1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Matrix operators for Ghostscript library */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxfarith.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "stream.h"
/* The identity matrix */
static const gs_matrix gs_identity_matrix =
{identity_matrix_body};
/* ------ Matrix creation ------ */
/* Create an identity matrix */
void
gs_make_identity(gs_matrix * pmat)
{
*pmat = gs_identity_matrix;
}
/* Create a translation matrix */
int
gs_make_translation(double dx, double dy, gs_matrix * pmat)
{
*pmat = gs_identity_matrix;
pmat->tx = dx;
pmat->ty = dy;
return 0;
}
/* Create a scaling matrix */
int
gs_make_scaling(double sx, double sy, gs_matrix * pmat)
{
*pmat = gs_identity_matrix;
pmat->xx = sx;
pmat->yy = sy;
return 0;
}
/* Create a rotation matrix. */
/* The angle is in degrees. */
int
gs_make_rotation(double ang, gs_matrix * pmat)
{
gs_sincos_t sincos;
gs_sincos_degrees(ang, &sincos);
pmat->yy = pmat->xx = sincos.cos;
pmat->xy = sincos.sin;
pmat->yx = -sincos.sin;
pmat->tx = pmat->ty = 0.0;
return 0;
}
/* ------ Matrix arithmetic ------ */
/* Multiply two matrices. We should check for floating exceptions, */
/* but for the moment it's just too awkward. */
/* Since this is used heavily, we check for shortcuts. */
int
gs_matrix_multiply(const gs_matrix * pm1, const gs_matrix * pm2, gs_matrix * pmr)
{
double xx1 = pm1->xx, yy1 = pm1->yy;
double tx1 = pm1->tx, ty1 = pm1->ty;
double xx2 = pm2->xx, yy2 = pm2->yy;
double xy2 = pm2->xy, yx2 = pm2->yx;
if (is_xxyy(pm1)) {
pmr->tx = tx1 * xx2 + pm2->tx;
pmr->ty = ty1 * yy2 + pm2->ty;
if (is_fzero(xy2))
pmr->xy = 0;
else
pmr->xy = xx1 * xy2,
pmr->ty += tx1 * xy2;
pmr->xx = xx1 * xx2;
if (is_fzero(yx2))
pmr->yx = 0;
else
pmr->yx = yy1 * yx2,
pmr->tx += ty1 * yx2;
pmr->yy = yy1 * yy2;
} else {
double xy1 = pm1->xy, yx1 = pm1->yx;
pmr->xx = xx1 * xx2 + xy1 * yx2;
pmr->xy = xx1 * xy2 + xy1 * yy2;
pmr->yy = yx1 * xy2 + yy1 * yy2;
pmr->yx = yx1 * xx2 + yy1 * yx2;
pmr->tx = tx1 * xx2 + ty1 * yx2 + pm2->tx;
pmr->ty = tx1 * xy2 + ty1 * yy2 + pm2->ty;
}
return 0;
}
int
gs_matrix_multiply_double(const gs_matrix_double * pm1, const gs_matrix * pm2, gs_matrix_double * pmr)
{
double xx1 = pm1->xx, yy1 = pm1->yy;
double tx1 = pm1->tx, ty1 = pm1->ty;
double xx2 = pm2->xx, yy2 = pm2->yy;
double xy2 = pm2->xy, yx2 = pm2->yx;
if (is_xxyy(pm1)) {
pmr->tx = tx1 * xx2 + pm2->tx;
pmr->ty = ty1 * yy2 + pm2->ty;
if (is_fzero(xy2))
pmr->xy = 0;
else
pmr->xy = xx1 * xy2,
pmr->ty += tx1 * xy2;
pmr->xx = xx1 * xx2;
if (is_fzero(yx2))
pmr->yx = 0;
else
pmr->yx = yy1 * yx2,
pmr->tx += ty1 * yx2;
pmr->yy = yy1 * yy2;
} else {
double xy1 = pm1->xy, yx1 = pm1->yx;
pmr->xx = xx1 * xx2 + xy1 * yx2;
pmr->xy = xx1 * xy2 + xy1 * yy2;
pmr->yy = yx1 * xy2 + yy1 * yy2;
pmr->yx = yx1 * xx2 + yy1 * yx2;
pmr->tx = tx1 * xx2 + ty1 * yx2 + pm2->tx;
pmr->ty = tx1 * xy2 + ty1 * yy2 + pm2->ty;
}
return 0;
}
/* Invert a matrix. Return gs_error_undefinedresult if not invertible. */
int
gs_matrix_invert(const gs_matrix * pm, gs_matrix * pmr)
{ /* We have to be careful about fetch/store order, */
/* because pm might be the same as pmr. */
