1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Implementation of LL3 Functions */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsfunc3.h"
#include "gsparam.h"
#include "gxfunc.h"
#include "gxarith.h"
#include "stream.h"
/* ---------------- Utilities ---------------- */
#define MASK1 ((uint)(~0) / 3)
/*
* Free an array of subsidiary Functions. Note that this may be called
* before the Functions array has been fully initialized. Note also that
* its argument conforms to the Functions array in the parameter structure,
* but it (necessarily) deconstifies it.
*/
static void
fn_free_functions(const gs_function_t *const * Functions, int count,
gs_memory_t * mem)
{
int i;
if (Functions == NULL)
return;
for (i = count; --i >= 0;)
if (Functions[i])
gs_function_free((gs_function_t *)Functions[i], true, mem);
gs_free_const_object(mem, Functions, "Functions");
}
/*
* Scale an array of subsidiary functions. Note that the scale may either
* be propagated unchanged (step_ranges = false) or divided among the
* (1-output) subfunctions (step_ranges = true).
*/
static int
fn_scale_functions(gs_function_t ***ppsfns, const gs_function_t *const *pfns,
int count, const gs_range_t *pranges, bool step_ranges,
gs_memory_t *mem)
{
gs_function_t **psfns;
int code = alloc_function_array(count, &psfns, mem);
const gs_range_t *ranges = pranges;
int i;
if (code < 0)
return code;
for (i = 0; i < count; ++i) {
int code = gs_function_make_scaled(pfns[i], &psfns[i], ranges, mem);
if (code < 0) {
fn_free_functions((const gs_function_t *const *)psfns, count, mem);
return code;
}
if (step_ranges)
++ranges;
}
*ppsfns = psfns;
return 0;
}
/* ---------------- Exponential Interpolation functions ---------------- */
typedef struct gs_function_ElIn_s {
gs_function_head_t head;
gs_function_ElIn_params_t params;
} gs_function_ElIn_t;
private_st_function_ElIn();
/* Evaluate an Exponential Interpolation function. */
static int
fn_ElIn_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
{
const gs_function_ElIn_t *const pfn =
(const gs_function_ElIn_t *)pfn_common;
double arg = in[0], raised;
int i;
if (arg < pfn->params.Domain[0])
arg = pfn->params.Domain[0];
else if (arg > pfn->params.Domain[1])
arg = pfn->params.Domain[1];
raised = pow(arg, pfn->params.N);
for (i = 0; i < pfn->params.n; ++i) {
float v0 = (pfn->params.C0 == 0 ? 0.0 : pfn->params.C0[i]);
float v1 = (pfn->params.C1 == 0 ? 1.0 : pfn->params.C1[i]);
double value = v0 + raised * (v1 - v0);
if (pfn->params.Range) {
float r0 = pfn->params.Range[2 * i],
r1 = pfn->params.Range[2 * i + 1];
if (value < r0)
value = r0;
else if (value > r1)
value = r1;
}
out[i] = value;
if_debug3('~', "[~]ElIn %g => [%d]%g\n", arg, i, out[i]);
}
return 0;
}
/* Test whether an Exponential function is monotonic. (They always are.) */
static int
fn_ElIn_is_monotonic(const gs_function_t * pfn_common,
const float *lower, const float *upper, uint *mask)
{
const gs_function_ElIn_t *const pfn =
(const gs_function_ElIn_t *)pfn_common;
if (lower[0] > pfn->params.Domain[1] ||
upper[0] < pfn->params.Domain[0]
)
return_error(gs_error_rangecheck);
*mask = 0;
return 1;
}
/* Write Exponential Interpolation function parameters on a parameter list. */
static int
fn_ElIn_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
{
const gs_function_ElIn_t *const pfn =
(const gs_function_ElIn_t *)pfn_common;
int ecode = fn_common_get_params(pfn_common, plist);
int code;
if (pfn->params.C0) {
if ((code = param_write_float_values(plist, "C0", pfn->params.C0,
pfn->params.n, false)) < 0)
ecode = code;
}
if (pfn->params.C1) {
if ((code = param_write_float_values(plist, "C1", pfn->params.C1,
pfn->params.n, false)) < 0)
ecode = code;
}
if ((code = param_write_float(plist, "N", &pfn->params.N)) < 0)
ecode = code;
return ecode;
}
/* Make a scaled copy of an Exponential Interpolation function. */
static int
fn_ElIn_make_scaled(const gs_function_ElIn_t *pfn,
gs_function_ElIn_t **ppsfn,
const gs_range_t *pranges, gs_memory_t *mem)
{
gs_function_ElIn_t *psfn =
gs_alloc_struct(mem, gs_function_ElIn_t, &st_function_ElIn,
"fn_ElIn_make_scaled");
float *c0;
float *c1;
int code, i;
if (psfn == 0)
return_error(gs_error_VMerror);
psfn->params = pfn->params;
psfn->params.C0 = c0 =
fn_copy_values(pfn->params.C0, pfn->params.n, sizeof(float), mem);
psfn->params.C1 = c1 =
fn_copy_values(pfn->params.C1, pfn->params.n, sizeof(float), mem);
if ((code = ((c0 == 0 && pfn->params.C0 != 0) ||
(c1 == 0 && pfn->params.C1 != 0) ?
