k = 0; k < num_colorants; k++) {
if (ranges[k].rmin != 0) return false;
if (ranges[k].rmax != 1) return false;
}
return true;
}
/* Returns false if range is not 0 1 */
bool
check_cie_range(const gs_color_space * pcs)
{
switch(gs_color_space_get_index(pcs)) {
case gs_color_space_index_CIEDEFG:
return check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4) ;
case gs_color_space_index_CIEDEF:
return check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3);
case gs_color_space_index_CIEABC:
return check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3);
case gs_color_space_index_CIEA:
return check_range(&(pcs->params.a->RangeA), 1);
default:
return true;
}
}
gs_range*
get_cie_range(const gs_color_space * pcs)
{
switch(gs_color_space_get_index(pcs)) {
case gs_color_space_index_CIEDEFG:
return &(pcs->params.defg->RangeDEFG.ranges[0]);
case gs_color_space_index_CIEDEF:
return &(pcs->params.def->RangeDEF.ranges[0]);
case gs_color_space_index_CIEABC:
return &(pcs->params.abc->RangeABC.ranges[0]);
case gs_color_space_index_CIEA:
return &(pcs->params.a->RangeA);
default:
return NULL;
}
}
static void
rescale_input_color(gs_range *ranges, int num_colorants,
const gs_client_color *src, gs_client_color *des)
{
int k;
for (k = 0; k < num_colorants; k++) {
des->paint.values[k] = (src->paint.values[k] - ranges[k].rmin) /
(ranges[k].rmax - ranges[k].rmin);
}
}
/* Returns true if rescale was done */
bool
rescale_cie_colors(const gs_color_space * pcs, gs_client_color *cc)
{
int num, k;
gs_range *ranges;
if (!check_cie_range(pcs)) {
switch(gs_color_space_get_index(pcs)) {
case gs_color_space_index_CIEDEFG:
num = 4;
ranges = &(pcs->params.defg->RangeDEFG.ranges[0]);
break;
case gs_color_space_index_CIEDEF:
num = 3;
ranges = &(pcs->params.def->RangeDEF.ranges[0]);
break;
case gs_color_space_index_CIEABC:
num = 3;
ranges = &(pcs->params.abc->RangeABC.ranges[0]);
break;
case gs_color_space_index_CIEA:
num = 1;
ranges = &(pcs->params.a->RangeA);
break;
default:
return false;
}
for (k = 0; k < num; k++) {
cc->paint.values[k] = (cc->paint.values[k] - ranges[k].rmin) /
(ranges[k].rmax - ranges[k].rmin);
}
return true;
}
return false;
}
/*
* Test whether a CIE rendering has been defined; ensure that the joint
* caches are loaded. Note that the procedure may return 1 if no rendering
* has been defined. The 'cie_to_xyz' flag indicates that we don't need a CRD
*/
static inline int
gx_cie_check_rendering_inline(const gs_color_space * pcs, frac * pconc, const gs_gstate * pgs)
{
if (pgs->cie_render == 0 && !pgs->cie_to_xyz) {
/* No rendering has been defined yet: return black. */
pconc[0] = pconc[1] = pconc[2] = frac_0;
return 1;
}
if (pgs->cie_joint_caches->status == CIE_JC_STATUS_COMPLETED) {
if (pgs->cie_joint_caches->cspace_id != pcs->id)
pgs->cie_joint_caches->status = CIE_JC_STATUS_BUILT;
}
if (pgs->cie_render && pgs->cie_joint_caches->status != CIE_JC_STATUS_COMPLETED) {
int code = gs_cie_jc_complete(pgs, pcs);
if (code < 0)
return code;
}
return 0;
}
int
gx_cie_check_rendering(const gs_color_space * pcs, frac * pconc, const gs_gstate * pgs)
{
return gx_cie_check_rendering_inline(pcs, pconc, pgs);
}
/* Common code shared between remap and concretize for defg */
static int
gx_ciedefg_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory)
{
int code = 0;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]);
gx_cie_scalar_cache *defg_caches = &(pcs->params.defg->caches_defg.DecodeDEFG[0]);
if_debug0m(gs_debug_flag_icc, memory,
"[icc] Creating ICC profile from defg object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC color space");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_fromdefg(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
abc_caches, lmn_caches, defg_caches);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_DEFG;
pcs->icc_equivalent = *ppcs_icc;
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsCMYK;
return 0;
}
int
gx_remap_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gs_color_space *pcs_icc;
int code, i;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug4m('c', pgs->memory, "[c]remap CIEDEFG [%g %g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2], pc->paint.values[3]);
/* If we are comming in here then we have not completed
the conversion of the DEFG space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedefg_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.defg->RangeDEFG.ranges[0]), 4, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
