1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Implementation of FunctionType 0 (Sampled) Functions */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsfunc0.h"
#include "gsparam.h"
#include "gxfarith.h"
#include "gxfunc.h"
#include "stream.h"
#include "gsccolor.h" /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
#define POLE_CACHE_DEBUG 0 /* A temporary development technology need.
Remove after the beta testing. */
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
#define POLE_CACHE_IGNORE 0 /* A temporary development technology need.
Remove after the beta testing. */
#define MAX_FAST_COMPS 8
typedef struct gs_function_Sd_s {
gs_function_head_t head;
gs_function_Sd_params_t params;
} gs_function_Sd_t;
/* GC descriptor */
private_st_function_Sd();
static
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
{
index -= 6;
if (index < st_data_source_max_ptrs)
return ENUM_USING(st_data_source, &pfn->params.DataSource,
sizeof(pfn->params.DataSource), index);
return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
}
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
ENUM_PTRS_END
static
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
{
RELOC_PREFIX(st_function);
RELOC_USING(st_data_source, &pfn->params.DataSource,
sizeof(pfn->params.DataSource));
RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
}
RELOC_PTRS_END
/* Define the maximum plausible number of inputs and outputs */
/* for a Sampled function. */
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS /* Allow override with XCFLAGS */
# define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
# define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
#else
# define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
# define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
#endif
/* Get one set of sample values. */
#define SETUP_SAMPLES(bps, nbytes)\
int n = pfn->params.n;\
byte buf[max_Sd_n * ((bps + 7) >> 3)];\
const byte *p;\
int i;\
\
data_source_access(&pfn->params.DataSource, offset >> 3,\
nbytes, buf, &p)
static int
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
for (i = 0; i < n; ++i) {
samples[i] = (*p >> (~offset & 7)) & 1;
if (!(++offset & 7))
p++;
}
return 0;
}
static int
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
for (i = 0; i < n; ++i) {
samples[i] = (*p >> (6 - (offset & 7))) & 3;
if (!((offset += 2) & 7))
p++;
}
return 0;
}
static int
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
for (i = 0; i < n; ++i) {
samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
}
return 0;
}
static int
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(8, n);
for (i = 0; i < n; ++i) {
samples[i] = *p++;
}
return 0;
}
static int
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
for (i = 0; i < n; ++i) {
if (offset & 4)
samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
else
samples[i] = (*p << 4) + (p[1] >> 4), p++;
offset ^= 4;
}
return 0;
}
static int
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(16, n * 2);
for (i = 0; i < n; ++i) {
samples[i] = (*p << 8) + p[1];
p += 2;
}
return 0;
}
static int
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(24, n * 3);
for (i = 0; i < n; ++i) {
samples[i] = (*p << 16) + (p[1] << 8) + p[2];
p += 3;
}
return 0;
}
static int
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(32, n * 4);
for (i = 0; i < n; ++i) {
samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
p += 4;
}
return 0;
}
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
ulong offset, uint * samples) =
{
0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
fn_gets_32
};
/*
* Compute a value by cubic interpolation.
* f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
* The formula is derived from those presented in
* http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
* (thanks to Raph Levien for the reference).
*/
static double
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
{
/*
* The parameter 'a' affects the contribution of the high-frequency
* components. The abovementioned source suggests a = -0.5.
*/
#define a (-0.5)
#define SQR(v) ((v) * (v))
#define CUBE(v) ((v) * (v) * (v))
const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
const double c =
(a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
(a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
f0, f1, f2, f3, x, c);
return c;
#undef a
#undef SQR
#undef CUBE
}
/*
* Compute a value by quadratic interpolation.
* f[] = f(0), f(1), f(2); 0 < x < 1.
*
* We used to use a quadratic formula for this, derived from
* f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
* match what we believe is Acrobat Reader's behavior.
*/
static inline double
interpolate_quadratic(double x, double f0, double f1, double f2)
{
return interpolate_cubic(x + 1, f0, f0, f1, f2);
}
/* Calculate a result by multicubic interpolation. */
static void
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
const int *iparts, const ulong *factors,
float *samples, ulong offset, int m)
{
int j;
top:
if (m == 0) {
uint sdata[max_Sd_n];
(*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] = (float)sdata[j];
} else {
float fpart = *fparts++;
int ipart = *iparts++;
ulong delta = *factors++;
int size = pfn->params.Size[pfn->params.m - m];
float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
--m;
if (is_fzero(fpart))
goto top;
fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
offset, m);
fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
offset + delta, m);
/* Ensure we don't try to access out of bounds. */
/*
* If size == 1, the only possible value for ipart and fpart is
* 0, so we've already handled this case.