gs_note_error(gs_error_VMerror) : 0)) < 0 ||
(code = fn_common_scale((gs_function_t *)psfn,
(const gs_function_t *)pfn,
pranges, mem)) < 0) {
gs_function_free((gs_function_t *)psfn, true, mem);
return code;
}
for (i = 0; i < pfn->params.n; ++i) {
double base = pranges[i].rmin, factor = pranges[i].rmax - base;
c1[i] = c1[i] * factor + base;
c0[i] = c0[i] * factor + base;
}
*ppsfn = psfn;
return 0;
}
/* Free the parameters of an Exponential Interpolation function. */
void
gs_function_ElIn_free_params(gs_function_ElIn_params_t * params,
gs_memory_t * mem)
{
gs_free_const_object(mem, params->C1, "C1");
params->C1 = NULL;
gs_free_const_object(mem, params->C0, "C0");
params->C0 = NULL;
fn_common_free_params((gs_function_params_t *) params, mem);
}
/* Serialize. */
static int
gs_function_ElIn_serialize(const gs_function_t * pfn, stream *s)
{
uint n;
const gs_function_ElIn_params_t * p = (const gs_function_ElIn_params_t *)&pfn->params;
int code = fn_common_serialize(pfn, s);
float C0_default[2] = {0, 0};
float C1_default[2] = {1, 0};
if (code < 0)
return code;
if (p->C0)
code = sputs(s, (const byte *)&p->C0[0], sizeof(p->C0[0]) * p->n, &n);
else
code = sputs(s, (const byte *)&C0_default, sizeof(float) * 2, &n);
if (code < 0)
return code;
if (p->C1)
code = sputs(s, (const byte *)&p->C1[0], sizeof(p->C1[0]) * p->n, &n);
else
code = sputs(s, (const byte *)&C1_default, sizeof(float) * 2, &n);
if (code < 0)
return code;
return sputs(s, (const byte *)&p->N, sizeof(p->N), &n);
}
/* Allocate and initialize an Exponential Interpolation function. */
int
gs_function_ElIn_init(gs_function_t ** ppfn,
const gs_function_ElIn_params_t * params,
gs_memory_t * mem)
{
static const gs_function_head_t function_ElIn_head = {
function_type_ExponentialInterpolation,
{
(fn_evaluate_proc_t) fn_ElIn_evaluate,
(fn_is_monotonic_proc_t) fn_ElIn_is_monotonic,
gs_function_get_info_default,
(fn_get_params_proc_t) fn_ElIn_get_params,
(fn_make_scaled_proc_t) fn_ElIn_make_scaled,
(fn_free_params_proc_t) gs_function_ElIn_free_params,
fn_common_free,
(fn_serialize_proc_t) gs_function_ElIn_serialize,
}
};
int code;
*ppfn = 0; /* in case of error */
code = fn_check_mnDR((const gs_function_params_t *)params, 1, params->n);
if (code < 0)
return code;
if ((params->C0 == 0 || params->C1 == 0) && params->n != 1)
return_error(gs_error_rangecheck);
if (params->N != floor(params->N)) {
/* Non-integral exponent, all inputs must be non-negative. */
if (params->Domain[0] < 0)
return_error(gs_error_rangecheck);
}
if (params->N < 0) {
/* Negative exponent, input must not be zero. */