if (is_xxyy(pm)) {
if (is_fzero(pm->xx) || is_fzero(pm->yy))
return_error(gs_error_undefinedresult);
pmr->tx = -(pmr->xx = 1.0 / pm->xx) * pm->tx;
pmr->xy = 0.0;
pmr->yx = 0.0;
pmr->ty = -(pmr->yy = 1.0 / pm->yy) * pm->ty;
} else {
float mxx = pm->xx, myy = pm->yy, mxy = pm->xy, myx = pm->yx;
float mtx = pm->tx, mty = pm->ty;
/* we declare det as double since on at least some computer (i.e. peeves)
declaring it as a float results in different values for pmr depending
on whether or not optimization is turned on. I believe this is caused
by the compiler keeping the det value in an internal register when
optimization is enable. As evidence of this if you add a debugging
statement to print out det the optimized code acts the same as the
unoptimized code. declearing det as double does not change the CET 10-09.ps
output. */
double det = (float)(mxx * myy) - (float)(mxy * myx);
/*
* We are doing the math as floats instead of doubles to reproduce
* the results in page 1 of CET 10-09.ps
*/
if (det == 0)
return_error(gs_error_undefinedresult);
pmr->xx = myy / det;
pmr->xy = -mxy / det;
pmr->yx = -myx / det;
pmr->yy = mxx / det;
pmr->tx = (((float)(mty * myx) - (float)(mtx * myy))) / det;
pmr->ty = (((float)(mtx * mxy) - (float)(mty * mxx))) / det;
}
return 0;
}
int
gs_matrix_invert_to_double(const gs_matrix * pm, gs_matrix_double * pmr)
{ /* We have to be careful about fetch/store order, */
/* because pm might be the same as pmr. */
if (is_xxyy(pm)) {
if (is_fzero(pm->xx) || is_fzero(pm->yy))
return_error(gs_error_undefinedresult);
pmr->tx = -(pmr->xx = 1.0 / pm->xx) * pm->tx;
pmr->xy = 0.0;
pmr->yx = 0.0;
pmr->ty = -(pmr->yy = 1.0 / pm->yy) * pm->ty;
} else {
double mxx = pm->xx, myy = pm->yy, mxy = pm->xy, myx = pm->yx;
double mtx = pm->tx, mty = pm->ty;
double det = (mxx * myy) - (mxy * myx);
/*
* We are doing the math as floats instead of doubles to reproduce
* the results in page 1 of CET 10-09.ps
*/
if (det == 0)
return_error(gs_error_undefinedresult);
pmr->xx = myy / det;
pmr->xy = -mxy / det;
pmr->yx = -myx / det;
pmr->yy = mxx / det;
pmr->tx = (((mty * myx) - (mtx * myy))) / det;
pmr->ty = (((mtx * mxy) - (mty * mxx))) / det;
}
return 0;
}
/* Translate a matrix, possibly in place. */
int
gs_matrix_translate(const gs_matrix * pm, double dx, double dy, gs_matrix * pmr)
{
gs_point trans;
int code = gs_distance_transform(dx, dy, pm, &trans);
if (code < 0)
return code;
if (pmr != pm)
*pmr = *pm;
pmr->tx += trans.x;
pmr->ty += trans.y;
return 0;
}
/* Scale a matrix, possibly in place. */
int
gs_matrix_scale(const gs_matrix * pm, double sx, double sy, gs_matrix * pmr)
{
pmr->xx = pm->xx * sx;
pmr->xy = pm->xy * sx;
pmr->yx = pm->yx * sy;
pmr->yy = pm->yy * sy;
if (pmr != pm) {
pmr->tx = pm->tx;
pmr->ty = pm->ty;
}
return 0;
}
/* Rotate a matrix, possibly in place. The angle is in degrees. */
int
gs_matrix_rotate(const gs_matrix * pm, double ang, gs_matrix * pmr)
{
double mxx, mxy;
gs_sincos_t sincos;
gs_sincos_degrees(ang, &sincos);
mxx = pm->xx, mxy = pm->xy;
pmr->xx = sincos.cos * mxx + sincos.sin * pm->yx;
pmr->xy = sincos.cos * mxy + sincos.sin * pm->yy;
pmr->yx = sincos.cos * pm->yx - sincos.sin * mxx;