*/
if (size == 2) { /* ipart = 0 */
/* Use linear interpolation. */
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] += (samples1[j] - samples[j]) * fpart;
return;
}
if (ipart == 0) {
/* Use quadratic interpolation. */
fn_interpolate_cubic(pfn, fparts, iparts, factors,
samples2, offset + delta * 2, m);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] =
interpolate_quadratic(fpart, samples[j],
samples1[j], samples2[j]);
return;
}
/* At this point we know ipart > 0, size >= 3. */
fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
offset - delta, m);
if (ipart == size - 2) {
/* Use quadratic interpolation. */
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] =
interpolate_quadratic(1 - fpart, samples1[j],
samples[j], samplesm1[j]);
return;
}
/* Now we know 0 < ipart < size - 2, size > 3. */
fn_interpolate_cubic(pfn, fparts, iparts, factors,
samples2, offset + delta * 2, m);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] =
interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
samples1[j], samples2[j]);
}
}
/* Calculate a result by multilinear interpolation. */
static void
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
const ulong *factors, float *samples, ulong offset, int m)
{
int j;
top:
if (m == 0) {
uint sdata[max_Sd_n];
(*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] = (float)sdata[j];
} else {
float fpart = *fparts++;
float samples1[max_Sd_n];
if (is_fzero(fpart)) {
++factors;
--m;
goto top;
}
fn_interpolate_linear(pfn, fparts, factors + 1, samples,
offset, m - 1);
fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
offset + *factors, m - 1);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] += (samples1[j] - samples[j]) * fpart;
}
}
static inline double
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
{
float d0, d1, r0, r1;
double value;
int bps = pfn->params.BitsPerSample;
/* x86 machines have problems with shifts if bps >= 32 */
uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
if (pfn->params.Range)
r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
else
r0 = 0, r1 = (float)max_samp;
if (pfn->params.Decode)
d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
else
d0 = r0, d1 = r1;
value = sample * (d1 - d0) / max_samp + d0;
if (value < r0)
value = r0;
else if (value > r1)
value = r1;
return value;
}
/* Evaluate a Sampled function. */
/* A generic algorithm with a recursion by dimentions. */
static int
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
{
const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
int bps = pfn->params.BitsPerSample;
ulong offset = 0;
int i;
float encoded[max_Sd_m];
int iparts[max_Sd_m]; /* only needed for cubic interpolation */
ulong factors[max_Sd_m];
float samples[max_Sd_n];
/* Encode the input values. */
for (i = 0; i < pfn->params.m; ++i) {
float d0 = pfn->params.Domain[2 * i],
d1 = pfn->params.Domain[2 * i + 1];
float arg = in[i], enc;
if (arg < d0)
arg = d0;
else if (arg > d1)
arg = d1;
if (pfn->params.Encode) {
float e0 = pfn->params.Encode[2 * i];
float e1 = pfn->params.Encode[2 * i + 1];
enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
if (enc < 0)
encoded[i] = 0;
else if (enc >= pfn->params.Size[i] - 1)
encoded[i] = (float)pfn->params.Size[i] - 1;
else
encoded[i] = enc;
} else {
/* arg is guaranteed to be in bounds, ergo so is enc */
/* TODO: possible issue here. if (pfn->params.Size[i] == 1 */
encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
}
}
/* Look up and interpolate the output values. */
{
ulong factor = (ulong)bps * pfn->params.n;
for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
int ipart = (int)encoded[i];
offset += (factors[i] = factor) * ipart;
iparts[i] = ipart; /* only needed for cubic interpolation */
encoded[i] -= ipart;
}
}
if (pfn->params.Order == 3)
fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
offset, pfn->params.m);
else
fn_interpolate_linear(pfn, encoded, factors, samples, offset,
pfn->params.m);
/* Encode the output values. */
for (i = 0; i < pfn->params.n; ++i)
out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
return 0;
}
static const double double_stub = 1e90;
static inline void
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
const int pole_step_minor)
{ /* The following is poles of the polinomial,
which represents interpolate_cubic in [1,2]. */
const double a = -0.5;
p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
}
static void
fn_make_poles(double *p, const int pole_step, int power, int bias)
{
const int pole_step_minor = pole_step / 3;
switch(power) {
case 1: /* A linear 3d power curve. */
/* bias must be 0. */
p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
break;
case 2:
/* bias may be be 0 or 1. */
/* Duplicate the beginning or the ending pole (the old code compatible). */
fn_make_cubic_poles(p + pole_step * bias,
p[pole_step * 0], p[pole_step * bias],
p[pole_step * (1 + bias)], p[pole_step * 2],
pole_step_minor);
break;
case 3:
/* bias must be 1. */
fn_make_cubic_poles(p + pole_step * bias,
p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
pole_step_minor);
break;
default: /* Must not happen. */
DO_NOTHING;
}
}
/* Evaluate a Sampled function.