for (i = 0; i < 4; i++)
pdc->ccolor.paint.values[i] = pc->paint.values[i];
pdc->ccolor_valid = true;
return code;
}
/* Render a CIEBasedDEFG color. */
int
gx_concretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
int code;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug4m('c', pgs->memory, "[c]concretize DEFG [%g %g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2], pc->paint.values[3]);
/* If we are comming in here then we have not completed
the conversion of the DEFG space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedefg_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.defg->RangeDEFG.ranges[0]), 4, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Used for when we have to mash entire transform to CIEXYZ */
int
gx_psconcretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_a *pcie = pcs->params.a;
cie_cached_value a = float2cie_cached(pc->paint.values[0]);
cie_cached_vector3 vlmn;
int code;
if_debug1m('c', pgs->memory, "[c]concretize CIEA %g\n", pc->paint.values[0]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
/* Apply DecodeA and MatrixA. */
if (!pgs->cie_joint_caches->skipDecodeABC)
vlmn = *LOOKUP_ENTRY(a, &pcie->caches.DecodeA);
else
vlmn.u = vlmn.v = vlmn.w = a;
GX_CIE_REMAP_FINISH(vlmn, pconc, cie_xyz, pgs, pcs);
return 0;
}
/* Used for when we have to mash entire transform to CIEXYZ */
int
gx_psconcretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_abc *pcie = pcs->params.abc;
cie_cached_vector3 vec3;
int code;
if_debug3m('c', pgs->memory, "[c]concretize CIEABC [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
vec3.u = float2cie_cached(pc->paint.values[0]);
vec3.v = float2cie_cached(pc->paint.values[1]);
vec3.w = float2cie_cached(pc->paint.values[2]);
if (!pgs->cie_joint_caches->skipDecodeABC)
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
"Decode/MatrixABC");
GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs);
return 0;
}
/* Used for when we have to mash entire transform to CIEXYZ */
int
gx_psconcretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_defg *pcie = pcs->params.defg;
int i;
fixed hijk[4];
frac abc[3];
cie_cached_vector3 vec3;
int code;
if_debug4m('c', pgs->memory, "[c]concretize DEFG [%g %g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2], pc->paint.values[3]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
/*
* Apply DecodeDEFG, including restriction to RangeHIJK and scaling to
* the Table dimensions.
*/
for (i = 0; i < 4; ++i) {
int tdim = pcie->Table.dims[i] - 1;
double factor = pcie->caches_defg.DecodeDEFG[i].floats.params.factor;
double v0 = pc->paint.values[i];
const gs_range *const rangeDEFG = &pcie->RangeDEFG.ranges[i];
double value =
(v0 < rangeDEFG->rmin ? 0.0 : factor *
(v0 > rangeDEFG->rmax ? rangeDEFG->rmax - rangeDEFG->rmin :
v0 - rangeDEFG->rmin ));
int vi = (int)value;
double vf = value - vi;
double v = pcie->caches_defg.DecodeDEFG[i].floats.values[vi];
if (vf != 0 && vi < factor)
v += vf *
(pcie->caches_defg.DecodeDEFG[i].floats.values[vi + 1] - v);
v = (v < 0 ? 0 : v > tdim ? tdim : v);
hijk[i] = float2fixed(v);
}
/* Apply Table. */
gx_color_interpolate_linear(hijk, &pcie->Table, abc);
#define SCALE_TO_RANGE(range, frac) ( \
float2cie_cached(((range).rmax - (range).rmin) * frac2float(frac) + \
(range).rmin) \
)
/* Scale the abc[] frac values to RangeABC cie_cached result */
vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]);
vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]);
vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]);
/* Apply DecodeABC and MatrixABC. */
if (!pgs->cie_joint_caches->skipDecodeABC)
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
"Decode/MatrixABC");
GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs);
return 0;
}
/* Render a CIEBasedDEF color. */
int
gx_psconcretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, float * cie_xyz, const gs_gstate * pgs)
{
const gs_cie_def *pcie = pcs->params.def;
int i;
fixed hij[3];
frac abc[3];
cie_cached_vector3 vec3;
int code;
if_debug3m('c', pgs->memory, "[c]concretize DEF [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
code = gx_cie_check_rendering_inline(pcs, pconc, pgs);
if (code < 0)
return code;
if (code == 1)
return 0;
/*
* Apply DecodeDEF, including restriction to RangeHIJ and scaling to
* the Table dimensions.
