1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Color halftone rendering for Ghostscript imaging library */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsutil.h" /* for id generation */
#include "gxarith.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcolor.h"
#include "gxgstate.h"
#include "gzht.h"
#include "gsserial.h"
#include "gxdevsop.h"
/* Define whether to force use of the slow code, for testing. */
#define USE_SLOW_CODE 0
/* Define the size of the tile buffer allocated on the stack. */
#define tile_longs_LARGE 256
#define tile_longs_SMALL 64
#if ARCH_SMALL_MEMORY
# define tile_longs_allocated tile_longs_SMALL
# define tile_longs tile_longs_SMALL
#else
# define tile_longs_allocated tile_longs_LARGE
# ifdef DEBUG
# define tile_longs\
(gs_debug_c('.') ? tile_longs_SMALL : tile_longs_LARGE)
# else
# define tile_longs tile_longs_LARGE
# endif
#endif
/* Define the colored halftone device color type. */
gs_private_st_ptrs1(st_dc_ht_colored, gx_device_color, "dc_ht_colored",
dc_ht_colored_enum_ptrs, dc_ht_colored_reloc_ptrs, colors.colored.c_ht);
static dev_color_proc_save_dc(gx_dc_ht_colored_save_dc);
static dev_color_proc_get_dev_halftone(gx_dc_ht_colored_get_dev_halftone);
static dev_color_proc_load(gx_dc_ht_colored_load);
static dev_color_proc_fill_rectangle(gx_dc_ht_colored_fill_rectangle);
static dev_color_proc_equal(gx_dc_ht_colored_equal);
static dev_color_proc_write(gx_dc_ht_colored_write);
static dev_color_proc_read(gx_dc_ht_colored_read);
const gx_device_color_type_t gx_dc_type_data_ht_colored = {
&st_dc_ht_colored,
gx_dc_ht_colored_save_dc, gx_dc_ht_colored_get_dev_halftone,
gx_dc_ht_get_phase,
gx_dc_ht_colored_load, gx_dc_ht_colored_fill_rectangle,
gx_dc_default_fill_masked, gx_dc_ht_colored_equal,
gx_dc_ht_colored_write, gx_dc_ht_colored_read,
gx_dc_ht_colored_get_nonzero_comps
};
#undef gx_dc_type_ht_colored
const gx_device_color_type_t *const gx_dc_type_ht_colored =
&gx_dc_type_data_ht_colored;
#define gx_dc_type_ht_colored (&gx_dc_type_data_ht_colored)
/* save information about the operand device color */
static void
gx_dc_ht_colored_save_dc(const gx_device_color * pdevc,
gx_device_color_saved * psdc)
{
psdc->type = pdevc->type;
memcpy( psdc->colors.colored.c_base,
pdevc->colors.colored.c_base,
sizeof(psdc->colors.colored.c_base) );
memcpy( psdc->colors.colored.c_level,
pdevc->colors.colored.c_level,
sizeof(psdc->colors.colored.c_base) );
psdc->phase = pdevc->phase;
}
/* get the halftone used for the operand device color */
static const gx_device_halftone *
gx_dc_ht_colored_get_dev_halftone(const gx_device_color * pdevc)
{
return pdevc->colors.colored.c_ht;
}
/* Compare two colored halftones for equality. */
static bool
gx_dc_ht_colored_equal(const gx_device_color * pdevc1,
const gx_device_color * pdevc2)
{
uint num_comp = pdevc1->colors.colored.num_components;
if (pdevc2->type != pdevc1->type ||
pdevc1->colors.colored.c_ht != pdevc2->colors.colored.c_ht ||
pdevc1->phase.x != pdevc2->phase.x ||
pdevc1->phase.y != pdevc2->phase.y ||
num_comp != pdevc2->colors.colored.num_components
)
return false;
return
!memcmp(pdevc1->colors.colored.c_base,
pdevc2->colors.colored.c_base,
num_comp * sizeof(pdevc1->colors.colored.c_base[0])) &&
!memcmp(pdevc1->colors.colored.c_level,
pdevc2->colors.colored.c_level,
num_comp * sizeof(pdevc1->colors.colored.c_level[0]));
}
/*
* Flags to indicate the pieces of a colored halftone that are included
* in its string representation. The first byte of the string holds this
* set of flags.
*
* The case alpha = gx_max_color_value is by far the most common, so
* special treatment is provided for this case.
*
* The halftone is never transmitted as part of a device color, so there
* is no flag for it.
*/
enum {
dc_ht_colored_has_base = 0x01,
dc_ht_colored_has_level = 0x02,
dc_ht_colored_has_phase_x = 0x04,
dc_ht_colored_has_phase_y = 0x08,
};
/*
* Serialize a device color that uses a traditional colored halftone.
*
* The number of components of a device color must match that of the
* process color model, so it is not transmitted.
*
* The most common situation in which this routine is used is for 1-bit
* per component devices. In that case, base[i] will always be 0 or 1,
* and thus may be fit in a single bit.
*
* In many situations, one or more of the color component intensity
* levels will be 0. The plane_mask field identifies those components
* where this is not the case. By tansmitting the plane_mask, only those
* components with non-zero levels need be transmitted.
*
* The case alpha = gx_max_color_value is by far the most common, so
* special treatment is provided for this case.
*
*
* Operands:
*
* pdevc pointer to device color to be serialized
*
* psdc pointer ot saved version of last serialized color (for
* this band)
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to buffer in which to write the data
*
* psize pointer to a location that, on entry, contains the size of
* the buffer pointed to by pdata; on return, the size of
* the data required or actually used will be written here.
*
* Returns:
* 1, with *psize set to 0, if *psdc and *pdevc represent the same color
*
* 0, with *psize set to the amount of data written, if everything OK
*
* gs_error_rangecheck, with *psize set to the size of buffer required,
* if *psize was not large enough
*
* < 0, != gs_error_rangecheck, in the event of some other error
* (currently none); in this case *psize is not changed.