pmr->yy = sincos.cos * pm->yy - sincos.sin * mxy;
if (pmr != pm) {
pmr->tx = pm->tx;
pmr->ty = pm->ty;
}
return 0;
}
/* ------ Coordinate transformations (floating point) ------ */
/* Note that all the transformation routines take separate */
/* x and y arguments, but return their result in a point. */
/* Transform a point. */
int
gs_point_transform(double x, double y, const gs_matrix * pmat,
gs_point * ppt)
{
/*
* The float casts are there to reproduce results in CET 10-01.ps
* page 4.
*/
ppt->x = (float)(x * pmat->xx) + pmat->tx;
ppt->y = (float)(y * pmat->yy) + pmat->ty;
if (!is_fzero(pmat->yx))
ppt->x += (float)(y * pmat->yx);
if (!is_fzero(pmat->xy))
ppt->y += (float)(x * pmat->xy);
return 0;
}
/* Inverse-transform a point. */
/* Return gs_error_undefinedresult if the matrix is not invertible. */
int
gs_point_transform_inverse(double x, double y, const gs_matrix * pmat,
gs_point * ppt)
{
if (is_xxyy(pmat)) {
if (is_fzero(pmat->xx) || is_fzero(pmat->yy))
return_error(gs_error_undefinedresult);
ppt->x = (x - pmat->tx) / pmat->xx;
ppt->y = (y - pmat->ty) / pmat->yy;
return 0;
} else if (is_xyyx(pmat)) {
if (is_fzero(pmat->xy) || is_fzero(pmat->yx))
return_error(gs_error_undefinedresult);
ppt->x = (y - pmat->ty) / pmat->xy;
ppt->y = (x - pmat->tx) / pmat->yx;
return 0;
} else { /* There are faster ways to do this, */
/* but we won't implement one unless we have to. */
gs_matrix imat;
int code = gs_matrix_invert(pmat, &imat);
if (code < 0)
return code;
return gs_point_transform(x, y, &imat, ppt);
}
}
/* Transform a distance. */
int
gs_distance_transform(double dx, double dy, const gs_matrix * pmat,
gs_point * pdpt)
{
pdpt->x = dx * pmat->xx;
pdpt->y = dy * pmat->yy;
if (!is_fzero(pmat->yx))
pdpt->x += dy * pmat->yx;
if (!is_fzero(pmat->xy))
pdpt->y += dx * pmat->xy;
return 0;
}
/* Inverse-transform a distance. */
/* Return gs_error_undefinedresult if the matrix is not invertible. */
int
gs_distance_transform_inverse(double dx, double dy,
const gs_matrix * pmat, gs_point * pdpt)
{
if (is_xxyy(pmat)) {
if (is_fzero(pmat->xx) || is_fzero(pmat->yy))
return_error(gs_error_undefinedresult);
pdpt->x = dx / pmat->xx;
pdpt->y = dy / pmat->yy;
} else if (is_xyyx(pmat)) {
if (is_fzero(pmat->xy) || is_fzero(pmat->yx))
return_error(gs_error_undefinedresult);
pdpt->x = dy / pmat->xy;
pdpt->y = dx / pmat->yx;
} else {
double det = pmat->xx * pmat->yy - pmat->xy * pmat->yx;
if (det == 0)
return_error(gs_error_undefinedresult);
pdpt->x = (dx * pmat->yy - dy * pmat->yx) / det;
pdpt->y = (dy * pmat->xx - dx * pmat->xy) / det;
}
return 0;
}
/* Compute the bounding box of 4 points. */
int
gs_points_bbox(const gs_point pts[4], gs_rect * pbox)
{
#define assign_min_max(vmin, vmax, v0, v1)\
if ( v0 < v1 ) vmin = v0, vmax = v1; else vmin = v1, vmax = v0
#define assign_min_max_4(vmin, vmax, v0, v1, v2, v3)\
{ double min01, max01, min23, max23;\
assign_min_max(min01, max01, v0, v1);\
assign_min_max(min23, max23, v2, v3);\
vmin = min(min01, min23);\
vmax = max(max01, max23);\
}
assign_min_max_4(pbox->p.x, pbox->q.x,
pts[0].x, pts[1].x, pts[2].x, pts[3].x);
assign_min_max_4(pbox->p.y, pbox->q.y,
