1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
|
/* Copyright (C) 2001-2022 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Color mapping for Ghostscript */
#include "assert_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsccolor.h"
#include "gxalpha.h"
#include "gxcspace.h"
#include "gxfarith.h"
#include "gxfrac.h"
#include "gxdcconv.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxlum.h"
#include "gzstate.h"
#include "gzht.h"
#include "gxdither.h"
#include "gxcdevn.h"
#include "string_.h"
#include "gsicc_manage.h"
#include "gdevdevn.h"
#include "gsicc_cache.h"
#include "gscms.h"
#include "gsicc.h"
#include "gxdevsop.h"
/* If enabled, this makes use of the alternate transform
ICC profile for mapping separation and
DeviceN colorants from CMYK to output
ICC color space iff the profiles make
sense. We should probably make this yet
another color command line option. Disabling
it for now for the current release. */
#define USE_ALT_MAP 0
/* Structure descriptor */
public_st_device_color();
static
ENUM_PTRS_WITH(device_color_enum_ptrs, gx_device_color *cptr)
{
return ENUM_USING(*cptr->type->stype, vptr, size, index);
}
ENUM_PTRS_END
static RELOC_PTRS_WITH(device_color_reloc_ptrs, gx_device_color *cptr)
{
RELOC_USING(*cptr->type->stype, vptr, size);
}
RELOC_PTRS_END
gx_color_index
gx_default_encode_color(gx_device * dev, const gx_color_value cv[])
{
uchar ncomps = dev->color_info.num_components;
uchar i;
const byte * comp_shift = dev->color_info.comp_shift;
const byte * comp_bits = dev->color_info.comp_bits;
gx_color_index color = 0;
#ifdef DEBUG
if (!colors_are_separable_and_linear(&dev->color_info)) {
dmprintf(dev->memory, "gx_default_encode_color() requires separable and linear\n" );
return gx_no_color_index;
}
#endif
for (i = 0; i < ncomps; i++) {
COLROUND_VARS;
COLROUND_SETUP(comp_bits[i]);
color |= COLROUND_ROUND(cv[i]) << comp_shift[i];
}
return color;
}
/*
* This routine is only used if the device is 'separable'. See
* separable_and_linear in gxdevcli.h for more information.
*/
int
gx_default_decode_color(gx_device * dev, gx_color_index color, gx_color_value cv[])
{
uchar ncomps = dev->color_info.num_components;
uchar i;
const byte * comp_shift = dev->color_info.comp_shift;
const byte * comp_bits = dev->color_info.comp_bits;
const gx_color_index * comp_mask = dev->color_info.comp_mask;
uint shift, ivalue, nbits, scale;
#ifdef DEBUG
if (!colors_are_separable_and_linear(&dev->color_info)) {
dmprintf(dev->memory, "gx_default_decode_color() requires separable and linear\n" );
return_error(gs_error_rangecheck);
}
#endif
for (i = 0; i < ncomps; i++) {
/*
* Convert from the gx_color_index bits to a gx_color_value.
* Split the conversion into an integer and a fraction calculation
* so we can do integer arthmetic. The calculation is equivalent
* to floor(0xffff.fffff * ivalue / ((1 << nbits) - 1))
*/
nbits = comp_bits[i];
scale = gx_max_color_value / ((1 << nbits) - 1);
ivalue = (color & comp_mask[i]) >> comp_shift[i];
cv[i] = ivalue * scale;
/*
* Since our scaling factor is an integer, we lost the fraction.
* Determine what part of the ivalue that the faction would have
* added into the result.