*/
static int
gx_dc_ht_colored_write(
const gx_device_color * pdevc,
const gx_device_color_saved * psdc0,
const gx_device * dev,
int64_t offset,
byte * pdata,
uint * psize )
{
int req_size = 1;
int flag_bits = 0;
int num_comps = dev->color_info.num_components;
int depth = dev->color_info.depth;
gx_color_index plane_mask = pdevc->colors.colored.plane_mask;
const gx_device_color_saved * psdc = psdc0;
byte * pdata0 = pdata;
if (offset != 0)
return_error(gs_error_unregistered); /* Not implemented yet. */
/* sanity check */
if (pdevc->colors.colored.num_components != num_comps)
return_error(gs_error_unregistered); /* Must not happen. */
/* check if saved color is of the same type */
if (psdc != 0 && psdc->type != pdevc->type)
psdc = 0;
/* calculate the size required */
if ( psdc == 0 ||
memcmp( pdevc->colors.colored.c_base,
psdc->colors.colored.c_base,
num_comps * sizeof(pdevc->colors.colored.c_base[0]) ) != 0 ) {
flag_bits |= dc_ht_colored_has_base;
if (num_comps == depth) /* 1 bit / component */
req_size += (num_comps + 7) >> 3;
else
req_size += num_comps * sizeof(pdevc->colors.colored.c_base[0]);
}
plane_mask = pdevc->colors.colored.plane_mask;
if ( psdc == NULL ||
memcmp( pdevc->colors.colored.c_level,
psdc->colors.colored.c_level,
num_comps * sizeof(pdevc->colors.colored.c_level[0]) ) != 0 ) {
gx_color_index comp_bit;
int i;
uint tmp_mask;
flag_bits |= dc_ht_colored_has_level;
if (num_comps > 8 * sizeof(uint)) {
tmp_mask = (uint)plane_mask;
req_size += enc_u_sizew(tmp_mask);
tmp_mask = (uint)((plane_mask >> (8*sizeof(uint)-1)) >> 1);
req_size += enc_u_sizew(tmp_mask);
} else {
tmp_mask = (uint)plane_mask;
req_size += enc_u_sizew(tmp_mask);
}
for (i = 0, comp_bit = 0x1; i < num_comps; i++, comp_bit <<= 1) {
if ((plane_mask & comp_bit) != 0)
req_size += enc_u_sizew(pdevc->colors.colored.c_level[i]);
}
}
if (psdc == NULL || psdc->phase.x != pdevc->phase.x)
flag_bits |= dc_ht_colored_has_phase_x, req_size += enc_u_sizew(pdevc->phase.x);
if (psdc == NULL || psdc->phase.y != pdevc->phase.y)
flag_bits |= dc_ht_colored_has_phase_y, req_size += enc_u_sizew(pdevc->phase.y);
/* see if there is anything to do */
if (flag_bits == 0) {
*psize = 0;
return 1;
}
/* see if enough space is available */
if (req_size > *psize) {
*psize = req_size;
return_error(gs_error_rangecheck);
}
/* write out the flag byte */
*pdata++ = (byte)flag_bits;
/* write out such other parts of the device color as required */
if ((flag_bits & dc_ht_colored_has_base) != 0) {
if (num_comps == depth) {
gx_color_index base_mask = 0;
int num_bytes = (num_comps + 7) >> 3;
int i;
for (i = 0; i < num_comps; i++) {
if (pdevc->colors.colored.c_base[i] != 0)
base_mask |= (gx_color_index)1 << i;
}
for (i = 0; i < num_bytes; i++, base_mask >>= 8)
*pdata++ = (byte)base_mask;
} else {
memcpy( pdata,
pdevc->colors.colored.c_base,
num_comps * sizeof(pdevc->colors.colored.c_base[0]) );
pdata += num_comps * sizeof(pdevc->colors.colored.c_base[0]);
}
}
if ((flag_bits & dc_ht_colored_has_level) != 0) {
gx_color_index code_bit;
int i;
uint tmp_mask;
if (num_comps > 8 * sizeof(uint)) {
tmp_mask = (uint)plane_mask;
enc_u_putw(tmp_mask, pdata);
tmp_mask = (uint)((plane_mask >> (8*sizeof(uint)-1))>>1);
enc_u_putw(tmp_mask, pdata);
} else {
tmp_mask = (uint)plane_mask;
enc_u_putw(tmp_mask, pdata);
}
for (i = 0, code_bit = 0x1; i < num_comps; i++, code_bit <<= 1) {
if ((plane_mask & code_bit) != 0)
enc_u_putw(pdevc->colors.colored.c_level[i], pdata);
}
}
if ((flag_bits & dc_ht_colored_has_phase_x) != 0) {
enc_u_putw(pdevc->phase.x, pdata);
}
if ((flag_bits & dc_ht_colored_has_phase_x) != 0) {
enc_u_putw(pdevc->phase.y, pdata);
}
*psize = pdata - pdata0;
return 0;
}
/*
* Reconstruct a device color from its serial representation.
*
* Operands:
*
* pdevc pointer to the location in which to write the
* reconstructed device color
*
* pgs pointer to the current gs_gstate (to access the
* current halftone)
*
* prior_devc pointer to the current device color (this is provided
* separately because the device color is not part of the
* gs_gstate)
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to the buffer to be read
*
* size size of the buffer to be read; this should be large
* enough to hold the entire color description
*
* mem pointer to the memory to be used for allocations
* (ignored here)
*
* Returns:
*
* # of bytes read if everthing OK, < 0 in the event of an error
*/
static int
gx_dc_ht_colored_read(
gx_device_color * pdevc,
const gs_gstate * pgs,
const gx_device_color * prior_devc,
const gx_device * dev,
int64_t offset,
const byte * pdata,
uint size,
gs_memory_t * mem, /* ignored */
int x0,
int y0)
{
gx_device_color devc;
int num_comps = dev->color_info.num_components;
int depth = dev->color_info.depth;
const byte * pdata0 = pdata;
int flag_bits;
if (offset != 0)
return_error(gs_error_unregistered); /* Not implemented yet. */
/* if prior information is available, use it */
if (prior_devc != 0 && prior_devc->type == gx_dc_type_ht_colored)
devc = *prior_devc;
else
memset(&devc, 0, sizeof(devc)); /* clear pointers */
devc.type = gx_dc_type_ht_colored;
/* the number of components is determined by the color model */
devc.colors.colored.num_components = num_comps;
devc.colors.colored.c_ht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];
/*
* Verify that we have at least the flag bits. For performance
* reasons, the routines that convert serialized representations
* of integers do not check buffer size. Hence, in many cases below,
* only a very rough check is made to verify that we have not
* exhausted the buffer. This should not cause a problem in
* practice.