if (params->Domain[0] <= 0 && params->Domain[1] >= 0)
return_error(gs_error_rangecheck);
} {
gs_function_ElIn_t *pfn =
gs_alloc_struct(mem, gs_function_ElIn_t, &st_function_ElIn,
"gs_function_ElIn_init");
if (pfn == 0)
return_error(gs_error_VMerror);
pfn->params = *params;
pfn->params.m = 1;
pfn->head = function_ElIn_head;
*ppfn = (gs_function_t *) pfn;
}
return 0;
}
/* ---------------- 1-Input Stitching functions ---------------- */
typedef struct gs_function_1ItSg_s {
gs_function_head_t head;
gs_function_1ItSg_params_t params;
} gs_function_1ItSg_t;
private_st_function_1ItSg();
/* Evaluate a 1-Input Stitching function. */
static int
fn_1ItSg_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
{
const gs_function_1ItSg_t *const pfn =
(const gs_function_1ItSg_t *)pfn_common;
float arg = in[0], b0, b1, e0, encoded;
int k = pfn->params.k;
int i;
if (arg < pfn->params.Domain[0]) {
arg = pfn->params.Domain[0];
i = 0;
} else if (arg > pfn->params.Domain[1]) {
arg = pfn->params.Domain[1];
i = k - 1;
} else {
for (i = 0; i < k - 1; ++i)
if (arg <= pfn->params.Bounds[i])
break;
}
b0 = (i == 0 ? pfn->params.Domain[0] : pfn->params.Bounds[i - 1]);
b1 = (i == k - 1 ? pfn->params.Domain[1] : pfn->params.Bounds[i]);
e0 = pfn->params.Encode[2 * i];
if (b1 == b0)
encoded = e0;
else
encoded =
(arg - b0) * (pfn->params.Encode[2 * i + 1] - e0) / (b1 - b0) + e0;
if_debug3('~', "[~]1ItSg %g in %d => %g\n", arg, i, encoded);
return gs_function_evaluate(pfn->params.Functions[i], &encoded, out);
}
/* Test whether a 1-Input Stitching function is monotonic. */
static int
fn_1ItSg_is_monotonic(const gs_function_t * pfn_common,
const float *lower, const float *upper, uint *mask)
{
const gs_function_1ItSg_t *const pfn =
(const gs_function_1ItSg_t *)pfn_common;
float v0 = lower[0], v1 = upper[0];
float d0 = pfn->params.Domain[0], d1 = pfn->params.Domain[1];
int k = pfn->params.k;
int i;
*mask = 0;
/* If the upper and lower parametric values are the same then this is a point
* and so is monotonic.
*/
if (v0 == v1)
return 1;
if (v0 > v1) {
v0 = v1; v1 = lower[0];
}
if (v0 > d1 || v1 < d0)
return_error(gs_error_rangecheck);
if (v0 < d0)
v0 = d0;
if (v1 > d1)
v1 = d1;
for (i = 0; i < pfn->params.k; ++i) {
float b0 = (i == 0 ? d0 : pfn->params.Bounds[i - 1]);
float b1 = (i == k - 1 ? d1 : pfn->params.Bounds[i]);
const float bsmall = (float)1e-6 * (b1 - b0);
float esmall;
float e0, e1;
float w0, w1;
float vv0, vv1;
float vb0, vb1;
if (v0 >= b1 - bsmall)
continue; /* Ignore a small noise */
vv0 = max(b0, v0);
/* make sure we promote *both* values, in case v0 was within the
* noise threshold above.