*/
for (i = 0; i < 3; ++i) {
int tdim = pcie->Table.dims[i] - 1;
double factor = pcie->caches_def.DecodeDEF[i].floats.params.factor;
double v0 = pc->paint.values[i];
const gs_range *const rangeDEF = &pcie->RangeDEF.ranges[i];
double value =
(v0 < rangeDEF->rmin ? 0.0 : factor *
(v0 > rangeDEF->rmax ? rangeDEF->rmax - rangeDEF->rmin :
v0 - rangeDEF->rmin ));
int vi = (int)value;
double vf = value - vi;
double v = pcie->caches_def.DecodeDEF[i].floats.values[vi];
if (vf != 0 && vi < factor)
v += vf *
(pcie->caches_def.DecodeDEF[i].floats.values[vi + 1] - v);
v = (v < 0 ? 0 : v > tdim ? tdim : v);
hij[i] = float2fixed(v);
}
/* Apply Table. */
gx_color_interpolate_linear(hij, &pcie->Table, abc);
/* Scale the abc[] frac values to RangeABC cie_cached result */
vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]);
vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]);
vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]);
/* Apply DecodeABC and MatrixABC. */
if (!pgs->cie_joint_caches->skipDecodeABC)
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
"Decode/MatrixABC");
GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs);
return 0;
}
#undef SCALE_TO_RANGE
/* Common code shared between remap and concretize for def */
static int
gx_ciedef_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory)
{
int code;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]);
gx_cie_scalar_cache *def_caches = &(pcs->params.def->caches_def.DecodeDEF[0]);
if_debug0(gs_debug_flag_icc,"[icc] Creating ICC profile from def object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC color space");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_fromdef(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
abc_caches, lmn_caches, def_caches);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_DEF;
/* Assign to the icc_equivalent member variable */
pcs->icc_equivalent = *ppcs_icc;
/* Bug 699104. The ICC profile is built to be RGB based. Reflect that here */
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsRGB;
return 0;
}
int
gx_remap_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gs_color_space *pcs_icc;
gs_client_color scale_pc;
int i,code;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug3m('c', pgs->memory, "[c]remap CIEDEF [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the DEF space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedef_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.def->RangeDEF.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
for (i = 0; i < 3; i++)
pdc->ccolor.paint.values[i] = pc->paint.values[i];
pdc->ccolor_valid = true;
return code;
}
/* Render a CIEBasedDEF color. */
int
gx_concretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
int code = 0;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug3m('c', pgs->memory, "[c]concretize DEF [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the DEF space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciedef_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.def->RangeDEF.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev);
}
#undef SCALE_TO_RANGE
/* Common code shared between remap and concretize */
static int
gx_cieabc_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, bool *islab,
gs_memory_t *memory)
{
int code;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]);
if_debug0m(gs_debug_flag_icc, memory, "[icc] Creating ICC profile from abc object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_fromabc(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
abc_caches, lmn_caches, islab);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEABC");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_ABC;
/* Assign to the icc_equivalent member variable */
pcs->icc_equivalent = *ppcs_icc;
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsRGB;
return 0;
}
/* Render a CIEBasedABC color. */
/* We provide both remap and concretize, but only the former */
/* needs to be efficient. */
int
gx_remap_CIEABC(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gs_color_space *pcs_icc;
gs_client_color scale_pc;