*/
if (size == 0)
return_error(gs_error_rangecheck);
size--;
flag_bits = *pdata++;
/* read the other components provided */
if ((flag_bits & dc_ht_colored_has_base) != 0) {
if (depth == num_comps) {
gx_color_index base_mask = 0;
int num_bytes = (num_comps + 7) >> 3;
int i, shift = 0;
if (size < num_bytes)
return_error(gs_error_rangecheck);
size -= num_bytes;
for (i = 0; i < num_bytes; i++, shift += 8)
base_mask |= (gx_color_index)(*pdata++) << shift;
for (i = 0; i < num_comps; i++, base_mask >>= 1)
devc.colors.colored.c_base[i] = base_mask & 0x1;
} else {
if (size < num_comps)
return_error(gs_error_rangecheck);
size -= num_comps;
memcpy(devc.colors.colored.c_base, pdata, num_comps);
pdata += num_comps;
}
}
if ((flag_bits & dc_ht_colored_has_level) != 0) {
const byte * pdata_start = pdata;
gx_color_index plane_mask;
uint tmp_mask;
int i;
if (size < 1)
return_error(gs_error_rangecheck);
if (num_comps > 8 * sizeof(uint)) {
enc_u_getw(tmp_mask, pdata);
plane_mask = (gx_color_index)tmp_mask;
enc_u_getw(tmp_mask, pdata);
plane_mask = (((gx_color_index)tmp_mask)<<(8 * sizeof(uint)-1))<<1;
} else {
enc_u_getw(tmp_mask, pdata);
plane_mask = (gx_color_index)tmp_mask;
}
devc.colors.colored.plane_mask = plane_mask;
for (i = 0; i < num_comps; i++, plane_mask >>= 1) {
if ((plane_mask & 0x1) != 0) {
if (size - (pdata - pdata_start) < 1)
return_error(gs_error_rangecheck);
enc_u_getw(devc.colors.colored.c_level[i], pdata);
} else
devc.colors.colored.c_level[i] = 0;
}
size -= pdata - pdata_start;
}
if ((flag_bits & dc_ht_colored_has_phase_x) != 0) {
enc_u_getw(devc.phase.x, pdata);
devc.phase.x += x0;
}
if ((flag_bits & dc_ht_colored_has_phase_y) != 0) {
enc_u_getw(devc.phase.y, pdata);
devc.phase.y += y0;
}
/* everything looks OK */
*pdevc = devc;
return pdata - pdata0;
}
/*
* Get the nonzero components of a coloredhalftone. This is used to
* distinguish components that are given zero intensity due to halftoning
* from those for which the original color intensity was in fact zero.
*
* An original component intensity of zero will yield a c_base value of
* 0 and a c_level of 0. The plane_mask field already contains the latter
* information, so we need only add those components for which c_base is
* non-zero.
*/
int
gx_dc_ht_colored_get_nonzero_comps(
const gx_device_color * pdevc,
const gx_device * dev_ignored,
gx_color_index * pcomp_bits )
{
int i, ncomps = pdevc->colors.colored.num_components;
gx_color_index comp_bits = pdevc->colors.colored.plane_mask;
for (i = 0; i < ncomps; i++) {
if (pdevc->colors.colored.c_base[i] != 0)
comp_bits |= ((gx_color_index)1) << i;
}
*pcomp_bits = comp_bits;
return 0;
}
/*
* Define an abbreviation for a heavily used value: the maximum number of
* of device colorants (device colors).
*/
#define MAX_DCC GX_DEVICE_COLOR_MAX_COMPONENTS
/*
* Define a size for the "colors" array. For less than 5 colors, there are
* 2**n values stored (for a maximum of 16 values). For 5 or more colors, we
* only store 2 values per color so the array size can be 2 * MAX_DCC. Use which
* ever is larger for the array size.
*/
#define MAX_DCC_16 (2 * MAX_DCC < 16 ? 16 : 2 * MAX_DCC)
/* Forward references. */
/* Use a typedef to attempt to work around overly picky compilers. */
typedef gx_color_value gx_color_value_array[MAX_DCC];
typedef struct color_values_pair_s {
gx_color_value_array values[2];
} color_values_pair_t;
#define SET_HT_COLORS_PROC(proc)\
int proc(\
color_values_pair_t *pvp,\
gx_color_index colors[MAX_DCC_16],\
const gx_const_strip_bitmap *sbits[MAX_DCC],\
const gx_device_color *pdevc,\
gx_device *dev,\
gx_ht_cache *caches[MAX_DCC],\
int nplanes\
)
static SET_HT_COLORS_PROC(set_ht_colors_le_4);
static SET_HT_COLORS_PROC(set_cmyk_1bit_colors);
static SET_HT_COLORS_PROC(set_ht_colors_gt_4);
#define SET_COLOR_HT_PROC(proc)\
void proc(\
byte *dest_data, /* the output tile */\
uint dest_raster, /* ibid. */\
int px, /* the initial phase of the output tile */\
int py,\
int w, /* how much of the tile to set */\
int h,\
int depth, /* depth of tile (4, 8, 16, 24, 32) */\
int special, /* >0 means special 1-bit CMYK */\
int nplanes,\
gx_color_index plane_mask, /* which planes are halftoned */\
gx_device *dev, /* in case we are mapping lazily */\
const color_values_pair_t *pvp, /* color values ditto */\
gx_color_index colors[MAX_DCC], /* the actual colors for the tile, */\
/* actually [nplanes] */\
const gx_const_strip_bitmap * sbits[MAX_DCC] /* the bitmaps for the planes, */\
/* actually [nplanes] */\
)
static SET_COLOR_HT_PROC(set_color_ht_le_4);
static SET_COLOR_HT_PROC(set_color_ht_gt_4);
/* Prepare to use a colored halftone, by loading the default cache. */
static int
gx_dc_ht_colored_load(gx_device_color * pdevc, const gs_gstate * pgs,
gx_device * ignore_dev, gs_color_select_t select)
{
/* TO_DO_DEVICEN */
return 0;
}
/* Fill a rectangle with a colored halftone. */
/* Note that we treat this as "texture" for RasterOp. */
static int
gx_dc_ht_colored_fill_rectangle(const gx_device_color * pdevc,
int x, int y, int w, int h,
gx_device * dev, gs_logical_operation_t lop,
const gx_rop_source_t * source)
{
#if defined(PACIFY_VALGRIND) || defined(MEMENTO)
ulong tbits[tile_longs_allocated] = { 0 };
#else
ulong tbits[tile_longs_allocated];
#endif
const uint tile_bytes = tile_longs * size_of(long);
gx_strip_bitmap tiles;
gx_rop_source_t no_source;
const gx_device_halftone *pdht = pdevc->colors.colored.c_ht;
int depth = dev->color_info.depth;
int nplanes = dev->color_info.num_components;
SET_HT_COLORS_PROC((*set_ht_colors)) =
(
#if USE_SLOW_CODE
set_ht_colors_gt_4
#else
(dev_proc(dev, dev_spec_op)(dev, gxdso_is_std_cmyk_1bit, NULL, 0) > 0) ?