*/
shift = nbits - (gx_color_value_bits % nbits);
cv[i] += ivalue >> shift;
}
return 0;
}
gx_color_index
gx_error_encode_color(gx_device * dev, const gx_color_value colors[])
{
#ifdef DEBUG
/* The "null" device is expected to be missing encode_color */
if (strcmp(dev->dname, "null") != 0)
dmprintf(dev->memory, "No encode_color proc defined for device.\n");
#endif
return gx_no_color_index;
}
int
gx_error_decode_color(gx_device * dev, gx_color_index cindex, gx_color_value colors[])
{
int i=dev->color_info.num_components;
#ifdef DEBUG
dmprintf(dev->memory, "No decode_color proc defined for device.\n");
#endif
for(; i>=0; i--)
colors[i] = 0;
return_error(gs_error_rangecheck);
}
/*
* The "back-stop" default encode_color method. This will be used only
* if no applicable color encoding procedure is provided, and the number
* of color model components is 1. The encoding is presumed to induce an
* additive color model (DeviceGray).
*
* The particular method employed is a trivial generalization of the
* default map_rgb_color method used in the pre-DeviceN code (this was
* known as gx_default_w_b_map_rgb_color). Since the DeviceRGB color
* model is assumed additive, any of the procedures used as a default
* map_rgb_color method are assumed to induce an additive color model.
* gx_default_w_b_map_rgb_color mapped white to 1 and black to 0, so
* the new procedure is set up with zero-base and positive slope as well.
* The generalization is the use of depth; the earlier procedure assumed
* a bi-level device.
*
* Two versions of this procedure are provided, the first of which
* applies if max_gray == 2^depth - 1 and is faster, while the second
* applies to the general situation. Note that, as with the encoding
* procedures used in the pre-DeviceN code, both of these methods induce
* a small rounding error if 1 < depth < gx_color_value_bits.
*/
gx_color_index
gx_default_gray_fast_encode(gx_device * dev, const gx_color_value cv[])
{
COLROUND_VARS;
COLROUND_SETUP(dev->color_info.depth);
return COLROUND_ROUND(cv[0]);
}
gx_color_index
gx_default_gray_encode(gx_device * dev, const gx_color_value cv[])
{
return (gx_color_index)(cv[0]) * (dev->color_info.max_gray + 1) / (gx_max_color_value + 1);
}
/**
* This routine is provided for old devices which provide a
* map_rgb_color routine but not encode_color. New devices are
* encouraged either to use the defaults or to set encode_color rather
* than map_rgb_color.
**/
gx_color_index
gx_backwards_compatible_gray_encode(gx_device *dev,
const gx_color_value cv[])
{
gx_color_value gray_val = cv[0];
gx_color_value rgb_cv[3];
rgb_cv[0] = gray_val;
rgb_cv[1] = gray_val;
rgb_cv[2] = gray_val;
return (*dev_proc(dev, map_rgb_color))(dev, rgb_cv);
}
/* -------- Default color space to color model conversion routines -------- */
void
gray_cs_to_gray_cm(const gx_device * dev, frac gray, frac out[])
{
out[0] = gray;
}
static void
rgb_cs_to_gray_cm(const gx_device * dev, const gs_gstate *pgs,
frac r, frac g, frac b, frac out[])
{
out[0] = color_rgb_to_gray(r, g, b, NULL);
}
static void
cmyk_cs_to_gray_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
out[0] = color_cmyk_to_gray(c, m, y, k, NULL);
}
static void
gray_cs_to_rgb_cm(const gx_device * dev, frac gray, frac out[])
{
out[0] = out[1] = out[2] = gray;
}
void
rgb_cs_to_rgb_cm(const gx_device * dev, const gs_gstate *pgs,
frac r, frac g, frac b, frac out[])
{
out[0] = r;
out[1] = g;
out[2] = b;
}
static void
cmyk_cs_to_rgb_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
color_cmyk_to_rgb(c, m, y, k, NULL, out, dev->memory);
}
static void
gray_cs_to_rgbk_cm(const gx_device * dev, frac gray, frac out[])
{
out[0] = out[1] = out[2] = frac_0;
out[3] = gray;
}
static void
rgb_cs_to_rgbk_cm(const gx_device * dev, const gs_gstate *pgs,
frac r, frac g, frac b, frac out[])
{
if ((r == g) && (g == b)) {
out[0] = out[1] = out[2] = frac_0;
out[3] = r;
}
else {
out[0] = r;
out[1] = g;
out[2] = b;
out[3] = frac_0;
}
}
static void
cmyk_cs_to_rgbk_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
frac rgb[3];
if ((c == frac_0) && (m == frac_0) && (y == frac_0)) {
out[0] = out[1] = out[2] = frac_0;
out[3] = frac_1 - k;
}
else {
color_cmyk_to_rgb(c, m, y, k, NULL, rgb, dev->memory);
rgb_cs_to_rgbk_cm(dev, NULL, rgb[0], rgb[1], rgb[2], out);
}
}
static void
gray_cs_to_cmyk_cm(const gx_device * dev, frac gray, frac out[])
{
out[0] = out[1] = out[2] = frac_0;
out[3] = frac_1 - gray;
}
/*
* Default map from DeviceRGB color space to DeviceCMYK color
* model. Since this mapping is defined by the PostScript language
* it is unlikely that any device with a DeviceCMYK color model
* would define this mapping on its own.