bool islab;
int i, code;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug3m('c', pgs->memory, "[c]remap CIEABC [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the ABC space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_cieabc_to_icc(&pcs_icc, pcs, &islab, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEABC");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.abc->RangeABC.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
for (i = 0; i < 3; i++)
pdc->ccolor.paint.values[i] = pc->paint.values[i];
pdc->ccolor_valid = true;
/* Now the icc remap */
return code;
}
int
gx_concretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
gs_color_space *pcs_icc;
gs_client_color scale_pc;
bool islab;
gs_color_space *pcs = (gs_color_space *) pcs_in;
int code = 0;
if_debug3m('c', pgs->memory, "[c]concretize CIEABC [%g %g %g]\n",
pc->paint.values[0], pc->paint.values[1],
pc->paint.values[2]);
/* If we are comming in here then we have not completed
the conversion of the ABC space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_cieabc_to_icc(&pcs_icc, pcs, &islab, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEABC");
} else {
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.abc->RangeABC.ranges[0]), 3, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev);
}
/* Common code shared between remap and concretize */
static int
gx_ciea_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory)
{
int code;
gs_color_space *palt_cs = pcs->base_space;
gx_cie_vector_cache *a_cache = &(pcs->params.a->caches.DecodeA);
gx_cie_scalar_cache *lmn_caches = &(pcs->params.a->common.caches.DecodeLMN[0]);
if_debug0m(gs_debug_flag_icc, memory,
"[icc] Creating ICC profile from CIEA object");
/* build the ICC color space object */
code = gs_cspace_build_ICC(ppcs_icc, NULL, memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile");
/* record the cie alt space as the icc alternative color space */
(*ppcs_icc)->base_space = palt_cs;
rc_increment_cs(palt_cs);
(*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0);
if ((*ppcs_icc)->cmm_icc_profile_data == NULL)
gs_throw(gs_error_VMerror, "Failed to create ICC profile");
code = gsicc_create_froma(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer),
&((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory,
a_cache, lmn_caches);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEA");
code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data);
if (code < 0)
return gs_rethrow(code, "Failed to build ICC profile from CIEDEF");
(*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_A;
/* Assign to the icc_equivalent member variable */
pcs->icc_equivalent = *ppcs_icc;
pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsGRAY;
return 0;
}
int
gx_remap_CIEA(const gs_client_color * pc, const gs_color_space * pcs_in,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
int code;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug1m('c', dev->memory, "[c]remap CIEA [%g]\n",pc->paint.values[0]);
/* If we are coming in here then we may have not completed
the conversion of the CIE A space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciea_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEA");
} else {
/* Once the ICC color space is set, we should be doing all the remaps through the ICC equivalent */
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.a->RangeA), 1)) {
return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.a->RangeA), 1, pc, &scale_pc);
/* Now the icc remap */
code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select);
/* Save unscaled data for high level device (e.g. pdfwrite) */
pdc->ccolor.paint.values[0] = pc->paint.values[0];
pdc->ccolor_valid = true;
return code;
}
/* Render a CIEBasedA color. */
int
gx_concretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs_in,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
int code = 0;
gs_color_space *pcs_icc;
gs_client_color scale_pc;
gs_color_space *pcs = (gs_color_space *) pcs_in;
if_debug1m('c', dev->memory, "[c]concretize CIEA %g\n", pc->paint.values[0]);