set_cmyk_1bit_colors :
nplanes <= 4 ? set_ht_colors_le_4 :
set_ht_colors_gt_4
#endif
);
SET_COLOR_HT_PROC((*set_color_ht)) =
(
#if !USE_SLOW_CODE
!(pdevc->colors.colored.plane_mask & ~(gx_color_index)15) &&
set_ht_colors != set_ht_colors_gt_4 ?
set_color_ht_le_4 :
#endif
set_color_ht_gt_4);
color_values_pair_t vp;
gx_color_index colors[MAX_DCC_16];
const gx_const_strip_bitmap *sbits[MAX_DCC];
gx_ht_cache *caches[MAX_DCC];
int special;
int code = 0;
int raster;
uint size_x;
int dw, dh;
int lw = pdht->lcm_width, lh = pdht->lcm_height;
bool no_rop;
int i;
int origx, origy;
/* This routine cannot build 3bit chunky halftones, as 3 bit
* things don't pack nicely into bytes or words. Accordingly
* treat 3 bit things as 4 bit things. This is appropriate when
* generating halftones for planar. */
if (depth == 3)
depth = 4;
if (w <= 0 || h <= 0)
return 0;
origx = x;
origy = y;
if ((w | h) >= 16) {
/* It's worth taking the trouble to check the clipping box. */
gs_fixed_rect cbox;
int t;
dev_proc(dev, get_clipping_box)(dev, &cbox);
if ((t = fixed2int(cbox.p.x)) > x) {
if ((w += x - t) <= 0)
return 0;
x = t;
}
if ((t = fixed2int(cbox.p.y)) > y) {
if ((h += y - t) <= 0)
return 0;
y = t;
}
if ((t = fixed2int(cbox.q.x)) < x + w)
if ((w = t - x) <= 0)
return 0;
if ((t = fixed2int(cbox.q.y)) < y + h)
if ((h = t - y) <= 0)
return 0;
}
/* Colored halftone patterns are unconditionally opaque. */
lop &= ~lop_T_transparent;
if (pdht->components == 0) {
caches[0] = caches[1] = caches[2] = caches[3] = pdht->order.cache;
for (i = 4; i < nplanes; ++i)
caches[i] = pdht->order.cache;
} else {
gx_ht_order_component *pocs = pdht->components;
for (i = 0; i < nplanes; ++i)
caches[i] = pocs[i].corder.cache;
}
special = set_ht_colors(&vp, colors, sbits, pdevc, dev, caches, nplanes);
no_rop = source == NULL && lop_no_S_is_T(lop);
if ((!no_rop) && (source == NULL))
set_rop_no_source(source, no_source, dev);
/*
* If the LCM of the plane cell sizes is smaller than the rectangle
* being filled, compute a single tile and let strip_tile_rectangle
* do the replication.
*/
if ((w > lw || h > lh) &&
(raster = bitmap_raster(lw * depth)) <= tile_bytes / lh
) {
/*
* The only reason we need to do fit_fill here is that if the
* device is a clipper, the caller might be counting on it to do
* all necessary clipping. Actually, we should clip against the
* device's clipping box, not the default....
*/
fit_fill(dev, x, y, w, h);
/* Check to make sure we still have a big rectangle. */
if (w > lw || h > lh) {
tiles.data = (byte *)tbits;
tiles.raster = raster;
tiles.rep_width = tiles.size.x = lw;
tiles.rep_height = tiles.size.y = lh;
tiles.id = gs_next_ids(pdht->rc.memory, 1);
tiles.rep_shift = tiles.shift = 0;
tiles.num_planes = 1;
set_color_ht((byte *)tbits, raster, 0, 0, lw, lh, depth,
special, nplanes, pdevc->colors.colored.plane_mask,
dev, &vp, colors, sbits);
if (no_rop)
return (*dev_proc(dev, strip_tile_rectangle)) (dev, &tiles,
x, y, w, h,
gx_no_color_index,
gx_no_color_index,
pdevc->phase.x,
pdevc->phase.y);
return (*dev_proc(dev, strip_copy_rop2))
(dev,
source->sdata + (y - origy) * source->sraster,
source->sourcex + (x - origx),
source->sraster, source->id,
(source->use_scolors ? source->scolors : NULL),
&tiles, NULL,
x, y, w, h,
pdevc->phase.x, pdevc->phase.y, lop,
source->planar_height);
}
}
size_x = w * depth;
raster = bitmap_raster(size_x);
if (raster > tile_bytes) {
/*
* We can't even do an entire line at once. See above for
* why we do the X equivalent of fit_fill here.