*/
vv1 = max(b0, v1);
if (vv1 > b1 && v1 < b1 + bsmall)
vv1 = b1; /* Ignore a small noise */
if (vv0 == vv1)
return 1;
if (vv0 < b1 && vv1 > b1) {
*mask = 1;
return 0; /* Consider stitches as monotony breaks. */
}
e0 = pfn->params.Encode[2 * i];
e1 = pfn->params.Encode[2 * i + 1];
esmall = (float)1e-6 * any_abs(e1 - e0);
vb0 = (float)max(vv0, b0);
vb1 = (float)min(vv1, b1);
if (b1 == b0)
return 1; /* function is monotonous in a point */
w0 = (float)(vb0 - b0) * (e1 - e0) / (b1 - b0) + e0;
w1 = (float)(vb1 - b0) * (e1 - e0) / (b1 - b0) + e0;
/* Note that w0 > w1 is now possible if e0 > e1. */
if (e0 > e1) {
if (w0 > e0 && w0 - esmall <= e0)
w0 = e0; /* Suppress a small noise */
if (w1 < e1 && w1 + esmall >= e1)
w1 = e1; /* Suppress a small noise */
} else {
if (w0 < e0 && w0 + esmall >= e0)
w0 = e0; /* Suppress a small noise */
if (w1 > e1 && w1 - esmall <= e1)
w1 = e1; /* Suppress a small noise */
}
if (w0 > w1)
return gs_function_is_monotonic(pfn->params.Functions[i],
&w1, &w0, mask);
else
return gs_function_is_monotonic(pfn->params.Functions[i],
&w0, &w1, mask);
}
/* v0 is equal to the range end. */
*mask = 0;
return 1;
}
/* Return 1-Input Stitching function information. */
static void
fn_1ItSg_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
{
const gs_function_1ItSg_t *const pfn =
(const gs_function_1ItSg_t *)pfn_common;
gs_function_get_info_default(pfn_common, pfi);
pfi->Functions = pfn->params.Functions;
pfi->num_Functions = pfn->params.k;
}
/* Write 1-Input Stitching function parameters on a parameter list. */
static int
fn_1ItSg_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
{
const gs_function_1ItSg_t *const pfn =
(const gs_function_1ItSg_t *)pfn_common;
int ecode = fn_common_get_params(pfn_common, plist);
int code;
if ((code = param_write_float_values(plist, "Bounds", pfn->params.Bounds,
pfn->params.k - 1, false)) < 0)
ecode = code;
if ((code = param_write_float_values(plist, "Encode", pfn->params.Encode,
2 * pfn->params.k, false)) < 0)
ecode = code;
return ecode;
}
/* Make a scaled copy of a 1-Input Stitching function. */
static int
fn_1ItSg_make_scaled(const gs_function_1ItSg_t *pfn,
gs_function_1ItSg_t **ppsfn,
const gs_range_t *pranges, gs_memory_t *mem)
{
gs_function_1ItSg_t *psfn =
gs_alloc_struct(mem, gs_function_1ItSg_t, &st_function_1ItSg,
"fn_1ItSg_make_scaled");
int code;
if (psfn == 0)
return_error(gs_error_VMerror);
psfn->params = pfn->params;
psfn->params.Functions = 0; /* in case of failure */
psfn->params.Bounds =
fn_copy_values(pfn->params.Bounds, pfn->params.k - 1, sizeof(float),
mem);
psfn->params.Encode =
fn_copy_values(pfn->params.Encode, 2 * pfn->params.k, sizeof(float),
mem);
if ((code = (psfn->params.Bounds == 0 || psfn->params.Encode == 0 ?
gs_note_error(gs_error_VMerror) : 0)) < 0 ||
(code = fn_common_scale((gs_function_t *)psfn,
(const gs_function_t *)pfn,
pranges, mem)) < 0 ||
(code = fn_scale_functions((gs_function_t ***)&psfn->params.Functions,
pfn->params.Functions,
pfn->params.n, pranges, false, mem)) < 0) {
gs_function_free((gs_function_t *)psfn, true, mem);
return code;
}
*ppsfn = psfn;
return 0;
}
/* Free the parameters of a 1-Input Stitching function. */
void
gs_function_1ItSg_free_params(gs_function_1ItSg_params_t * params,
