1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* gsicc handling for direct color replacement. */
#include "std.h"
#include "string_.h"
#include "stdpre.h"
#include "gstypes.h"
#include "gsmemory.h"
#include "gsstruct.h"
#include "scommon.h"
#include "strmio.h"
#include "gx.h"
#include "gxgstate.h"
#include "gxcspace.h"
#include "gsicc_cms.h"
#include "gsicc_cache.h"
/* A link structure for our replace color transform */
typedef struct rcm_link_s {
byte num_out;
byte num_in;
gsicc_colorbuffer_t data_cs_in;
gs_memory_t *memory;
gx_cm_color_map_procs cm_procs; /* for the demo */
const gx_device *cmdev;
void *context; /* For a table and or a set of procs */
} rcm_link_t;
static void gsicc_rcm_transform_general(const gx_device *dev, gsicc_link_t *icclink,
void *inputcolor, void *outputcolor,
int num_bytes_in, int num_bytes_out);
/* Functions that should be optimized later to do planar/chunky with
color conversions. Just putting in something that should work
right now */
static void
gsicc_rcm_planar_to_planar(const gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
int k, j;
byte *inputpos[4];
byte *outputpos[4];
byte *in_buffer_ptr = (byte *) inputbuffer;
byte *out_buffer_ptr = (byte *) outputbuffer;
byte in_color[4], out_color[4];
for (k = 0; k < input_buff_desc->num_chan; k++) {
inputpos[k] = in_buffer_ptr + k * input_buff_desc->plane_stride;
}
for (k = 0; k < output_buff_desc->num_chan; k++) {
outputpos[k] = out_buffer_ptr + k * output_buff_desc->plane_stride;
}
/* Note to self. We currently only do this in the transparency buffer
case which has byte representation so just stepping through
plane_stride is ok at this time. */
for (k = 0; k < input_buff_desc->plane_stride ; k++) {
for (j = 0; j < input_buff_desc->num_chan; j++) {
in_color[j] = *(inputpos[j]);
inputpos[j] += input_buff_desc->bytes_per_chan;
}
gsicc_rcm_transform_general(dev, icclink, (void*) &(in_color[0]),
(void*) &(out_color[0]), 1, 1);
for (j = 0; j < output_buff_desc->num_chan; j++) {
*(outputpos[j]) = out_color[j];
outputpos[j] += output_buff_desc->bytes_per_chan;
}
}
}
/* This is not really used yet */
static void
gsicc_rcm_planar_to_chunky(const gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
}
/* This is used with the fast thresholding code when doing -dUseFastColor
and going out to a planar device */
static void
gsicc_rcm_chunky_to_planar(const gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
int k, j, m;
byte *inputpos = (byte *) inputbuffer;
byte *outputpos = (byte *) outputbuffer;
byte *output_loc;
byte *inputcolor;
byte outputcolor[8]; /* 8 since we have max 4 colorants and 2 bytes/colorant */
unsigned short *pos_in_short, *pos_out_short;
int num_bytes_in = input_buff_desc->bytes_per_chan;
int num_bytes_out = output_buff_desc->bytes_per_chan;
int pixel_in_step = num_bytes_in * input_buff_desc->num_chan;
int plane_stride = output_buff_desc->plane_stride;
/* Do row by row. */
for (k = 0; k < input_buff_desc->num_rows ; k++) {
inputcolor = inputpos;
output_loc = outputpos;
/* split the 2 byte 1 byte case here to avoid decision in inner loop */
if (output_buff_desc->bytes_per_chan == 1) {
for (j = 0; j < input_buff_desc->pixels_per_row; j++) {
gsicc_rcm_transform_general(dev, icclink, (void*) inputcolor,
(void*) &(outputcolor[0]), num_bytes_in,
num_bytes_out);
/* Stuff the output in the proper planar location */
for (m = 0; m < output_buff_desc->num_chan; m++) {
*(output_loc + m * plane_stride + j) = outputcolor[m];
}
inputcolor += pixel_in_step;
}
inputpos += input_buff_desc->row_stride;
outputpos += output_buff_desc->row_stride;
} else {
for (j = 0; j < input_buff_desc->pixels_per_row; j++) {
gsicc_rcm_transform_general(dev, icclink, (void*) inputcolor,
(void*) &(outputcolor[0]), num_bytes_in,
num_bytes_out);