*/
if (x < 0)
w += x, x = 0;
if (x > dev->width - w)
w = dev->width - x;
if (w <= 0)
return 0;
size_x = w * depth;
raster = bitmap_raster(size_x);
if (raster > tile_bytes) {
/* We'll have to do a partial line. */
dw = tile_bytes * 8 / depth;
size_x = dw * depth;
raster = bitmap_raster(size_x);
dh = 1;
goto fit;
}
}
/* Do as many lines as will fit. */
dw = w;
dh = tile_bytes / raster;
if (dh > h)
dh = h;
fit: /* Now the tile will definitely fit. */
if (!no_rop) {
tiles.data = (byte *)tbits;
tiles.id = gx_no_bitmap_id;
tiles.raster = raster;
tiles.rep_width = tiles.size.x = size_x / depth;
tiles.rep_shift = tiles.shift = 0;
tiles.num_planes = 1;
}
while (w) {
int cy = y, ch = dh, left = h;
for (;;) {
set_color_ht((byte *)tbits, raster,
x + pdevc->phase.x, cy + pdevc->phase.y,
dw, ch, depth, special, nplanes,
pdevc->colors.colored.plane_mask,
dev, &vp, colors, sbits);
if (no_rop) {
code = (*dev_proc(dev, copy_color))
(dev, (byte *)tbits, 0, raster, gx_no_bitmap_id,
x, cy, dw, ch);
} else {
tiles.rep_height = tiles.size.y = ch;
code = (*dev_proc(dev, strip_copy_rop2))
(dev, source->sdata + source->sraster * (cy-origy),
source->sourcex + (x - origx),
source->sraster,
source->id,
(source->use_scolors ? source->scolors : NULL),
&tiles, NULL, x, cy, dw, ch, 0, 0, lop,
source->planar_height);
}
if (code < 0)
return code;
if (!(left -= ch))
break;
cy += ch;
if (ch > left)
ch = left;
}
if (!(w -= dw))
break;
x += dw;
if (dw > w)
dw = w;
}
return code;
}
/* ---------------- Color table setup ---------------- */
/*
* We could cache this if we had a place to store it. Even a 1-element
* cache would help performance substantially.
* Key: device + c_base/c_level of device color
* Value: colors table
*/
/*
* We construct color halftone tiles out of multiple "planes".
* Each plane specifies halftoning for one component (R/G/B, C/M/Y/K,
* or DeviceN components).
*/
static const struct {
ulong pad; /* to get bytes aligned properly */
byte bytes[sizeof(ulong) * 8]; /* 8 is arbitrary */
} ht_no_bitmap_data = { 0 };
static const gx_const_strip_bitmap ht_no_bitmap = {
&ht_no_bitmap_data.bytes[0], sizeof(ulong),
{sizeof(ulong) * 8, sizeof(ht_no_bitmap_data.bytes) / sizeof(ulong)},
gx_no_bitmap_id, 1, 1, 0, 0
};
/* Set the color value(s) and halftone mask for one plane. */
static inline void set_plane_color(int i, color_values_pair_t *pvp, const gx_device_color * pdc,
const gx_const_strip_bitmap * sbits[MAX_DCC], gx_ht_cache * caches[MAX_DCC],
gx_color_value max_color, bool invert)
{
uint q = pdc->colors.colored.c_base[i];
uint r = pdc->colors.colored.c_level[i];
pvp->values[0][i] = fractional_color(q, max_color);
if (r == 0)
pvp->values[1][i] = pvp->values[0][i], sbits[i] = &ht_no_bitmap;
else if (!invert) {
pvp->values[1][i] = fractional_color(q + 1, max_color);
sbits[i] = (const gx_const_strip_bitmap *) &gx_render_ht(caches[i], r)->tiles;
} else {
const gx_device_halftone *pdht = pdc->colors.colored.c_ht;
int nlevels =
(pdht->components ? pdht->components[i].corder.num_levels : pdht->order.num_levels);
pvp->values[1][i] = pvp->values[0][i];
pvp->values[0][i] = fractional_color(q + 1, max_color);
sbits[i] = (const gx_const_strip_bitmap *) &gx_render_ht(caches[i], nlevels - r)->tiles;
}
}
/* Set up the colors and the individual plane halftone bitmaps. */
static int
set_ht_colors_le_4(color_values_pair_t *pvp /* only used internally */,
gx_color_index colors[MAX_DCC_16] /* 16 used */,
const gx_const_strip_bitmap * sbits[MAX_DCC],
const gx_device_color * pdc, gx_device * dev,
gx_ht_cache * caches[MAX_DCC], int nplanes)
{
gx_color_value max_color = dev->color_info.dither_colors - 1;
gx_color_value cvalues[4];
/*
* NB: the halftone orders are all set up for an additive color space.
* To make these work with a subtractive device space such as CMYK,
* it is necessary to invert both the color level and the color
* pair. Note that if the original color was provided an additive
* space, this will reverse (in an approximate sense) the color
* conversion performed to express the color in the device space.
*/
bool invert = dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE;
set_plane_color(0, pvp, pdc, sbits, caches, max_color, invert);
if (nplanes >= 2) {
set_plane_color(1, pvp, pdc, sbits, caches, max_color, invert);
}
if (nplanes >= 3) {
set_plane_color(2, pvp, pdc, sbits, caches, max_color, invert);
}
if (nplanes == 3) {
#define M(i)\
cvalues[0] = pvp->values[(i) & 1][0];\
cvalues[1] = pvp->values[((i) & 2) >> 1][1];\
cvalues[2] = pvp->values[(i) >> 2][2];\
colors[i] = dev_proc(dev, encode_color)(dev, cvalues);
M(0); M(1); M(2); M(3); M(4); M(5); M(6); M(7);
#undef M
} else if (nplanes > 3){
set_plane_color(3, pvp, pdc, sbits, caches, max_color, invert);
if (nplanes > 4) {
/*
* Set colors for any planes beyond the 4th. Since this code
* only handles the case of at most 4 active planes, we know
* that any further planes are constant.
*/
/****** DOESN'T MAP COLORS RIGHT, DOESN'T HANDLE ALPHA ******/
int pi;
for (pi = 4; pi < nplanes; ++pi) {
pvp->values[1][pi] = pvp->values[0][pi] =
fractional_color(pdc->colors.colored.c_base[pi], max_color);
sbits[pi] = &ht_no_bitmap;
}
}
/*
* For CMYK output, especially if the input was RGB, it's
* common for one or more of the components to be zero.