/* If we are comming in here then we have not completed
the conversion of the CIE A space to an ICC type. We
will finish that process now. */
if (pcs->icc_equivalent == NULL) {
code = gx_ciea_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory);
if (code < 0)
return gs_rethrow(code, "Failed to create ICC profile from CIEA");
} else {
/* Once the ICC color space is set, we should be doing all the remaps through the ICC equivalent */
pcs_icc = pcs->icc_equivalent;
}
/* Rescale the input based upon the input range since profile is
created to remap this range from 0 to 1 */
if (check_range(&(pcs->params.a->RangeA), 1)) {
return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev);
}
/* Do the rescale from 0 to 1 */
rescale_input_color(&(pcs->params.a->RangeA), 1, pc, &scale_pc);
/* Now the icc remap */
return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev);
}
/* Call for cases where the equivalent icc color space needs to be set */
int
gs_colorspace_set_icc_equivalent(gs_color_space *pcs, bool *islab,
gs_memory_t *memory)
{
gs_color_space_index color_space_index = gs_color_space_get_index(pcs);
gs_color_space *picc_cs;
int code = 0;
*islab = false; /* For non CIEABC cases */
if (pcs->icc_equivalent != NULL || !gs_color_space_is_PSCIE(pcs))
return 0;
switch( color_space_index ) {
case gs_color_space_index_CIEDEFG:
code = gx_ciedefg_to_icc(&picc_cs, pcs, memory->stable_memory);
break;
case gs_color_space_index_CIEDEF:
code = gx_ciedef_to_icc(&picc_cs, pcs, memory->stable_memory);
break;
case gs_color_space_index_CIEABC:
code = gx_cieabc_to_icc(&picc_cs, pcs, islab, memory->stable_memory);
break;
case gs_color_space_index_CIEA:
code = gx_ciea_to_icc(&picc_cs, pcs, memory->stable_memory);
break;
default:
/* do nothing. Sould never happen */
break;
}
return code;
}
/* Call the remap_finish procedure in the joint_caches structure. */
int
gx_cie_remap_finish(cie_cached_vector3 vec3, frac * pconc, float *cie_xyz,
const gs_gstate * pgs,
const gs_color_space *pcs)
{
return pgs->cie_joint_caches->remap_finish(vec3, pconc, cie_xyz, pgs, pcs);
}
/* Finish remapping a CIEBased color. */
/* Return 3 if RGB, 4 if CMYK. */
/* this procedure is exported for the benefit of gsicc.c */
int
gx_cie_real_remap_finish(cie_cached_vector3 vec3, frac * pconc, float * xyz,
const gs_gstate * pgs,
const gs_color_space *pcs)
{
const gs_cie_render *pcrd = pgs->cie_render;
const gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
const gs_const_string *table = pcrd->RenderTable.lookup.table;
int tabc[3]; /* indices for final EncodeABC lookup */
/* Apply DecodeLMN, MatrixLMN(decode), and MatrixPQR. */
if (!pjc->skipDecodeLMN)
cie_lookup_map3(&vec3 /* LMN => PQR */, &pjc->DecodeLMN,
"Decode/MatrixLMN+MatrixPQR");
/* Apply TransformPQR, MatrixPQR', and MatrixLMN(encode). */
if (!pjc->skipPQR)
cie_lookup_map3(&vec3 /* PQR => LMN */, &pjc->TransformPQR,
"Transform/Matrix'PQR+MatrixLMN");
/* Apply EncodeLMN and MatrixABC(encode). */
if (!pjc->skipEncodeLMN)
cie_lookup_map3(&vec3 /* LMN => ABC */, &pcrd->caches.EncodeLMN,
"EncodeLMN+MatrixABC");
/* MatrixABCEncode includes the scaling of the EncodeABC */
/* cache index. */
#define SET_TABC(i, t)\
BEGIN\
tabc[i] = cie_cached2int(vec3 /*ABC*/.t - pcrd->EncodeABC_base[i],\
_cie_interpolate_bits);\
if ((uint)tabc[i] > (gx_cie_cache_size - 1) << _cie_interpolate_bits)\
tabc[i] = (tabc[i] < 0 ? 0 :\
(gx_cie_cache_size - 1) << _cie_interpolate_bits);\
END
SET_TABC(0, u);
SET_TABC(1, v);
SET_TABC(2, w);
#undef SET_TABC
if (table == 0) {
/*
* No further transformation.
* The final mapping step includes both restriction to
* the range [0..1] and conversion to fracs.
*/
#define EABC(i)\
cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.fracs.values, tabc[i])
pconc[0] = EABC(0);
pconc[1] = EABC(1);
pconc[2] = EABC(2);
#undef EABC
return 3;
} else {
/*
* Use the RenderTable.
*/
int m = pcrd->RenderTable.lookup.m;
#define RT_LOOKUP(j, i) pcrd->caches.RenderTableT[j].fracs.values[i]
#ifdef CIE_RENDER_TABLE_INTERPOLATE
/*
* The final mapping step includes restriction to the
* ranges [0..dims[c]] as ints with interpolation bits.