/* Stuff the output in the proper planar location */
pos_in_short = (unsigned short*) &(outputcolor[0]);
pos_out_short = (unsigned short*) (output_loc);
for (m = 0; m < output_buff_desc->num_chan; m++) {
*(pos_out_short + m * plane_stride + j) = pos_in_short[m];
}
inputcolor += pixel_in_step;
}
inputpos += input_buff_desc->row_stride;
outputpos += output_buff_desc->row_stride;
}
}
}
static void
gsicc_rcm_chunky_to_chunky(const gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
int k, j;
byte *inputpos = (byte *) inputbuffer;
byte *outputpos = (byte *) outputbuffer;
byte *inputcolor, *outputcolor;
int num_bytes_in = input_buff_desc->bytes_per_chan;
int num_bytes_out = output_buff_desc->bytes_per_chan;
int pixel_in_step = num_bytes_in * input_buff_desc->num_chan;
int pixel_out_step = num_bytes_out * output_buff_desc->num_chan;
/* Do row by row. */
for (k = 0; k < input_buff_desc->num_rows ; k++) {
inputcolor = inputpos;
outputcolor = outputpos;
for (j = 0; j < input_buff_desc->pixels_per_row; j++) {
gsicc_rcm_transform_general(dev, icclink, (void*) inputcolor,
(void*) outputcolor, num_bytes_in,
num_bytes_out);
inputcolor += pixel_in_step;
outputcolor += pixel_out_step;
}
inputpos += input_buff_desc->row_stride;
outputpos += output_buff_desc->row_stride;
}
}
/* Transform an entire buffer using replacement method */
static int
gsicc_rcm_transform_color_buffer(gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
/* Since we have to do the mappings to and from frac colors we will for
now just call the gsicc_rcm_transform_color as we step through the
buffers. This process can be significantly sped up */
if (input_buff_desc->is_planar) {
if (output_buff_desc->is_planar) {
gsicc_rcm_planar_to_planar(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
} else {
gsicc_rcm_planar_to_chunky(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
}
} else {
if (output_buff_desc->is_planar) {
gsicc_rcm_chunky_to_planar(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
} else {
gsicc_rcm_chunky_to_chunky(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
}
}
return 0;
}
/* Shared function between the single and buffer conversions. This is where
we do the actual replacement. For now, we make the replacement a
negative to show the effect of what using color replacement. We also use
the device procs to map to the device value. */
static void
gsicc_rcm_transform_general(const gx_device *dev, gsicc_link_t *icclink,
void *inputcolor, void *outputcolor,
int num_bytes_in, int num_bytes_out)
{
/* Input data is either single byte or 2 byte color values. */
rcm_link_t *link = (rcm_link_t*) icclink->link_handle;
byte num_in = link->num_in;
byte num_out = link->num_out;
frac frac_in[4];
frac frac_out[GX_DEVICE_COLOR_MAX_COMPONENTS];
int k;
/* Make the negative for the demo.... */
if (num_bytes_in == 2) {
unsigned short *data = (unsigned short *) inputcolor;
for (k = 0; k < num_in; k++) {
frac_in[k] = frac_1 - ushort2frac(data[k]);
}
} else {
byte *data = (byte *) inputcolor;
for (k = 0; k < num_in; k++) {
frac_in[k] = frac_1 - byte2frac(data[k]);
}
}
/* Use the device procedure */
switch (num_in) {
case 1:
(link->cm_procs.map_gray)(link->cmdev, frac_in[0], frac_out);
break;
case 3:
(link->cm_procs.map_rgb)(link->cmdev, NULL, frac_in[0], frac_in[1],
frac_in[2], frac_out);
break;
case 4:
(link->cm_procs.map_cmyk)(link->cmdev, frac_in[0], frac_in[1], frac_in[2],
frac_in[3], frac_out);
break;
default:
memset(&(frac_out[0]), 0, sizeof(frac_out));
break;
}
if (num_bytes_out == 2) {
unsigned short *data = (unsigned short *) outputcolor;
for (k = 0; k < num_out; k++) {
data[k] = frac2ushort(frac_out[k]);
}
} else {
byte *data = (byte *) outputcolor;
for (k = 0; k < num_out; k++) {
data[k] = frac2byte(frac_out[k]);
}
}
return;
}
/* Transform a single color using the generic (non color managed)