gs_memory_t * mem)
{
gs_free_const_object(mem, params->Encode, "Encode");
params->Encode = NULL;
gs_free_const_object(mem, params->Bounds, "Bounds");
params->Bounds = NULL;
fn_free_functions(params->Functions, params->k, mem);
params->Functions = NULL;
fn_common_free_params((gs_function_params_t *) params, mem);
}
/* Serialize. */
static int
gs_function_1ItSg_serialize(const gs_function_t * pfn, stream *s)
{
uint n;
const gs_function_1ItSg_params_t * p = (const gs_function_1ItSg_params_t *)&pfn->params;
int code = fn_common_serialize(pfn, s);
int k;
if (code < 0)
return code;
code = sputs(s, (const byte *)&p->k, sizeof(p->k), &n);
if (code < 0)
return code;
for (k = 0; k < p->k && code >= 0; k++)
code = gs_function_serialize(p->Functions[k], s);
if (code < 0)
return code;
code = sputs(s, (const byte *)&p->Bounds[0], sizeof(p->Bounds[0]) * (p->k - 1), &n);
if (code < 0)
return code;
return sputs(s, (const byte *)&p->Encode[0], sizeof(p->Encode[0]) * (p->k * 2), &n);
}
/* Allocate and initialize a 1-Input Stitching function. */
int
gs_function_1ItSg_init(gs_function_t ** ppfn,
const gs_function_1ItSg_params_t * params, gs_memory_t * mem)
{
static const gs_function_head_t function_1ItSg_head = {
function_type_1InputStitching,
{
(fn_evaluate_proc_t) fn_1ItSg_evaluate,
(fn_is_monotonic_proc_t) fn_1ItSg_is_monotonic,
(fn_get_info_proc_t) fn_1ItSg_get_info,
(fn_get_params_proc_t) fn_1ItSg_get_params,
(fn_make_scaled_proc_t) fn_1ItSg_make_scaled,
(fn_free_params_proc_t) gs_function_1ItSg_free_params,
fn_common_free,
(fn_serialize_proc_t) gs_function_1ItSg_serialize,
}
};
int n = (params->Range == 0 ? 0 : params->n);
float prev = params->Domain[0];
int code, i;
*ppfn = 0; /* in case of error */
for (i = 0; i < params->k; ++i) {
const gs_function_t *psubfn = params->Functions[i];
if (psubfn->params.m != 1)
return_error(gs_error_rangecheck);
if (n == 0)
n = psubfn->params.n;
else if (psubfn->params.n != n)
return_error(gs_error_rangecheck);
/* There are only k - 1 Bounds, not k. */
if (i < params->k - 1) {
if (params->Bounds[i] < prev)
return_error(gs_error_rangecheck);
prev = params->Bounds[i];
}
}
if (params->Domain[1] < prev)
return_error(gs_error_rangecheck);
code = fn_check_mnDR((const gs_function_params_t *)params, 1, n);
if(code < 0)
return code;
else
{
gs_function_1ItSg_t *pfn =
gs_alloc_struct(mem, gs_function_1ItSg_t, &st_function_1ItSg,
"gs_function_1ItSg_init");
if (pfn == 0)
return_error(gs_error_VMerror);
pfn->params = *params;
pfn->params.m = 1;
pfn->params.n = n;
pfn->head = function_1ItSg_head;
*ppfn = (gs_function_t *) pfn;
}
return 0;
}
/* ---------------- Arrayed Output functions ---------------- */
typedef struct gs_function_AdOt_s {
gs_function_head_t head;
gs_function_AdOt_params_t params;
} gs_function_AdOt_t;
private_st_function_AdOt();
/* Evaluate an Arrayed Output function. */
static int
fn_AdOt_evaluate(const gs_function_t *pfn_common, const float *in0, float *out)
{
const gs_function_AdOt_t *const pfn =
(const gs_function_AdOt_t *)pfn_common;
const float *in = in0;
#define MAX_ADOT_IN 16
float in_buf[MAX_ADOT_IN];
int i;
/*
* We have to take special care to handle the case where in and out
* overlap. For the moment, handle it only for a limited number of
* input values.