A cubic interpolation with a pole cache.
Allows a fast check for extreme suspection. */
/* This implementation is a particular case of 1 dimension.
maybe we'll use as an optimisation of the generic case,
so keep it for a while. */
static int
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
{
float d0 = pfn->params.Domain[2 * 0];
float d1 = pfn->params.Domain[2 * 0 + 1];
const int pole_step_minor = pfn->params.n;
const int pole_step = 3 * pole_step_minor;
int i0; /* A cell index. */
int ib, ie, i, k;
double *p, t0, t1, tt;
tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
i0 = (int)floor(tt);
ib = max(i0 - 1, 0);
ie = min(pfn->params.Size[0], i0 + 3);
for (i = ib; i < ie; i++) {
if (pfn->params.pole[i * pole_step] == double_stub) {
uint sdata[max_Sd_n];
int bps = pfn->params.BitsPerSample;
p = &pfn->params.pole[i * pole_step];
fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
for (k = 0; k < pfn->params.n; k++, p++)
*p = fn_Sd_encode(pfn, k, (double)sdata[k]);
}
}
p = &pfn->params.pole[i0 * pole_step];
t0 = tt - i0;
if (t0 == 0) {
for (k = 0; k < pfn->params.n; k++, p++)
out[k] = *p;
} else {
if (p[1 * pole_step_minor] == double_stub) {
for (k = 0; k < pfn->params.n; k++)
fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
ie - ib - 1, i0 - ib);
}
t1 = 1 - t0;
for (k = 0; k < pfn->params.n; k++, p++) {
double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
p[3 * pole_step_minor] * t0 * t0 * t0;
if (y < pfn->params.Range[0])
y = pfn->params.Range[0];
if (y > pfn->params.Range[1])
y = pfn->params.Range[1];
out[k] = y;
}
}
return 0;
}
static inline void
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
{
int i;
for (i = 0; i < pfn->params.m; i++) {
float xi = in[i];
float d0 = pfn->params.Domain[2 * i + 0];
float d1 = pfn->params.Domain[2 * i + 1];
double t;
if (xi < d0)
xi = d0;
if (xi > d1)
xi = d1;
t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
I[i] = (int)floor(t);
T[i] = t - I[i];
}
}
static inline void
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
{
*Ii = I[ii];
if (T[ii] != 0) {
*ib = max(*Ii - 1, 0);
*ie = min(pfn->params.Size[ii], *Ii + 3);
} else {
*ib = *Ii;
*ie = *Ii + 1;
}
}
static inline int
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
{
uint sdata[max_Sd_n];
int k, code;
code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
if (code < 0)
return code;
for (k = 0; k < pfn->params.n; k++)
V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
return 0;
}
static inline int
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
{
if (*(pfn->params.pole + a_offset) == double_stub) {
uint sdata[max_Sd_n];
int k, code;
code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
if (code < 0)
return code;
for (k = 0; k < pfn->params.n; k++)
*(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
}
return 0;
}
static inline void
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
{
int k;
for (k = 0; k < pfn->params.n; k++)
fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
}
static inline void
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
int offset, int pole_step, int power, int bias, int ii)
{
if (ii < 0)
interpolate_vector(pfn, offset, pole_step, power, bias);
else {
int s = pfn->params.array_step[ii];
int Ii = I[ii];
if (T[ii] == 0) {
interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
} else {
int l;
for (l = 0; l < 4; l++)
interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
}
}
}
static inline bool
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
{
/* Check an inner pole of the cell. */
int i, o = 0;
for (i = ii; i >= 0; i--) {
o += I[i] * pfn->params.array_step[i];
if (T[i] != 0)
o += pfn->params.array_step[i] / 3;
}
if (*(pfn->params.pole + a_offset + o) != double_stub)
return true;
return false;
}
/* Creates a tensor of Bezier coefficients by node interpolation. */
static inline int
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
int a_offset, int s_offset, int ii)
{
/* Well, this function isn't obvious. Trying to explain what it does.
Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
We represent the multicubic function with a tensor of Besier poles,
and the size of the tensor is 4x4x....x4. Note that the corners
of the tensor are equal to the corners of the 2x2x...x2 hypercube.
We organize the 'pole' array so that a tensor of a cell
occupies the cell, and tensors for neighbour cells have a common hyperplane.
For a 1-dimentional case let the nodes are n0, n1, n2, n3.
It defines 3 cells n0...n1, n1...n2, n2...n3.
For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
We choose a cubic approximation, in which tangents at nodes n1, n2
are parallel to (n2 - n0) and (n3 - n1) correspondingly.
(Well, this doesn't give a the minimal curvity, but likely it is
what Adobe implementations do, see the bug 687352,
and we agree that it's some reasonable).
Then we have :
q11 = n0
q12 = (n0/2 + 3*n1 - n2/2)/3;
q11 = (n1/2 + 3*n2 - n3/2)/3;
q13 = n2
When the source node array have an insufficient nomber of nodes
along a dimension to determine tangents a cell
(this happens near the array boundaries),
we simply duplicate ending nodes. This solution is done
for the compatibility to the old code, and definitely
there exists a better one. Likely Adobe does the same.
For a 2-dimensional case we apply the 1-dimentional case through
the first dimension, and then construct a surface by varying the
second coordinate as a parameter. It gives a bicubic surface,
and the result doesn't depend on the order of coordinates
(I proved the latter with Matematica 3.0).
Then we know that an interpolation by one coordinate and
a differentiation by another coordinate are interchangeble operators.
Due to that poles of the interpolated function are same as
interpolated poles of the function (well, we didn't spend time
for a strong proof, but this fact was confirmed with testing the
implementation with POLE_CACHE_DEBUG).
Then we apply the 2-dimentional considerations recursively
to all dimensions. This is exactly what the function does.
*/
int code;
if (ii < 0) {
if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
code = load_vector(pfn, a_offset, s_offset);
if (code < 0)
return code;
}
} else {
int Ii, ib, ie, i;
int sa = pfn->params.array_step[ii];
int ss = pfn->params.stream_step[ii];
index_span(pfn, I, T, ii, &Ii, &ib, &ie);
if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
for (i = ib; i < ie; i++) {
code = make_interpolation_tensor(pfn, I, T,
a_offset + i * sa, s_offset + i * ss, ii - 1);
if (code < 0)
return code;
}
if (T[ii] != 0)
interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
Ii - ib, ii - 1);
}
}
return 0;
}
/* Creates a subarray of samples. */
static inline int
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
int *I, double *T,
int a_offset, int s_offset, int ii)
{
int code;
if (ii < 0) {
if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
code = load_vector(pfn, a_offset, s_offset);
if (code < 0)
return code;
}
if (pfn->params.Order == 3) {
code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
if (code < 0)
return code;
}
} else {
int i;
int i0 = (int)floor(T0[ii]);
int i1 = (int)ceil(T1[ii]);
int sa = pfn->params.array_step[ii];
int ss = pfn->params.stream_step[ii];
if (i0 < 0 || i0 >= pfn->params.Size[ii])
return_error(gs_error_unregistered); /* Must not happen. */
if (i1 < 0 || i1 >= pfn->params.Size[ii])
return_error(gs_error_unregistered); /* Must not happen. */
I[ii] = i0;
T[ii] = (i1 > i0 ? 1 : 0);
for (i = i0; i <= i1; i++) {
code = make_interpolation_nodes(pfn, T0, T1, I, T,
a_offset + i * sa, s_offset + i * ss, ii - 1);
if (code < 0)
return code;
}
}
return 0;
}
static inline int
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
{
int s = pfn->params.array_step[ii], k, l, code;
if (ii < 0) {
for (k = 0; k < pfn->params.n; k++)
y[k] = *(pfn->params.pole + offset + k);
} else if (T[ii] == 0) {
return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
} else {
double t0 = T[ii], t1 = 1 - t0;
double p[4][max_Sd_n];
for (l = 0; l < 4; l++) {
code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
if (code < 0)
return code;
}
for (k = 0; k < pfn->params.n; k++)
y[k] = p[0][k] * t1 * t1 * t1 +
p[1][k] * t1 * t1 * t0 * 3 +
p[2][k] * t1 * t0 * t0 * 3 +
p[3][k] * t0 * t0 * t0;
}
return 0;
}
/* Evaluate a Sampled function. */
/* A cubic interpolation with pole cache. */
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
static int
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
{
double T[max_Sd_m], y[max_Sd_n];
int I[max_Sd_m], k, code;
decode_argument(pfn, in, T, I);
code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
if (code < 0)
return code;
evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
for (k = 0; k < pfn->params.n; k++) {
double yk = y[k];
if (yk < pfn->params.Range[k * 2 + 0])
yk = pfn->params.Range[k * 2 + 0];
if (yk > pfn->params.Range[k * 2 + 1])
yk = pfn->params.Range[k * 2 + 1];
out[k] = yk;
}
return 0;
}
/* Evaluate a Sampled function. */
static int
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
{
const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
int code;
if (pfn->params.Order == 3) {
if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
else
code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
# if POLE_CACHE_DEBUG
{ float y[max_Sd_n];
int k, code1;
code1 = fn_Sd_evaluate_general(pfn_common, in, y);
if (code != code1)
return_error(gs_error_unregistered); /* Must not happen. */
for (k = 0; k < pfn->params.n; k++) {
if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
return_error(gs_error_unregistered); /* Must not happen. */
}
}
# endif
} else
code = fn_Sd_evaluate_general(pfn_common, in, out);
return code;
}
/* Map a function subdomain to the sample index subdomain. */
static inline int
get_scaled_range(const gs_function_Sd_t *const pfn,
const float *lower, const float *upper,
int i, float *pw0, float *pw1)
{
float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
float v0 = lower[i], v1 = upper[i];
float e0, e1, w0, w1, w;
const float small_noise = (float)1e-6;
if (v0 < d0 || v0 > d1)
return_error(gs_error_rangecheck);
if (pfn->params.Encode)
e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
else
e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
if (w0 < 0)
w0 = 0;
else if (w0 >= pfn->params.Size[i] - 1)
w0 = (float)pfn->params.Size[i] - 1;
w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
if (w1 < 0)
w1 = 0;
else if (w1 >= pfn->params.Size[i] - 1)
w1 = (float)pfn->params.Size[i] - 1;
if (w0 > w1) {
w = w0; w0 = w1; w1 = w;
}
if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
w0 = (floor(w0) + 1);
if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
w1 = floor(w1);
if (w0 > w1)
w0 = w1;
*pw0 = w0;
*pw1 = w1;
return 0;
}
/* Copy a tensor to a differently indexed pole array. */
static int
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
int ii, double *pole, int p_offset, int pole_step)
{
int i, ei, sa, code;
int order = pfn->params.Order;
if (pole_step <= 0)
return_error(gs_error_limitcheck); /* Too small buffer. */
ei = (T0[ii] == T1[ii] ? 1 : order + 1);
sa = pfn->params.array_step[ii];
if (ii == 0) {
for (i = 0; i < ei; i++)
*(pole + p_offset + i * pole_step) =
*(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
} else {
for (i = 0; i < ei; i++) {
code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
pole, p_offset + i * pole_step, pole_step / 4);
if (code < 0)
return code;
}
}
return 0;
}
static inline void
subcurve(double *pole, int pole_step, double t0, double t1)
{
/* Generated with subcurve.nb using Mathematica 3.0. */
double q0 = pole[pole_step * 0];
double q1 = pole[pole_step * 1];
double q2 = pole[pole_step * 2];
double q3 = pole[pole_step * 3];
double t01 = t0 - 1, t11 = t1 - 1;
double small = 1e-13;
#define Power2(a) (a) * (a)
#define Power3(a) (a) * (a) * (a)
pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
3*q1*Power2(t11)) - q0*Power3(t11);
#undef Power2
#undef Power3
if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
pole[pole_step * 1] = pole[pole_step * 0];
if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
pole[pole_step * 2] = pole[pole_step * 3];
}
static inline void
subline(double *pole, int pole_step, double t0, double t1)
{
double q0 = pole[pole_step * 0];
double q1 = pole[pole_step * 1];
pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
}
static void
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
int p_offset, int pole_step, int pole_step_i, int order)
{
if (ii < 0) {
if (order == 3)
subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
else
subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
} else if (i == ii) {
clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
} else {
int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
for (j = 0; j < ei; j++)
clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
pole_step / 4, pole_step_i, order);
}
}
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
curve_monotonity(double *pole, int pole_step)
{
double p0 = pole[pole_step * 0];
double p1 = pole[pole_step * 1];
double p2 = pole[pole_step * 2];
double p3 = pole[pole_step * 3];
if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
return 0;
if (p0 <= p1 && p1 <= p2 && p2 <= p3)
return 1;
if (p0 >= p1 && p1 >= p2 && p2 >= p3)
return 2;
/* Maybe not monotonic.