* Each zero component can cut the cost of color mapping in
* half, so it's worth doing a little checking here.
*/
#define M(i)\
cvalues[0] = pvp->values[(i) & 1][0];\
cvalues[1] = pvp->values[((i) & 2) >> 1][1];\
cvalues[2] = pvp->values[((i) & 4) >> 2][2];\
cvalues[3] = pvp->values[(i) >> 3][3];\
colors[i] = dev_proc(dev, encode_color)(dev, cvalues)
/* We know that plane_mask <= 15. */
switch ((int)pdc->colors.colored.plane_mask) {
case 15:
M(15); M(14); M(13); M(12);
M(11); M(10); M(9); M(8);
case 7:
M(7); M(6); M(5); M(4);
c3: case 3:
M(3); M(2);
c1: case 1:
M(1);
break;
case 14:
M(14); M(12); M(10); M(8);
case 6:
M(6); M(4);
c2: case 2:
M(2);
break;
case 13:
M(13); M(12); M(9); M(8);
case 5:
M(5); M(4);
goto c1;
case 12:
M(12); M(8);
case 4:
M(4);
break;
case 11:
M(11); M(10); M(9); M(8);
goto c3;
case 10:
M(10); M(8);
goto c2;
case 9:
M(9); M(8);
goto c1;
case 8:
M(8);
break;
case 0:;
}
M(0);
#undef M
}
return 0;
}
/* Set up colors using the standard 1-bit CMYK mapping. */
static int
set_cmyk_1bit_colors(color_values_pair_t *ignore_pvp,
gx_color_index colors[MAX_DCC_16] /*2 used*/,
const gx_const_strip_bitmap * sbits[MAX_DCC /*4 used*/],
const gx_device_color * pdc, gx_device * dev,
gx_ht_cache * caches[MAX_DCC /*4 used*/],
int nplanes /*4*/)
{
const gx_device_halftone *pdht = pdc->colors.colored.c_ht;
/*
* By reversing the order of the planes, we make the pixel values
* line up with the color indices. Then instead of a lookup, we
* can compute the pixels directly using a Boolean function.
*
* We compute each output bit
* out[i] = (in[i] & mask1) | (~in[i] & mask0)
* We store the two masks in colors[0] and colors[1], since the
* colors array is otherwise unused in this case. We duplicate
* the values in all the nibbles so we can do several pixels at a time.
*/
bits32 mask0 = 0, mask1 = 0;
#define SET_PLANE_COLOR_CMYK(i, mask)\
BEGIN\
uint r = pdc->colors.colored.c_level[i];\
\
if (r == 0) {\
if (pdc->colors.colored.c_base[i])\
mask0 |= mask, mask1 |= mask;\
sbits[3 - i] = &ht_no_bitmap;\
} else {\
int nlevels =\
(pdht->components ?\
pdht->components[i].corder.num_levels :\
pdht->order.num_levels);\
\
mask0 |= mask;\
sbits[3 - i] = (const gx_const_strip_bitmap *)\
&gx_render_ht(caches[i], nlevels - r)->tiles;\
}\
END
/* Suppress a compiler warning about signed/unsigned constants. */
SET_PLANE_COLOR_CMYK(0, /*0x88888888*/ (bits32)~0x77777777);
SET_PLANE_COLOR_CMYK(1, 0x44444444);
SET_PLANE_COLOR_CMYK(2, 0x22222222);
SET_PLANE_COLOR_CMYK(3, 0x11111111);
#undef SET_PLANE_COLOR_CMYK
{
gx_ht_cache *ctemp;
ctemp = caches[0], caches[0] = caches[3], caches[3] = ctemp;
ctemp = caches[1], caches[1] = caches[2], caches[2] = ctemp;
}
colors[0] = mask0;
colors[1] = mask1;
return 1;
}
/*
* Set up colors for >4 planes. In this case, we assume that the color
* component values are "separable". (That we can form a gx_color_index value
* for a color by a bit wise or of the gx_color_index values of the individual
* components.)
*/
static int
set_ht_colors_gt_4(color_values_pair_t *pvp,
gx_color_index colors[MAX_DCC_16 /* 2 * nplanes */],
const gx_const_strip_bitmap * sbits[MAX_DCC],
const gx_device_color * pdc, gx_device * dev,
gx_ht_cache * caches[MAX_DCC], int nplanes)
{
gx_color_value max_color = dev->color_info.dither_colors - 1;
bool invert = dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE;
gx_color_index plane_mask = pdc->colors.colored.plane_mask;
int i;
gx_color_value cv[MAX_DCC] = {0};
/* Set the color values and halftone caches. */
for (i = 0; i < nplanes; ++i) {
if ((plane_mask >> i) & 1)
set_plane_color(i, pvp, pdc, sbits, caches, max_color, invert);
else {
pvp->values[1][i] = pvp->values[0][i] =
fractional_color(pdc->colors.colored.c_base[i], max_color);
sbits[i] = &ht_no_bitmap;
}
}
/*
* Determine a gs_color_index value for each pair of component values.
* We assume that an overall index value can be formed from the
* bitwise or of each component. We calculate a value for both
* the high and low value of each component. These are stored
* in adjacent locations in 'colors'.
*/
for (i = 0; i < nplanes; i++ ) {
cv[i] = pvp->values[0][i];
colors[2 * i] = dev_proc(dev, encode_color)(dev, cv);
/* We only need both values for components being halftoned */
if ((plane_mask >> i) & 1) {
cv[i] = pvp->values[1][i];
colors[2 * i + 1] = dev_proc(dev, encode_color)(dev, cv);
}
cv[i] = 0;
}
return 0;
}
/* ---------------- Color rendering ---------------- */
/* Define the bookkeeping structure for each plane of halftone rendering. */
typedef struct tile_cursor_s {
int tile_shift; /* X shift per copy of tile */
int xoffset;
int xshift;
uint xbytes;
int xbits;
const byte *row;
const byte *tdata;
uint raster;
const byte *data;
int bit_shift;
} tile_cursor_t;
/*
* Initialize one plane cursor, including setting up for the first row
* (data and bit_shift).