pts[0].y, pts[1].y, pts[2].y, pts[3].y);
#undef assign_min_max
#undef assign_min_max_4
return 0;
}
/* Transform or inverse-transform a bounding box. */
/* Return gs_error_undefinedresult if the matrix is not invertible. */
static int
bbox_transform_either_only(const gs_rect * pbox_in, const gs_matrix * pmat,
gs_point pts[4],
int (*point_xform) (double, double, const gs_matrix *, gs_point *))
{
int code;
if ((code = (*point_xform) (pbox_in->p.x, pbox_in->p.y, pmat, &pts[0])) < 0 ||
(code = (*point_xform) (pbox_in->p.x, pbox_in->q.y, pmat, &pts[1])) < 0 ||
(code = (*point_xform) (pbox_in->q.x, pbox_in->p.y, pmat, &pts[2])) < 0 ||
(code = (*point_xform) (pbox_in->q.x, pbox_in->q.y, pmat, &pts[3])) < 0
)
DO_NOTHING;
return code;
}
static int
bbox_transform_either(const gs_rect * pbox_in, const gs_matrix * pmat,
gs_rect * pbox_out,
int (*point_xform) (double, double, const gs_matrix *, gs_point *))
{
int code;
/*
* In principle, we could transform only one point and two
* distance vectors; however, because of rounding, we will only
* get fully consistent results if we transform all 4 points.
* We must compute the max and min after transforming,
* since a rotation may be involved.
*/
gs_point pts[4];
if ((code = bbox_transform_either_only(pbox_in, pmat, pts, point_xform)) < 0)
return code;
return gs_points_bbox(pts, pbox_out);
}
int
gs_bbox_transform(const gs_rect * pbox_in, const gs_matrix * pmat,
gs_rect * pbox_out)
{
return bbox_transform_either(pbox_in, pmat, pbox_out,
gs_point_transform);
}
int
gs_bbox_transform_only(const gs_rect * pbox_in, const gs_matrix * pmat,
gs_point points[4])
{
return bbox_transform_either_only(pbox_in, pmat, points,
gs_point_transform);
}
int
gs_bbox_transform_inverse(const gs_rect * pbox_in, const gs_matrix * pmat,
gs_rect * pbox_out)
{
int code = bbox_transform_either(pbox_in, pmat, pbox_out,
gs_point_transform_inverse);
return code;
}
/* ------ Coordinate transformations (to fixed point) ------ */
#define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits)
/* Make a gs_matrix_fixed from a gs_matrix. */
int
gs_matrix_fixed_from_matrix(gs_matrix_fixed *pfmat, const gs_matrix *pmat)
{
*(gs_matrix *)pfmat = *pmat;
if (f_fits_in_fixed(pmat->tx) && f_fits_in_fixed(pmat->ty)) {
pfmat->tx = fixed2float(pfmat->tx_fixed = float2fixed(pmat->tx));
pfmat->ty = fixed2float(pfmat->ty_fixed = float2fixed(pmat->ty));
pfmat->txy_fixed_valid = true;
} else {
pfmat->txy_fixed_valid = false;
}
return 0;
}
/* Transform a point with a fixed-point result. */
int
gs_point_transform2fixed(const gs_matrix_fixed * pmat,
double x, double y, gs_fixed_point * ppt)
{
fixed px, py, t;
double xtemp, ytemp;
int code;
if (!pmat->txy_fixed_valid) { /* The translation is out of range. Do the */
/* computation in floating point, and convert to */
/* fixed at the end. */
gs_point fpt;
gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
if (!(f_fits_in_fixed(fpt.x) && f_fits_in_fixed(fpt.y)))
return_error(gs_error_limitcheck);
ppt->x = float2fixed(fpt.x);
ppt->y = float2fixed(fpt.y);
return 0;
}
if (!is_fzero(pmat->xy)) { /* Hope for 90 degree rotation */
if ((code = CHECK_DFMUL2FIXED_VARS(px, y, pmat->yx, xtemp)) < 0 ||