Don't want to solve quadratic equations, so return "don't know".
This case should be rare.
*/
return 3;
}
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
line_monotonity(double *pole, int pole_step)
{
double p0 = pole[pole_step * 0];
double p1 = pole[pole_step * 1];
if (p1 - p0 > 1e-13)
return 1;
if (p0 - p1 > 1e-13)
return 2;
return 0;
}
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
2 - decreesing, 0 - constant, 1 - increasing.
The number of guides is order+1. */
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
int p_offset, int pole_step, int pole_step_i, int order)
{
if (ii < 0) {
if (order == 3)
return curve_monotonity(pole + p_offset, pole_step_i);
else
return line_monotonity(pole + p_offset, pole_step_i);
} else if (i0 == ii) {
/* Delay the dimension till the end, and adjust pole_step. */
return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
pole_step / 4, pole_step, order);
} else {
int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
for (j = 0; j < ei; j++) {
mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
pole_step/ 4, pole_step_i, order);
m |= mm << (j * 3);
if (mm == 3) {
/* If one guide is not monotonic, the dimension is not monotonic.
Can return early. */
break;
}
}
return m;
}
}
static inline int
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
2 - decreesing, 0 - constant, 1 - increasing.
The number of guides is order+1. */)
{
double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
More arguments need a bigger buffer, but the rest of code is same. */
int i, code, ii = pfn->params.m - 1;
double TT0[3], TT1[3];
*mask = 0;
if (ii >= 3) {
/* Unimplemented. We don't know practical cases,
because currently it is only called while decomposing a shading. */
return_error(gs_error_limitcheck);
}
code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
if (code < 0)
return code;
for (i = ii; i >= 0; i--) {
TT0[i] = 0;
if (T0[i] != T1[i]) {
if (T0[i] != 0 || T1[i] != 1)
clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
TT1[i] = 1;
} else
TT1[i] = 0;
}
*mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
count_of(pole) / 4, 1, pfn->params.Order);
return 0;
}
static int /* error code */
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
int *I, double *S0, double *S1, int ii, int i0, int k,
uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
The number of guides is order+1. */)
{
if (ii == -1) {
/* fixme : could cache the cell monotonity against redundant evaluation. */
return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
} else {
int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
int j, code;
int bi = (int)floor(T0[i1]);
int ei = (int)floor(T1[i1]);
uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
if (floor(T1[i1]) == T1[i1])
ei --;
m = 0;
for (j = bi; j <= ei; j++) {
/* fixme : A better performance may be obtained with comparing central nodes with side ones. */
I[i1] = j;
S0[i1] = max(T0[i1] - j, 0);
S1[i1] = min(T1[i1] - j, 1);
code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
if (code < 0)
return code;
m |= mm;
if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
break;
}
if (ii == 0) {
/* Detect non-monotonic guides. */
m = m & (m >> 1);
}
*mask = m;
return 0;
}
}
static inline int /* error code */
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
int *I, double *S0, double *S1,
int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
0 - monotonic. */)
{
uint m, mm = 0;
int i, code;
for (i = 0; i < pfn->params.m; i++) {
if (T0[i] != T1[i]) {
code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
if (code < 0)
return code;
if (m)
mm |= 1 << i;
}
}
*mask = mm;
return 0;
}
static int /* 3 bits per result : 3 - non-monotonic or don't know,
2 - decreesing, 0 - constant, 1 - increasing,
<0 - error. */
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
const double *V0, const double *V1)
{
if (i1 - i0 <= 1) {
int code = 0, i;
for (i = 0; i < pfn->params.n; i++) {
if (V0[i] < V1[i])
code |= 1 << (i * 3);
else if (V0[i] > V1[i])
code |= 2 << (i * 3);
}
return code;
} else {
double VV[MAX_FAST_COMPS];
int ii = (i0 + i1) / 2, code, cod1;
code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
if (code < 0)
return code;
if (code & (code >> 1))
return code; /* Not monotonic by some component of the result. */
code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