*
* If the gs_gstate is not available, map as though the black
* generation and undercolor removal functions are identity
* transformations. This mode is used primarily to support the
* raster operation (rop) feature of PCL, which requires that
* the raster operation be performed in an RGB color space.
* Note that default black generation and undercolor removal
* functions in PostScript need NOT be identity transformations:
* often they are { pop 0 }.
*/
static void
rgb_cs_to_cmyk_cm(const gx_device * dev, const gs_gstate *pgs,
frac r, frac g, frac b, frac out[])
{
if (pgs != 0)
color_rgb_to_cmyk(r, g, b, pgs, out, dev->memory);
else {
frac c = frac_1 - r, m = frac_1 - g, y = frac_1 - b;
frac k = min(c, min(m, y));
out[0] = c - k;
out[1] = m - k;
out[2] = y - k;
out[3] = k;
}
}
void
cmyk_cs_to_cmyk_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
out[0] = c;
out[1] = m;
out[2] = y;
out[3] = k;
}
/* The list of default color space to color model conversion routines. */
static const gx_cm_color_map_procs DeviceGray_procs = {
gray_cs_to_gray_cm, rgb_cs_to_gray_cm, cmyk_cs_to_gray_cm
};
static const gx_cm_color_map_procs DeviceRGB_procs = {
gray_cs_to_rgb_cm, rgb_cs_to_rgb_cm, cmyk_cs_to_rgb_cm
};
static const gx_cm_color_map_procs DeviceCMYK_procs = {
gray_cs_to_cmyk_cm, rgb_cs_to_cmyk_cm, cmyk_cs_to_cmyk_cm
};
static const gx_cm_color_map_procs DeviceRGBK_procs = {
gray_cs_to_rgbk_cm, rgb_cs_to_rgbk_cm, cmyk_cs_to_rgbk_cm
};
/*
* These are the default handlers for returning the list of color space
* to color model conversion routines.
*/
const gx_cm_color_map_procs *
gx_default_DevGray_get_color_mapping_procs(const gx_device * dev,
const gx_device ** tdev)
{
*tdev = dev;
return &DeviceGray_procs;
}
const gx_cm_color_map_procs *
gx_default_DevRGB_get_color_mapping_procs(const gx_device * dev,
const gx_device ** tdev)
{
*tdev = dev;
return &DeviceRGB_procs;
}
const gx_cm_color_map_procs *
gx_default_DevCMYK_get_color_mapping_procs(const gx_device * dev,
const gx_device ** tdev)
{
*tdev = dev;
return &DeviceCMYK_procs;
}
const gx_cm_color_map_procs *
gx_default_DevRGBK_get_color_mapping_procs(const gx_device * dev,
const gx_device ** tdev)
{
*tdev = dev;
return &DeviceRGBK_procs;
}
const gx_cm_color_map_procs *
gx_error_get_color_mapping_procs(const gx_device * dev,
const gx_device ** tdev)
{
/*
* We should never get here. If we do then we do not have a "get_color_mapping_procs"
* routine for the device. This will be noisy, but better than returning NULL which
* would lead to SEGV (Segmentation Fault) errors when this is used.