*/
fixed rfix[3];
const int s = _fixed_shift - _cie_interpolate_bits;
#define EABC(i)\
cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.ints.values, tabc[i])
#define FABC(i, s)\
((s) > 0) ? (EABC(i) << (s)) : (EABC(i) >> -(s))
rfix[0] = FABC(0, s);
rfix[1] = FABC(1, s);
rfix[2] = FABC(2, s);
#undef FABC
#undef EABC
if_debug6m('c', pgs->memory, "[c]ABC=%g,%g,%g => iabc=%g,%g,%g\n",
cie_cached2float(vec3.u), cie_cached2float(vec3.v),
cie_cached2float(vec3.w), fixed2float(rfix[0]),
fixed2float(rfix[1]), fixed2float(rfix[2]));
gx_color_interpolate_linear(rfix, &pcrd->RenderTable.lookup,
pconc);
if_debug3m('c', pgs->memory, "[c] interpolated => %g,%g,%g\n",
frac2float(pconc[0]), frac2float(pconc[1]),
frac2float(pconc[2]));
if (!pcrd->caches.RenderTableT_is_identity) {
/* Map the interpolated values. */
#define frac2cache_index(v) frac2bits(v, gx_cie_log2_cache_size)
pconc[0] = RT_LOOKUP(0, frac2cache_index(pconc[0]));
pconc[1] = RT_LOOKUP(1, frac2cache_index(pconc[1]));
pconc[2] = RT_LOOKUP(2, frac2cache_index(pconc[2]));
if (m > 3)
pconc[3] = RT_LOOKUP(3, frac2cache_index(pconc[3]));
#undef frac2cache_index
}
#else /* !CIE_RENDER_TABLE_INTERPOLATE */
/*
* The final mapping step includes restriction to the ranges
* [0..dims[c]], plus scaling of the indices in the strings.
*/
#define RI(i)\
pcrd->caches.EncodeABC[i].ints.values[tabc[i] >> _cie_interpolate_bits]
int ia = RI(0);
int ib = RI(1); /* pre-multiplied by m * NC */
int ic = RI(2); /* pre-multiplied by m */
const byte *prtc = table[ia].data + ib + ic;
/* (*pcrd->RenderTable.T)(prtc, m, pcrd, pconc); */
if_debug6m('c', pgs->memory, "[c]ABC=%g,%g,%g => iabc=%d,%d,%d\n",
cie_cached2float(vec3.u), cie_cached2float(vec3.v),
cie_cached2float(vec3.w), ia, ib, ic);
if (pcrd->caches.RenderTableT_is_identity) {
pconc[0] = byte2frac(prtc[0]);
pconc[1] = byte2frac(prtc[1]);
pconc[2] = byte2frac(prtc[2]);
if (m > 3)
pconc[3] = byte2frac(prtc[3]);
} else {
#if gx_cie_log2_cache_size == 8
# define byte2cache_index(b) (b)
#else
# if gx_cie_log2_cache_size > 8
# define byte2cache_index(b)\
( ((b) << (gx_cie_log2_cache_size - 8)) +\
((b) >> (16 - gx_cie_log2_cache_size)) )
# else /* < 8 */
# define byte2cache_index(b) ((b) >> (8 - gx_cie_log2_cache_size))
# endif
#endif
pconc[0] = RT_LOOKUP(0, byte2cache_index(prtc[0]));
pconc[1] = RT_LOOKUP(1, byte2cache_index(prtc[1]));
pconc[2] = RT_LOOKUP(2, byte2cache_index(prtc[2]));
if (m > 3)
pconc[3] = RT_LOOKUP(3, byte2cache_index(prtc[3]));
#undef byte2cache_index
}
#endif /* !CIE_RENDER_TABLE_INTERPOLATE */
#undef RI
#undef RT_LOOKUP
return m;
}
}
/*
* Finish "remapping" a CIEBased color only to the XYZ intermediate values.
* Note that we can't currently represent values outside the range [0..1]:
* this is a bug that we will have to address someday.
*/
static frac
float2frac_clamp(double x)
{
return float2frac((x <= 0 ? 0 : x >= 1 ? 1 : x));
}
int
gx_cie_xyz_remap_finish(cie_cached_vector3 vec3, frac * pconc, float *xyz,
const gs_gstate * pgs,
const gs_color_space *pcs)
{
const gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
/*
* All the steps through DecodeABC/MatrixABC have been applied, i.e.,
* vec3 is LMN values. Just apply DecodeLMN/MatrixLMN.