if (code < 0)
return code;
cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
if (cod1 < 0)
return cod1;
return code | cod1;
}
}
static int
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
{
int i0 = (int)floor(T0);
int i1 = (int)ceil(T1), code;
double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
if (i1 - i0 > 1) {
code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
if (code < 0)
return code;
code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
if (code < 0)
return code;
code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
if (code < 0)
return code;
if (code & (code >> 1)) {
*mask = 1;
return 0;
}
}
*mask = 0;
return 1;
}
#define DEBUG_Sd_1arg 0
/* Test whether a Sampled function is monotonic. */
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
const float *lower, const float *upper,
uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
0 - monotonic. */)
{
int i, code, ii = pfn->params.m - 1;
int I[4];
double T0[count_of(I)], T1[count_of(I)];
double S0[count_of(I)], S1[count_of(I)];
uint m, mm, m1;
# if DEBUG_Sd_1arg
int code1, mask1;
# endif
if (ii >= count_of(T0)) {
/* Unimplemented. We don't know practical cases,
because currently it is only called while decomposing a shading. */
return_error(gs_error_limitcheck);
}
for (i = 0; i <= ii; i++) {
float w0, w1;
code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
if (code < 0)
return code;
T0[i] = w0;
T1[i] = w1;
}
if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
# if !DEBUG_Sd_1arg
return code;
# else
mask1 = *mask;
code1 = code;
# endif
}
m1 = (1 << pfn->params.m )- 1;
code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
if (code < 0)
return code;
mm = 0;
for (i = 0; i < pfn->params.n; i++) {
code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
if (code < 0)
return code;
mm |= m;
if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
break;
}
# if DEBUG_Sd_1arg
if (mask1 != mm)
return_error(gs_error_unregistered);
if (code1 != !mm)
return_error(gs_error_unregistered);
# endif
*mask = mm;
return !mm;
}
/* Test whether a Sampled function is monotonic. */
/* 1 = monotonic, 0 = don't know, <0 = error. */
static int
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
const float *lower, const float *upper, uint *mask)
{
const gs_function_Sd_t *const pfn =
(const gs_function_Sd_t *)pfn_common;
return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
}
/* Return Sampled function information. */
static void
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
{
const gs_function_Sd_t *const pfn =
(const gs_function_Sd_t *)pfn_common;
long size;
int i;
gs_function_get_info_default(pfn_common, pfi);
pfi->DataSource = &pfn->params.DataSource;
for (i = 0, size = 1; i < pfn->params.m; ++i)
size *= pfn->params.Size[i];
pfi->data_size =
(size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
}
/* Write Sampled function parameters on a parameter list. */
static int
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
{
const gs_function_Sd_t *const pfn =
(const gs_function_Sd_t *)pfn_common;
int ecode = fn_common_get_params(pfn_common, plist);
int code;
if (pfn->params.Order != 1) {
if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
ecode = code;
}
if ((code = param_write_int(plist, "BitsPerSample",
&pfn->params.BitsPerSample)) < 0)
ecode = code;
if (pfn->params.Encode) {
if ((code = param_write_float_values(plist, "Encode",
pfn->params.Encode,
2 * pfn->params.m, false)) < 0)
ecode = code;
}
if (pfn->params.Decode) {
if ((code = param_write_float_values(plist, "Decode",
pfn->params.Decode,
2 * pfn->params.n, false)) < 0)
ecode = code;
}
if (pfn->params.Size) {
if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
pfn->params.m, false)) < 0)
ecode = code;
}
return ecode;
}
/* Make a scaled copy of a Sampled function. */
static int
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
const gs_range_t *pranges, gs_memory_t *mem)
{
gs_function_Sd_t *psfn =
gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
"fn_Sd_make_scaled");
int code;
if (psfn == 0)
return_error(gs_error_VMerror);
psfn->params = pfn->params;
psfn->params.Encode = 0; /* in case of failure */
psfn->params.Decode = 0;
psfn->params.Size =
fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
if ((code = (psfn->params.Size == 0 ?
