1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* This file is repeatedly included by gsroprun.c to 'autogenerate' many
* different versions of roprun code. DO NOT USE THIS FILE EXCEPT FROM
* gsroprun.c.
*/
/* Set the following defines as appropriate on entry:
* TEMPLATE_NAME (Compulsory) The name of the function to generate
* SPECIFIC_ROP (Optional) If set, the function will base its decision
* about whether to provide S and T upon
* this value.
* SPECIFIC_CODE (Optional) If set, this should expand out to code to
* perform the rop. Will be invoked as:
* SPECIFIC_ROP(OUT,D,S,T)
* S_CONST (Optional) If set, S will be taken to be constant, else
* S will be read from a pointer.
* T_CONST (Optional) If set, T will be taken to be constant, else
* T will be read from a pointer.
*/
#if defined(TEMPLATE_NAME)
#ifdef SPECIFIC_ROP
#if rop3_uses_S(SPECIFIC_ROP)
#define S_USED
#endif
#if rop3_uses_T(SPECIFIC_ROP)
#define T_USED
#endif
#else /* !SPECIFIC_ROP */
#define S_USED
#define T_USED
#endif /* SPECIFIC_ROP */
/* We work in 'chunks' here; for bigendian machines, we can safely use
* chunks of 'int' size. For little endian machines where we have a cheap
* endian swap, we can do likewise. For others, we'll work at the byte
* level. */
#if !ARCH_IS_BIG_ENDIAN && !defined(ENDIAN_SWAP_INT)
#define CHUNKSIZE 8
#define CHUNK byte
#define CHUNKONES 255
#define ADJUST_TO_CHUNK(d,dpos) do {} while (0)
#else /* ARCH_IS_BIG_ENDIAN || defined(ENDIAN_SWAP_INT) */
#if ARCH_LOG2_SIZEOF_INT == 2
#define CHUNKSIZE 32
#define CHUNK unsigned int
#define CHUNKONES 0xFFFFFFFFU
#if ARCH_SIZEOF_PTR == (1<<ARCH_LOG2_SIZEOF_INT)
#define ROP_PTRDIFF_T int
#else
#define ROP_PTRDIFF_T int64_t
#endif
#define ADJUST_TO_CHUNK(d, dpos) \
do { int offset = ((ROP_PTRDIFF_T)d) & ((CHUNKSIZE>>3)-1); \
d = (CHUNK *)(void *)(((byte *)(void *)d)-offset); \
dpos += offset<<3; \
} while (0)
#else
/* FIXME: Write more code in here when we find an example. */
#endif
#endif /* ARCH_IS_BIG_ENDIAN || defined(ENDIAN_SWAP_INT) */
/* We define an 'RE' macro that reverses the endianness of a chunk, if we
* need it, and does nothing otherwise. */
#if !ARCH_IS_BIG_ENDIAN && defined(ENDIAN_SWAP_INT) && (CHUNKSIZE != 8)
#define RE(I) ((CHUNK)ENDIAN_SWAP_INT(I))
#else /* ARCH_IS_BIG_ENDIAN || !defined(ENDIAN_SWAP_INT) || (CHUNKSIZE == 8) */
#define RE(I) (I)
#endif /* ARCH_IS_BIG_ENDIAN || !defined(ENDIAN_SWAP_INT) || (CHUNKSIZE == 8) */
/* In some cases we will need to fetch values from a pointer, and 'skew'
* them. We need 2 variants of this macro. One that is 'SAFE' to use when
* SKEW might be 0, and one that can be faster, because we know that SKEW
* is non zero. */
#define SKEW_FETCH(S,s,SKEW) \
do { S = RE((RE(s[0])<<SKEW) | (RE(s[1])>>(CHUNKSIZE-SKEW))); s++; } while (0)
#define SAFE_SKEW_FETCH(S,s,SKEW,L,R) \
do { S = RE(((L) ? 0 : (RE(s[0])<<SKEW)) | ((R) ? 0 : (RE(s[1])>>(CHUNKSIZE-SKEW)))); s++; } while (0)
#if defined(S_USED) && !defined(S_CONST)
#define S_SKEW
#define FETCH_S SKEW_FETCH(S,s,s_skew)
#define SAFE_FETCH_S(L,R) SAFE_SKEW_FETCH(S,s,s_skew,L,R)
#else /* !defined(S_USED) || defined(S_CONST) */
#define FETCH_S
#define SAFE_FETCH_S(L,R)
#endif /* !defined(S_USED) || defined(S_CONST) */
#if defined(T_USED) && !defined(T_CONST)
#define T_SKEW
#define FETCH_T SKEW_FETCH(T,t,t_skew)
#define SAFE_FETCH_T(L,R) SAFE_SKEW_FETCH(T,t,t_skew,L,R)