transformations */
static int
gsicc_rcm_transform_color(gx_device *dev, gsicc_link_t *icclink, void *inputcolor,
void *outputcolor, int num_bytes)
{
gsicc_rcm_transform_general(dev, icclink, inputcolor, outputcolor,
num_bytes, num_bytes);
return 0;
}
static void
gsicc_rcm_freelink(gsicc_link_t *icclink)
{
rcm_link_t *rcm_link = (rcm_link_t*) icclink->link_handle;
if (rcm_link != NULL)
gs_free_object(rcm_link->memory, rcm_link, "gsicc_rcm_freelink");
icclink->link_handle = NULL;
}
/* Get the replacement color management link. It basically needs to store
the number of components for the source so that we know what we are
coming from (e.g. RGB, CMYK, Gray) */
gsicc_link_t*
gsicc_rcm_get_link(const gs_gstate *pgs, gx_device *dev,
gsicc_colorbuffer_t data_cs)
{
gsicc_link_t *result;
gsicc_hashlink_t hash;
rcm_link_t *rcm_link;
gs_memory_t *mem;
const gx_cm_color_map_procs * cm_procs;
const gx_device *cmdev;
bool pageneutralcolor = false;
cmm_dev_profile_t *dev_profile;
int code;
if (dev == NULL)
return NULL;
mem = dev->memory->non_gc_memory;
/* Need to check if we need to monitor for color */
code = dev_proc(dev, get_profile)(dev, &dev_profile);
if (code < 0)
return NULL;
if (dev_profile != NULL) {
pageneutralcolor = dev_profile->pageneutralcolor;
}
cm_procs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
hash.rend_hash = gsCMM_REPLACE;
hash.des_hash = dev->color_info.num_components;
hash.src_hash = data_cs;
hash.link_hashcode = data_cs + hash.des_hash * 256 + hash.rend_hash * 4096;
/* Check the cache for a hit. */
result = gsicc_findcachelink(hash, pgs->icc_link_cache, false, false);
if (result != NULL) {
return result;
}
/* If not, then lets create a new one. This may actually return a link if
another thread has already created it while we were trying to do so */
if (gsicc_alloc_link_entry(pgs->icc_link_cache, &result, hash, false, false))
return result;
if (result == NULL)
return result;
/* Now compute the link contents */
/* We (this thread) owns this link, so we can update it */
result->procs.map_buffer = gsicc_rcm_transform_color_buffer;
result->procs.map_color = gsicc_rcm_transform_color;
result->procs.free_link = gsicc_rcm_freelink;
result->hashcode = hash;
result->is_identity = false;
rcm_link = (rcm_link_t *) gs_alloc_bytes(mem, sizeof(rcm_link_t),
"gsicc_rcm_get_link");
if (rcm_link == NULL)
return NULL;
result->link_handle = (void*) rcm_link;
rcm_link->memory = mem;
rcm_link->num_out = min(dev->color_info.num_components,
GS_CLIENT_COLOR_MAX_COMPONENTS);
rcm_link->data_cs_in = data_cs;
rcm_link->cm_procs.map_cmyk = cm_procs->map_cmyk;
rcm_link->cm_procs.map_rgb = cm_procs->map_rgb;
rcm_link->cm_procs.map_gray = cm_procs->map_gray;
rcm_link->cmdev = cmdev;
switch (data_cs) {
case gsGRAY:
rcm_link->num_in = 1;
break;
case gsRGB:
case gsCIELAB:
rcm_link->num_in = 3;
break;
case gsCMYK:
rcm_link->num_in = 4;
break;
default:
result->procs.free_link(result);
return NULL;
}
/* Likely set if we have something like a table or procs */
rcm_link->context = NULL;
result->num_input = rcm_link->num_in;
result->num_output = rcm_link->num_out;
result->link_handle = rcm_link;
result->hashcode.link_hashcode = hash.link_hashcode;
result->hashcode.des_hash = hash.des_hash;
result->hashcode.src_hash = hash.src_hash;
result->hashcode.rend_hash = hash.rend_hash;
result->includes_softproof = false;
result->includes_devlink = false;
result->is_identity = false; /* Always do replacement for demo */
/* Set up for monitoring non gray color spaces */
if (pageneutralcolor && data_cs != gsGRAY)
gsicc_mcm_set_link(result);
result->valid = true;
/* Now release any tasks/threads waiting for these contents by unlocking it */
gx_monitor_leave(result->lock); /* done with updating, let everyone run */
return result;
}
|