*/
static void
init_tile_cursor(int i, tile_cursor_t *ptc, const gx_const_strip_bitmap *btile,
int endx, int lasty)
{
int tw = btile->size.x;
int bx = ((ptc->tile_shift = btile->shift) == 0 ? endx :
endx + lasty / btile->size.y * ptc->tile_shift) % tw;
int by = lasty % btile->size.y;
ptc->xoffset = bx >> 3;
ptc->xshift = 8 - (bx & 7);
ptc->xbytes = (tw - 1) >> 3;
ptc->xbits = ((tw - 1) & 7) + 1;
ptc->tdata = btile->data;
ptc->raster = btile->raster;
ptc->row = ptc->tdata + by * (int)ptc->raster;
ptc->data = ptc->row + ptc->xoffset;
ptc->bit_shift = ptc->xshift;
if_debug6('h', "[h]plane %d: size=%d,%d shift=%d bx=%d by=%d\n",
i, tw, btile->size.y, btile->shift, bx, by);
}
/* Step a cursor to the next row. */
static void
wrap_shifted_cursor(tile_cursor_t *ptc, const gx_const_strip_bitmap *psbit)
{
ptc->row += ptc->raster * (psbit->size.y - 1);
if (ptc->tile_shift) {
if ((ptc->xshift += ptc->tile_shift) >= 8) {
if ((ptc->xoffset -= ptc->xshift >> 3) < 0) {
/* wrap around in X */
int bx = (ptc->xoffset << 3) + 8 - (ptc->xshift & 7) +
psbit->size.x;
ptc->xoffset = bx >> 3;
ptc->xshift = 8 - (bx & 7);
} else
ptc->xshift &= 7;
}
}
}
#define STEP_ROW(c, i)\
BEGIN\
if (c.row > c.tdata)\
c.row -= c.raster;\
else { /* wrap around to end of tile */\
wrap_shifted_cursor(&c, sbits[i]);\
}\
c.data = c.row + c.xoffset;\
c.bit_shift = c.xshift;\
END
/* Define a table for expanding 8x1 bits to 8x4. */
static const bits32 expand_8x1_to_8x4[256] = {
#define X16(c)\
c+0, c+1, c+0x10, c+0x11, c+0x100, c+0x101, c+0x110, c+0x111,\
c+0x1000, c+0x1001, c+0x1010, c+0x1011, c+0x1100, c+0x1101, c+0x1110, c+0x1111
X16(0x00000000), X16(0x00010000), X16(0x00100000), X16(0x00110000),
X16(0x01000000), X16(0x01010000), X16(0x01100000), X16(0x01110000),
X16(0x10000000), X16(0x10010000), X16(0x10100000), X16(0x10110000),
X16(0x11000000), X16(0x11010000), X16(0x11100000), X16(0x11110000)
#undef X16
};
/*
* Render the combined halftone for nplanes <= 4.
*/
static void
set_color_ht_le_4(byte *dest_data, uint dest_raster, int px, int py,
int w, int h, int depth, int special, int nplanes,
gx_color_index plane_mask, gx_device *ignore_dev,
const color_values_pair_t *ignore_pvp,
gx_color_index colors[MAX_DCC_16],
const gx_const_strip_bitmap * sbits[MAX_DCC])
{
/*
* Note that the planes are specified in the order RGB or CMYK, but
* the indices used for the internal colors array are BGR or KYMC,
* except for the special 1-bit CMYK case.
*/
int x, y;
tile_cursor_t cursor[MAX_DCC];
int dbytes = depth >> 3;
byte *dest_row =
dest_data + dest_raster * (h - 1) + (w * depth) / 8;
if (special > 0) {
/* Planes are in reverse order. */
plane_mask =
"\000\010\004\014\002\012\006\016\001\011\005\015\003\013\007\017"[plane_mask];
}
if_debug6('h',
"[h]color_ht_le_4: x=%d y=%d w=%d h=%d plane_mask=0x%lu depth=%d\n",
px, py, w, h, (ulong)plane_mask, depth);
/* Do one-time cursor initialization. */
{
int endx = w + px;
int lasty = h - 1 + py;
if (plane_mask & 1)
init_tile_cursor(0, &cursor[0], sbits[0], endx, lasty);
if (plane_mask & 2)
init_tile_cursor(1, &cursor[1], sbits[1], endx, lasty);
if (plane_mask & 4)
init_tile_cursor(2, &cursor[2], sbits[2], endx, lasty);
if (plane_mask & 8)
init_tile_cursor(3, &cursor[3], sbits[3], endx, lasty);
}
/* Now compute the actual tile. */
for (y = h; ; dest_row -= dest_raster) {
byte *dest = dest_row;
--y;
for (x = w; x > 0;) {
bits32 indices;
int nx, i;
register uint bits;
/* Get the next byte's worth of bits. Note that there may be */
/* excess bits set beyond the 8th. */
#define NEXT_BITS(c)\
BEGIN\
if (c.data > c.row) {\
bits = ((c.data[-1] << 8) | *c.data) >> c.bit_shift;\
c.data--;\
} else {\
bits = *c.data >> c.bit_shift;\
c.data += c.xbytes;\
if ((c.bit_shift -= c.xbits) < 0) {\
bits |= *c.data << -c.bit_shift;\
c.bit_shift += 8;\
} else {\
bits |= ((c.data[-1] << 8) | *c.data) >> c.bit_shift;\
c.data--;\
}\
}\
END
if (plane_mask & 1) {
NEXT_BITS(cursor[0]);
indices = expand_8x1_to_8x4[bits & 0xff];
} else
indices = 0;
if (plane_mask & 2) {
NEXT_BITS(cursor[1]);
indices |= expand_8x1_to_8x4[bits & 0xff] << 1;
}
if (plane_mask & 4) {
NEXT_BITS(cursor[2]);
indices |= expand_8x1_to_8x4[bits & 0xff] << 2;
}
if (plane_mask & 8) {
NEXT_BITS(cursor[3]);
indices |= expand_8x1_to_8x4[bits & 0xff] << 3;
}
#undef NEXT_BITS
nx = min(x, 8); /* 1 <= nx <= 8 */
x -= nx;