*/
if (!pjc->skipDecodeLMN)
cie_lookup_map3(&vec3 /* LMN => XYZ */, &pjc->DecodeLMN,
"Decode/MatrixLMN");
xyz[0] = cie_cached2float(vec3.u);
xyz[1] = cie_cached2float(vec3.v);
xyz[2] = cie_cached2float(vec3.w);
pconc[0] = float2frac_clamp(xyz[0]);
pconc[1] = float2frac_clamp(xyz[1]);
pconc[2] = float2frac_clamp(xyz[2]);
return 3;
}
/* Look up 3 values in a cache, with cached post-multiplication. */
static void
cie_lookup_mult3(cie_cached_vector3 * pvec,
const gx_cie_vector_cache3_t * pc)
{
#ifdef CIE_CACHE_INTERPOLATE
cie_cached_value u, v, w;
#ifdef CIE_CACHE_USE_FIXED
# define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\
cie_interpolate_between(v0, v1, i)
#else
float ftemp;
# define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\
((v0) + ((v1) - (v0)) *\
((ftemp = float_rshift(i, _cie_interpolate_bits)), ftemp - (int)ftemp))
#endif
/*
* Defining a macro for the entire component calculation would
* minimize source code, but it would make the result impossible
* to trace or debug. We use smaller macros instead, and run
* the usual risks associated with having 3 copies of the code.
* Note that pvec and pc are free variables in these macros.
*/
#define I_IN_RANGE(j, n)\
(pvec->n >= pc->interpolation_ranges[j].rmin &&\
pvec->n < pc->interpolation_ranges[j].rmax)
#define I_INDEX(j, n)\
LOOKUP_INDEX(pvec->n, &pc->caches[j], _cie_interpolate_bits)
#define I_ENTRY(i, j)\
&pc->caches[j].vecs.values[(int)cie_cached_rshift(i, _cie_interpolate_bits)]
#define I_ENTRY1(i, p)\
(i >= (gx_cie_cache_size - 1) << _cie_interpolate_bits ? p : p + 1)
if (I_IN_RANGE(0, u)) {
cie_cached_value i = I_INDEX(0, u);
const cie_cached_vector3 *p = I_ENTRY(i, 0);
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
if_debug0('C', "[c]Interpolating u.\n");
u = LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
v = LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
w = LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
} else {
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->u, &pc->caches[0]);
if_debug0('C', "[c]Not interpolating u.\n");
u = p->u, v = p->v, w = p->w;
}
if (I_IN_RANGE(1, v)) {
cie_cached_value i = I_INDEX(1, v);
const cie_cached_vector3 *p = I_ENTRY(i, 1);
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
if_debug0('C', "[c]Interpolating v.\n");
u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
} else {
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->v, &pc->caches[1]);
if_debug0('C', "[c]Not interpolating v.\n");
u += p->u, v += p->v, w += p->w;
}
if (I_IN_RANGE(2, w)) {
cie_cached_value i = I_INDEX(2, w);
const cie_cached_vector3 *p = I_ENTRY(i, 2);
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
if_debug0('C', "[c]Interpolating w.\n");
u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
} else {
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->w, &pc->caches[2]);
if_debug0('C', "[c]Not interpolating w.\n");
u += p->u, v += p->v, w += p->w;
}
#undef I_IN_RANGE
#undef I_INDEX
#undef I_ENTRY
#undef I_ENTRY1
pvec->u = u;
pvec->v = v;
pvec->w = w;
#else /* no interpolation */
const cie_cached_vector3 *pu = LOOKUP_ENTRY(pvec->u, &pc->caches[0]);
const cie_cached_vector3 *pv = LOOKUP_ENTRY(pvec->v, &pc->caches[1]);
const cie_cached_vector3 *pw = LOOKUP_ENTRY(pvec->w, &pc->caches[2]);
if_debug0('C', "[c]Not interpolating.\n");
pvec->u = pu->u + pv->u + pw->u;
pvec->v = pu->v + pv->v + pw->v;
pvec->w = pu->w + pv->w + pw->w;
#endif /* (no) interpolation */
}
|