(code = CHECK_DFMUL2FIXED_VARS(py, x, pmat->xy, ytemp)) < 0
)
return code;
FINISH_DFMUL2FIXED_VARS(px, xtemp);
FINISH_DFMUL2FIXED_VARS(py, ytemp);
if (!is_fzero(pmat->xx)) {
if ((code = CHECK_DFMUL2FIXED_VARS(t, x, pmat->xx, xtemp)) < 0)
return code;
FINISH_DFMUL2FIXED_VARS(t, xtemp);
if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0)
return code;
}
if (!is_fzero(pmat->yy)) {
if ((code = CHECK_DFMUL2FIXED_VARS(t, y, pmat->yy, ytemp)) < 0)
return code;
FINISH_DFMUL2FIXED_VARS(t, ytemp);
if ((code = CHECK_SET_FIXED_SUM(py, py, t)) < 0)
return code;
}
} else {
if ((code = CHECK_DFMUL2FIXED_VARS(px, x, pmat->xx, xtemp)) < 0 ||
(code = CHECK_DFMUL2FIXED_VARS(py, y, pmat->yy, ytemp)) < 0
)
return code;
FINISH_DFMUL2FIXED_VARS(px, xtemp);
FINISH_DFMUL2FIXED_VARS(py, ytemp);
if (!is_fzero(pmat->yx)) {
if ((code = CHECK_DFMUL2FIXED_VARS(t, y, pmat->yx, ytemp)) < 0)
return code;
FINISH_DFMUL2FIXED_VARS(t, ytemp);
if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0)
return code;
}
}
if (((code = CHECK_SET_FIXED_SUM(ppt->x, px, pmat->tx_fixed)) < 0) ||
((code = CHECK_SET_FIXED_SUM(ppt->y, py, pmat->ty_fixed)) < 0) )
return code;
return 0;
}
#if PRECISE_CURRENTPOINT
/* Transform a point with a fixed-point result. */
/* Used for the best precision of the current point,
see comment in clamp_point_aux. */
int
gs_point_transform2fixed_rounding(const gs_matrix_fixed * pmat,
double x, double y, gs_fixed_point * ppt)
{
gs_point fpt;
gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
if (!(f_fits_in_fixed(fpt.x) && f_fits_in_fixed(fpt.y)))
return_error(gs_error_limitcheck);
ppt->x = float2fixed_rounded(fpt.x);
ppt->y = float2fixed_rounded(fpt.y);
return 0;
}
#endif
/* Transform a distance with a fixed-point result. */
int
gs_distance_transform2fixed(const gs_matrix_fixed * pmat,
double dx, double dy, gs_fixed_point * ppt)
{
fixed px, py, t;
double xtemp, ytemp;
int code;
if ((code = CHECK_DFMUL2FIXED_VARS(px, dx, pmat->xx, xtemp)) < 0 ||
(code = CHECK_DFMUL2FIXED_VARS(py, dy, pmat->yy, ytemp)) < 0
)
return code;
FINISH_DFMUL2FIXED_VARS(px, xtemp);
FINISH_DFMUL2FIXED_VARS(py, ytemp);
if (!is_fzero(pmat->yx)) {
if ((code = CHECK_DFMUL2FIXED_VARS(t, dy, pmat->yx, ytemp)) < 0)
return code;
FINISH_DFMUL2FIXED_VARS(t, ytemp);
if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0)
return code;
}
if (!is_fzero(pmat->xy)) {
if ((code = CHECK_DFMUL2FIXED_VARS(t, dx, pmat->xy, xtemp)) < 0)
return code;
FINISH_DFMUL2FIXED_VARS(t, xtemp);
if ((code = CHECK_SET_FIXED_SUM(py, py, t)) < 0)
return code;
}
ppt->x = px;
ppt->y = py;
return 0;
}
/* ------ Serialization ------ */
/*
* For maximum conciseness in band lists, we write a matrix as a control
* byte followed by 0 to 6 values. The control byte has the format
* AABBCD00. AA and BB control (xx,yy) and (xy,yx) as follows:
* 00 = values are (0.0, 0.0)
* 01 = values are (V, V) [1 value follows]
* 10 = values are (V, -V) [1 value follows]
* 11 = values are (U, V) [2 values follow]
* C and D control tx and ty as follows:
* 0 = value is 0.0
* 1 = value follows
* The following code is the only place that knows this representation.