switch (dbytes) {
case 0: /* 4 */
if (special > 0) {
/* Special 1-bit CMYK. */
/* Compute all the pixels at once! */
indices =
(indices & colors[1]) | (~indices & colors[0]);
i = nx;
if ((x + nx) & 1) {
/* First pixel is even nibble. */
*dest = (*dest & 0xf) +
((indices & 0xf) << 4);
indices >>= 4;
--i;
}
/* Now 0 <= i <= 8. */
for (; (i -= 2) >= 0; indices >>= 8)
*--dest = (byte)indices;
/* Check for final odd nibble. */
if (i & 1)
*--dest = indices & 0xf;
} else {
/* Other 4-bit pixel */
i = nx;
if ((x + nx) & 1) {
/* First pixel is even nibble. */
*dest = (*dest & 0xf) +
((byte)colors[indices & 0xf] << 4);
indices >>= 4;
--i;
}
/* Now 0 <= i <= 8. */
for (; (i -= 2) >= 0; indices >>= 8)
*--dest =
(byte)colors[indices & 0xf] +
((byte)colors[(indices >> 4) & 0xf]
<< 4);
/* Check for final odd nibble. */
if (i & 1)
*--dest = (byte)colors[indices & 0xf];
}
break;
case 4: /* 32 */
for (i = nx; --i >= 0; indices >>= 4) {
bits32 tcolor = (bits32)colors[indices & 0xf];
dest -= 4;
dest[3] = (byte)tcolor;
dest[2] = (byte)(tcolor >> 8);
tcolor >>= 16;
dest[1] = (byte)tcolor;
dest[0] = (byte)(tcolor >> 8);
}
break;
case 3: /* 24 */
for (i = nx; --i >= 0; indices >>= 4) {
bits32 tcolor = (bits32)colors[indices & 0xf];
dest -= 3;
dest[2] = (byte) tcolor;
dest[1] = (byte)(tcolor >> 8);
dest[0] = (byte)(tcolor >> 16);
}
break;
case 2: /* 16 */
for (i = nx; --i >= 0; indices >>= 4) {
uint tcolor =
(uint)colors[indices & 0xf];
dest -= 2;
dest[1] = (byte)tcolor;
dest[0] = (byte)(tcolor >> 8);
}
break;
case 1: /* 8 */
for (i = nx; --i >= 0; indices >>= 4)
*--dest = (byte)colors[indices & 0xf];
break;
}
}
if (y == 0)
break;
if (plane_mask & 1)
STEP_ROW(cursor[0], 0);
if (plane_mask & 2)
STEP_ROW(cursor[1], 1);
if (plane_mask & 4)
STEP_ROW(cursor[2], 2);
if (plane_mask & 8)
STEP_ROW(cursor[3], 3);
}
}
/*
* Render the combined halftone for nplanes > 4. This routine assumes
* that we can form a gx_color_index value by the bitwise or index values
* for each of the individual components.
*/
static void
set_color_ht_gt_4(byte *dest_data, uint dest_raster, int px, int py,
int w, int h, int depth, int special, int num_planes,
gx_color_index plane_mask, gx_device *dev,
const color_values_pair_t *pvp,
gx_color_index colors[MAX_DCC_16],
const gx_const_strip_bitmap * sbits[MAX_DCC])
{
int x, y;
tile_cursor_t cursor[MAX_DCC];
int dbytes = depth >> 3;
byte *dest_row =
dest_data + dest_raster * (h - 1) + (w * depth) / 8;
int pmin, pmax;
gx_color_index base_color = 0;
/* Compute the range of active planes. */
if (plane_mask == 0)
pmin = 0, pmax = -1;
else {
for (pmin = 0; !((plane_mask >> pmin) & 1); )
++pmin;
for (pmax = 0; (plane_mask >> pmax) > 1; )
++pmax;
}
if_debug6('h',
"[h]color_ht_gt_4: x=%d y=%d w=%d h=%d plane_mask=0x%lu depth=%d\n",
px, py, w, h, (ulong)plane_mask, depth);
/* Do one-time cursor initialization. */
{
int endx = w + px;
int lasty = h - 1 + py;
int i;
for (i = pmin; i <= pmax; ++i)
if ((plane_mask >> i) & 1)
init_tile_cursor(i, &cursor[i], sbits[i], endx, lasty);
}
/* Pre-load the color value for the non halftoning planes. */
{
int i;
for (i = 0; i < num_planes; ++i)
if ((~plane_mask >> i) & 1)
base_color |= colors[2 * i];
}
/* Now compute the actual tile. */
for (y = h; ; dest_row -= dest_raster) {
byte *dest = dest_row;
int i;
--y;
for (x = w; x > 0;) {
gx_color_index tcolor = base_color;
for (i = pmin; i <= pmax; ++i)
if ((plane_mask >> i) & 1) {
/* Get the next bit from an individual mask. */
tile_cursor_t *ptc = &cursor[i];
byte tile_bit;
b: if (ptc->bit_shift < 8)
tile_bit = *ptc->data >> ptc->bit_shift++;
else if (ptc->data > ptc->row) {
tile_bit = *--(ptc->data);
ptc->bit_shift = 1;
} else {
/* Wrap around. */
ptc->data += ptc->xbytes;
ptc->bit_shift = 8 - ptc->xbits;
goto b;
}
tcolor |= colors[2 * i + (tile_bit & 1)];
}
--x;
switch (dbytes) {
case 0: /* 4 -- might be 2, but we don't support this */
if (x & 1) { /* odd nibble */
*--dest = (byte)tcolor;
} else { /* even nibble */
*dest = (*dest & 0xf) + ((byte)tcolor << 4);
}
break;
case 4: /* 32 */
dest[-4] = (byte)(tcolor >> 24);
case 3: /* 24 */
dest[-3] = (byte)(tcolor >> 16);
case 2: /* 16 */
dest[-2] = (byte)(tcolor >> 8);
case 1: /* 8 */
dest[-1] = (byte)tcolor;
dest -= dbytes;
break;
}
}
if (y == 0)
break;
for (i = pmin; i <= pmax; ++i)
if ((plane_mask >> i) & 1)
STEP_ROW(cursor[i], i);
}
}
|