*/
if (in <= out + (pfn->params.n - 1) && out <= in + (pfn->params.m - 1)) {
if (pfn->params.m > MAX_ADOT_IN)
return_error(gs_error_rangecheck);
memcpy(in_buf, in, pfn->params.m * sizeof(*in));
in = in_buf;
}
for (i = 0; i < pfn->params.n; ++i) {
int code =
gs_function_evaluate(pfn->params.Functions[i], in, out + i);
if (code < 0)
return code;
}
return 0;
#undef MAX_ADOT_IN
}
/* Test whether an Arrayed Output function is monotonic. */
static int
fn_AdOt_is_monotonic(const gs_function_t * pfn_common,
const float *lower, const float *upper, uint *mask)
{
const gs_function_AdOt_t *const pfn =
(const gs_function_AdOt_t *)pfn_common;
int i;
for (i = 0; i < pfn->params.n; ++i) {
int code =
gs_function_is_monotonic(pfn->params.Functions[i], lower, upper, mask);
if (code <= 0)
return code;
}
return 1;
}
/* Return Arrayed Output function information. */
static void
fn_AdOt_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
{
const gs_function_AdOt_t *const pfn =
(const gs_function_AdOt_t *)pfn_common;
gs_function_get_info_default(pfn_common, pfi);
pfi->Functions = pfn->params.Functions;
pfi->num_Functions = pfn->params.n;
}
/* Make a scaled copy of an Arrayed Output function. */
static int
fn_AdOt_make_scaled(const gs_function_AdOt_t *pfn, gs_function_AdOt_t **ppsfn,
const gs_range_t *pranges, gs_memory_t *mem)
{
gs_function_AdOt_t *psfn =
gs_alloc_struct(mem, gs_function_AdOt_t, &st_function_AdOt,
"fn_AdOt_make_scaled");
int code;
if (psfn == 0)
return_error(gs_error_VMerror);
psfn->params = pfn->params;
psfn->params.Functions = 0; /* in case of failure */
if ((code = fn_common_scale((gs_function_t *)psfn,
(const gs_function_t *)pfn,
pranges, mem)) < 0 ||
(code = fn_scale_functions((gs_function_t ***)&psfn->params.Functions,
pfn->params.Functions,
pfn->params.n, pranges, true, mem)) < 0) {
gs_function_free((gs_function_t *)psfn, true, mem);
return code;
}
*ppsfn = psfn;
return 0;
}
/* Free the parameters of an Arrayed Output function. */
void
gs_function_AdOt_free_params(gs_function_AdOt_params_t * params,
gs_memory_t * mem)
{
fn_free_functions(params->Functions, params->n, mem);
params->Functions = NULL;
fn_common_free_params((gs_function_params_t *) params, mem);
}
/* Serialize. */
static int
gs_function_AdOt_serialize(const gs_function_t * pfn, stream *s)
{
const gs_function_AdOt_params_t * p = (const gs_function_AdOt_params_t *)&pfn->params;
int code = fn_common_serialize(pfn, s);
int k;
if (code < 0)
return code;
for (k = 0; k < p->n && code >= 0; k++)
code = gs_function_serialize(p->Functions[k], s);
return code;
}
/* Allocate and initialize an Arrayed Output function. */
int
gs_function_AdOt_init(gs_function_t ** ppfn,
const gs_function_AdOt_params_t * params, gs_memory_t * mem)
{
static const gs_function_head_t function_AdOt_head = {
function_type_ArrayedOutput,
{
(fn_evaluate_proc_t) fn_AdOt_evaluate,
(fn_is_monotonic_proc_t) fn_AdOt_is_monotonic,
(fn_get_info_proc_t) fn_AdOt_get_info,
fn_common_get_params, /****** WHAT TO DO ABOUT THIS? ******/
(fn_make_scaled_proc_t) fn_AdOt_make_scaled,
(fn_free_params_proc_t) gs_function_AdOt_free_params,
fn_common_free,
(fn_serialize_proc_t) gs_function_AdOt_serialize,
}
};
int m = params->m, n = params->n;
*ppfn = 0; /* in case of error */
if (m <= 0 || n <= 0)
return_error(gs_error_rangecheck);
{
gs_function_AdOt_t *pfn =
gs_alloc_struct(mem, gs_function_AdOt_t, &st_function_AdOt,
"gs_function_AdOt_init");
float *domain = (float *)
gs_alloc_byte_array(mem, 2 * m, sizeof(float),
"gs_function_AdOt_init(Domain)");
int i, j;
if (pfn == 0)
return_error(gs_error_VMerror);
pfn->params = *params;
pfn->params.Domain = domain;
pfn->params.Range = 0;
pfn->head = function_AdOt_head;
if (domain == 0) {
gs_function_free((gs_function_t *)pfn, true, mem);
return_error(gs_error_VMerror);
}
/*
* We compute the Domain as the intersection of the Domains of
* the individual subfunctions. This isn't quite right: some
* subfunction might actually make use of a larger domain of
* input values. However, the only place that Arrayed Output
* functions are used is in Shading and similar dictionaries,
* where the input values are clamped to the intersection of
* the individual Domains anyway.
*/
memcpy(domain, params->Functions[0]->params.Domain,
2 * sizeof(float) * m);
for (i = 1; i < n; ++i) {
const float *dom = params->Functions[i]->params.Domain;
for (j = 0; j < 2 * m; j += 2, dom += 2) {
domain[j] = max(domain[j], dom[0]);
domain[j + 1] = min(domain[j + 1], dom[1]);
}
}
*ppfn = (gs_function_t *) pfn;
}
return 0;
}
|