*/
/* Put a matrix on a stream. */
int
sput_matrix(stream *s, const gs_matrix *pmat)
{
byte buf[1 + 6 * sizeof(float)];
byte *cp = buf + 1;
byte b = 0;
float coeff[6];
int i;
uint ignore;
coeff[0] = pmat->xx;
coeff[1] = pmat->xy;
coeff[2] = pmat->yx;
coeff[3] = pmat->yy;
coeff[4] = pmat->tx;
coeff[5] = pmat->ty;
for (i = 0; i < 4; i += 2) {
float u = coeff[i], v = coeff[i ^ 3];
b <<= 2;
if (u != 0 || v != 0) {
memcpy(cp, &u, sizeof(float));
cp += sizeof(float);
if (v == u)
b += 1;
else if (v == -u)
b += 2;
else {
b += 3;
memcpy(cp, &v, sizeof(float));
cp += sizeof(float);
}
}
}
for (; i < 6; ++i) {
float v = coeff[i];
b <<= 1;
if (v != 0) {
++b;
memcpy(cp, &v, sizeof(float));
cp += sizeof(float);
}
}
buf[0] = b << 2;
return sputs(s, buf, cp - buf, &ignore);
}
/* Get a matrix from a stream. */
int
sget_matrix(stream *s, gs_matrix *pmat)
{
int b = sgetc(s);
float coeff[6];
int i;
int status;
uint nread;
if (b < 0)
return b;
for (i = 0; i < 4; i += 2, b <<= 2)
if (!(b & 0xc0))
coeff[i] = coeff[i ^ 3] = 0.0;
else {
float value;
status = sgets(s, (byte *)&value, sizeof(value), &nread);
if (status < 0 && status != EOFC)
return_error(gs_error_ioerror);
coeff[i] = value;
switch ((b >> 6) & 3) {
case 1:
coeff[i ^ 3] = value;
break;
case 2:
coeff[i ^ 3] = -value;
break;
case 3:
status = sgets(s, (byte *)&coeff[i ^ 3],
sizeof(coeff[0]), &nread);
if (status < 0 && status != EOFC)
return_error(gs_error_ioerror);
}
}
for (; i < 6; ++i, b <<= 1)
if (b & 0x80) {
status = sgets(s, (byte *)&coeff[i], sizeof(coeff[0]), &nread);
if (status < 0 && status != EOFC)
return_error(gs_error_ioerror);
} else
coeff[i] = 0.0;
pmat->xx = coeff[0];
pmat->xy = coeff[1];
pmat->yx = coeff[2];
pmat->yy = coeff[3];
pmat->tx = coeff[4];
pmat->ty = coeff[5];
return 0;
}
/* Compare two matrices */
int
gs_matrix_compare(const gs_matrix *pmat1, const gs_matrix *pmat2) {
if (pmat1->xx != pmat2->xx)
return(1);
if (pmat1->xy != pmat2->xy)
return(1);
if (pmat1->yx != pmat2->yx)
return(1);
if (pmat1->yy != pmat2->yy)
return(1);
if (pmat1->tx != pmat2->tx)
return(1);
if (pmat1->ty != pmat2->ty)
return(1);
return(0);
}
|