#else /* !defined(T_USED) || defined(T_CONST) */
#define FETCH_T
#define SAFE_FETCH_T(L,R)
#endif /* !defined(T_USED) || defined(T_CONST) */
static void TEMPLATE_NAME(rop_run_op *op, byte *d_, int len)
{
#ifndef SPECIFIC_CODE
rop_proc proc = rop_proc_table[op->rop];
#define SPECIFIC_CODE(OUT_, D_,S_,T_) OUT_ = proc(D_,S_,T_)
#endif /* !defined(SPECIFIC_CODE) */
CHUNK lmask, rmask;
#ifdef S_USED
#ifdef S_CONST
CHUNK S = (CHUNK)op->s.c;
#else /* !defined(S_CONST) */
const CHUNK *s = (CHUNK *)(void *)op->s.b.ptr;
CHUNK S;
int s_skew;
#endif /* !defined(S_CONST) */
#else /* !defined(S_USED) */
#define S 0
#undef S_CONST
#endif /* !defined(S_USED) */
#ifdef T_USED
#ifdef T_CONST
CHUNK T = (CHUNK)op->t.c;
#else /* !defined(T_CONST) */
const CHUNK *t = (CHUNK *)(void *)op->t.b.ptr;
CHUNK T;
int t_skew;
#endif /* !defined(T_CONST) */
#else /* !defined(T_USED) */
#define T 0
#undef T_CONST
#endif /* !defined(T_USED) */
#if defined(S_SKEW) || defined(T_SKEW)
int skewflags = 0;
#endif
CHUNK D;
int dpos = op->dpos;
CHUNK *d = (CHUNK *)(void *)d_;
/* Align d to CHUNKSIZE */
ADJUST_TO_CHUNK(d,dpos);
/* On entry len = length in 'depth' chunks. Change it to be the length
* in bits, and add on the number of bits we skip at the start of the
* run. */
len = len * op->depth + dpos;
/* lmask = the set of bits to alter in the output bitmap on the left
* hand edge of the run. rmask = the set of bits NOT to alter in the
* output bitmap on the right hand edge of the run. */
lmask = RE((CHUNKONES>>((CHUNKSIZE-1) & dpos)));
rmask = RE((CHUNKONES>>((CHUNKSIZE-1) & len)));
if (rmask == CHUNKONES) rmask = 0;
#if defined(S_CONST) || defined(T_CONST)
/* S and T should be supplied as 'depth' bits. Duplicate them up to be
* byte size (if they are supplied byte sized, that's fine too). */
if (op->depth & 1) {
#ifdef S_CONST
S |= S<<1;
#endif /* !defined(S_CONST) */
#ifdef T_CONST
T |= T<<1;
#endif /* !defined(T_CONST) */
}
if (op->depth & 3) {
#ifdef S_CONST
S |= S<<2;
#endif /* !defined(S_CONST) */
#ifdef T_CONST
T |= T<<2;
#endif /* !defined(T_CONST) */
}
if (op->depth & 7) {
#ifdef S_CONST
S |= S<<4;
#endif /* !defined(S_CONST) */
#ifdef T_CONST
T |= T<<4;
#endif /* !defined(T_CONST) */
}
#if CHUNKSIZE > 8
if (op->depth & 15) {
#ifdef S_CONST
S |= S<<8;
#endif /* !defined(S_CONST) */
#ifdef T_CONST
T |= T<<8;
#endif /* !defined(T_CONST) */
}
#endif /* CHUNKSIZE > 8 */
#if CHUNKSIZE > 16
if (op->depth & 31) {
#ifdef S_CONST
S |= S<<16;
#endif /* !defined(S_CONST) */
#ifdef T_CONST
T |= T<<16;
#endif /* !defined(T_CONST) */
}
#endif /* CHUNKSIZE > 16 */
#endif /* defined(S_CONST) || defined(T_CONST) */
/* Note #1: This mirrors what the original code did, but I think it has
* the risk of moving s and t back beyond officially allocated space. We
* may be saved by the fact that all blocks have a word or two in front
* of them due to the allocator. If we ever get valgrind properly marking
* allocated blocks as readable etc, then this may throw some spurious
* errors. RJW. */
#ifdef S_SKEW
{
int slen, slen2;
int spos = op->s.b.pos;
ADJUST_TO_CHUNK(s, spos);
s_skew = spos - dpos;
if (s_skew < 0) {
s_skew += CHUNKSIZE;
s--;
skewflags |= 1; /* Suppress reading off left edge */
}
/* We are allowed to read all the data bits, so: len - dpos + tpos
* We're allowed to read in CHUNKS, so: CHUNKUP(len-dpos+tpos).