gs_note_error(gs_error_VMerror) : 0)) < 0 ||
(code = fn_common_scale((gs_function_t *)psfn,
(const gs_function_t *)pfn,
pranges, mem)) < 0 ||
(code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
pfn->params.m, NULL, mem)) < 0 ||
(code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
pfn->params.n, pranges, mem)) < 0) {
gs_function_free((gs_function_t *)psfn, true, mem);
} else
*ppsfn = psfn;
return code;
}
/* Free the parameters of a Sampled function. */
void
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
{
gs_free_const_object(mem, params->Size, "Size");
params->Size = NULL;
gs_free_const_object(mem, params->Decode, "Decode");
params->Decode = NULL;
gs_free_const_object(mem, params->Encode, "Encode");
params->Encode = NULL;
fn_common_free_params((gs_function_params_t *) params, mem);
if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
s_close_filters(¶ms->DataSource.data.strm, params->DataSource.data.strm->strm);
params->DataSource.data.strm = NULL;
}
gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
params->pole = NULL;
gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
params->array_step = NULL;
gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
params->stream_step = NULL;
}
/* aA helper for gs_function_Sd_serialize. */
static int serialize_array(const float *a, int half_size, stream *s)
{
uint n;
const float dummy[2] = {0, 0};
int i, code;
if (a != NULL)
return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
for (i = 0; i < half_size; i++) {
code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
if (code < 0)
return code;
}
return 0;
}
/* Serialize. */
static int
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
{
uint n;
const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
gs_function_info_t info;
int code = fn_common_serialize(pfn, s);
ulong pos;
uint count;
byte buf[100];
const byte *ptr;
if (code < 0)
return code;
code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
if (code < 0)
return code;
code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
if (code < 0)
return code;
code = serialize_array(p->Encode, p->m, s);
if (code < 0)
return code;
code = serialize_array(p->Decode, p->n, s);
if (code < 0)
return code;
gs_function_get_info(pfn, &info);
code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
if (code < 0)
return code;
for (pos = 0; pos < info.data_size; pos += count) {
count = min(sizeof(buf), info.data_size - pos);
data_source_access_only(info.DataSource, pos, count, buf, &ptr);
code = sputs(s, ptr, count, &n);
if (code < 0)
return code;
}
return 0;
}
/* Allocate and initialize a Sampled function. */
int
gs_function_Sd_init(gs_function_t ** ppfn,
const gs_function_Sd_params_t * params, gs_memory_t * mem)
{
static const gs_function_head_t function_Sd_head = {
function_type_Sampled,
{
(fn_evaluate_proc_t) fn_Sd_evaluate,
(fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
(fn_get_info_proc_t) fn_Sd_get_info,
(fn_get_params_proc_t) fn_Sd_get_params,
(fn_make_scaled_proc_t) fn_Sd_make_scaled,
(fn_free_params_proc_t) gs_function_Sd_free_params,
fn_common_free,
(fn_serialize_proc_t) gs_function_Sd_serialize,
}
};
int code;
int i;
*ppfn = 0; /* in case of error */
code = fn_check_mnDR((const gs_function_params_t *)params,
params->m, params->n);
if (code < 0)
return code;
if (params->m > max_Sd_m)
return_error(gs_error_limitcheck);
switch (params->Order) {
case 0: /* use default */
case 1:
case 3:
break;
default:
return_error(gs_error_rangecheck);
}
switch (params->BitsPerSample) {
case 1:
case 2:
case 4:
case 8:
case 12:
case 16:
case 24:
case 32:
break;
default:
return_error(gs_error_rangecheck);
}
for (i = 0; i < params->m; ++i)
if (params->Size[i] <= 0)
return_error(gs_error_rangecheck);
{
gs_function_Sd_t *pfn =
gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
"gs_function_Sd_init");
int bps, sa, ss, i, order;
if (pfn == 0)
return_error(gs_error_VMerror);
pfn->params = *params;
if (params->Order == 0)
pfn->params.Order = 1; /* default */
pfn->params.pole = NULL;
pfn->params.array_step = NULL;
pfn->params.stream_step = NULL;
pfn->head = function_Sd_head;
pfn->params.array_size = 0;
if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
/* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
} else {
pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
max_Sd_m, sizeof(int), "gs_function_Sd_init");
pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
max_Sd_m, sizeof(int), "gs_function_Sd_init");
if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
return_error(gs_error_VMerror);
bps = pfn->params.BitsPerSample;
sa = pfn->params.n;
ss = pfn->params.n * bps;
order = pfn->params.Order;
for (i = 0; i < pfn->params.m; i++) {
pfn->params.array_step[i] = sa * order;
sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
pfn->params.stream_step[i] = ss;
ss = pfn->params.Size[i] * ss;
}
pfn->params.pole = (double *)gs_alloc_byte_array(mem,
sa, sizeof(double), "gs_function_Sd_init");
if (pfn->params.pole == NULL)
return_error(gs_error_VMerror);
for (i = 0; i < sa; i++)
pfn->params.pole[i] = double_stub;
pfn->params.array_size = sa;
}
*ppfn = (gs_function_t *) pfn;
}
return 0;
}
|