* This code will actually read CHUNKUP(len)+CHUNKSIZE bits. If
* This is larger, then suppress. */
slen = (len + s_skew + CHUNKSIZE-1) & ~(CHUNKSIZE-1);
slen2 = (len + CHUNKSIZE + CHUNKSIZE-1) & ~(CHUNKSIZE-1);
if ((s_skew == 0) || (slen < slen2)) {
skewflags |= 4; /* Suppress reading off the right edge */
}
}
#endif /* !defined(S_SKEW) */
#ifdef T_SKEW
{
int tlen, tlen2;
int tpos = op->t.b.pos;
ADJUST_TO_CHUNK(t, tpos);
t_skew = tpos - dpos;
if (t_skew < 0) {
t_skew += CHUNKSIZE;
t--;
skewflags |= 2; /* Suppress reading off left edge */
}
/* We are allowed to read all the data bits, so: len - dpos + tpos
* We're allowed to read in CHUNKS, so: CHUNKUP(len-dpos+tpos).
* This code will actually read CHUNKUP(len)+CHUNKSIZE bits. If
* This is larger, then suppress. */
tlen = (len + t_skew + CHUNKSIZE-1) & ~(CHUNKSIZE-1);
tlen2 = (len + CHUNKSIZE + CHUNKSIZE-1) & ~(CHUNKSIZE-1);
if ((t_skew == 0) || (tlen < tlen2)) {
skewflags |= 8; /* Suppress reading off the right edge */
}
}
#endif /* !defined(T_SKEW) */
len -= CHUNKSIZE; /* len = bytes to do - CHUNKSIZE */
/* len <= 0 means 1 word or less to do */
if (len <= 0) {
/* Short case - starts and ends in the same chunk */
lmask &= ~rmask; /* Combined mask = bits to alter */
SAFE_FETCH_S(skewflags & 1,skewflags & 4);
SAFE_FETCH_T(skewflags & 2,skewflags & 8);
SPECIFIC_CODE(D, *d, S, T);
*d = (*d & ~lmask) | (D & lmask);
return;
}
if ((lmask != CHUNKONES)
#if defined(S_SKEW) || defined(T_SKEW)
|| (skewflags & 3)
#endif
) {
/* Unaligned left hand case */
SAFE_FETCH_S(skewflags & 1,s_skew == 0);
SAFE_FETCH_T(skewflags & 2,t_skew == 0);
SPECIFIC_CODE(D, *d, S, T);
*d = (*d & ~lmask) | (D & lmask);
d++;
len -= CHUNKSIZE;
}
if (len > 0) {
/* Simple middle case (complete destination chunks). */
#ifdef S_SKEW
if (s_skew == 0) {
#ifdef T_SKEW
if (t_skew == 0) {
do {
SPECIFIC_CODE(*d, *d, *s++, *t++);
d++;
len -= CHUNKSIZE;
} while (len > 0);
} else
#endif /* !defined(T_SKEW) */
{
do {
FETCH_T;
SPECIFIC_CODE(*d, *d, *s++, T);
d++;
len -= CHUNKSIZE;
} while (len > 0);
}
} else
#endif /* !defined(S_SKEW) */
{
#ifdef T_SKEW
if (t_skew == 0) {
do {
FETCH_S;
SPECIFIC_CODE(*d, *d, S, *t++);
d++;
len -= CHUNKSIZE;
} while (len > 0);
} else
#endif /* !defined(T_SKEW) */
{
do {
FETCH_S;
FETCH_T;
SPECIFIC_CODE(*d, *d, S, T);
d++;
len -= CHUNKSIZE;
} while (len > 0);
}
}
}
/* Unaligned right hand case */
SAFE_FETCH_S(0,skewflags & 4);
SAFE_FETCH_T(0,skewflags & 8);
SPECIFIC_CODE(D, *d, S, T);
*d = (*d & rmask) | (D & ~rmask);
}
#undef ADJUST_TO_CHUNK
#undef CHUNKSIZE
#undef CHUNK
#undef CHUNKONES
#undef FETCH_S
#undef FETCH_T
#undef SAFE_FETCH_S
#undef SAFE_FETCH_T
#undef RE
#undef S
#undef S_USED
#undef S_CONST
#undef S_SKEW
#undef SKEW_FETCH
#undef SAFE_SKEW_FETCH
#undef SPECIFIC_CODE
#undef SPECIFIC_ROP
#undef T
#undef T_USED
#undef T_CONST
#undef T_SKEW
#undef TEMPLATE_NAME
#undef ROP_PTRDIFF_T
#else
int dummy;
#endif
|