*/
emprintf1(dev->memory,
"No get_color_mapping_procs proc defined for device '%s'\n",
dev->dname);
switch (dev->color_info.num_components) {
case 1: /* DeviceGray or DeviceInvertGray */
return gx_default_DevGray_get_color_mapping_procs(dev, tdev);
case 3:
return gx_default_DevRGB_get_color_mapping_procs(dev, tdev);
case 4:
default: /* Unknown color model - punt with CMYK */
return gx_default_DevCMYK_get_color_mapping_procs(dev, tdev);
}
}
/* ----- Default color component name to colorant index conversion routines ------ */
#define compare_color_names(pname, name_size, name_str) \
(name_size == (int)strlen(name_str) && strncmp(pname, name_str, name_size) == 0)
/* Default color component to index for a DeviceGray color model */
int
gx_default_DevGray_get_color_comp_index(gx_device * dev, const char * pname,
int name_size, int component_type)
{
if (compare_color_names(pname, name_size, "Gray") ||
compare_color_names(pname, name_size, "Grey"))
return 0;
else
return -1; /* Indicate that the component name is "unknown" */
}
/* Default color component to index for a DeviceRGB color model */
int
gx_default_DevRGB_get_color_comp_index(gx_device * dev, const char * pname,
int name_size, int component_type)
{
if (compare_color_names(pname, name_size, "Red"))
return 0;
if (compare_color_names(pname, name_size, "Green"))
return 1;
if (compare_color_names(pname, name_size, "Blue"))
return 2;
else
return -1; /* Indicate that the component name is "unknown" */
}
/* Default color component to index for a DeviceCMYK color model */
int
gx_default_DevCMYK_get_color_comp_index(gx_device * dev, const char * pname,
int name_size, int component_type)
{
if (compare_color_names(pname, name_size, "Cyan"))
return 0;
if (compare_color_names(pname, name_size, "Magenta"))
return 1;
if (compare_color_names(pname, name_size, "Yellow"))
return 2;
if (compare_color_names(pname, name_size, "Black"))
return 3;
else
return -1; /* Indicate that the component name is "unknown" */
}
/* Default color component to index for a DeviceRGBK color model */
int
gx_default_DevRGBK_get_color_comp_index(gx_device * dev, const char * pname,
int name_size, int component_type)
{
if (compare_color_names(pname, name_size, "Red"))
return 0;
if (compare_color_names(pname, name_size, "Green"))
return 1;
if (compare_color_names(pname, name_size, "Blue"))
return 2;
if (compare_color_names(pname, name_size, "Black"))
return 3;
else
return -1; /* Indicate that the component name is "unknown" */
}
/* Default color component to index for an unknown color model */
int
gx_error_get_color_comp_index(gx_device * dev, const char * pname,
int name_size, int component_type)
{
/*
* We should never get here. If we do then we do not have a "get_color_comp_index"
* routine for the device.
*/
#ifdef DEBUG
dmprintf(dev->memory, "No get_color_comp_index proc defined for device.\n");
#endif
return -1; /* Always return "unknown" component name */
}
#undef compare_color_names
/* ---------------- Device color rendering ---------------- */
static cmap_proc_gray(cmap_gray_halftoned);
static cmap_proc_gray(cmap_gray_direct);
static cmap_proc_rgb(cmap_rgb_halftoned);
static cmap_proc_rgb(cmap_rgb_direct);
#define cmap_cmyk_halftoned cmap_cmyk_direct
static cmap_proc_cmyk(cmap_cmyk_direct);
/* Procedure names are only guaranteed unique to 23 characters.... */
static cmap_proc_separation(cmap_separation_halftoned);
static cmap_proc_separation(cmap_separation_direct);
static cmap_proc_devicen(cmap_devicen_halftoned);
static cmap_proc_devicen(cmap_devicen_direct);
static cmap_proc_is_halftoned(cmap_halftoned_is_halftoned);
static cmap_proc_is_halftoned(cmap_direct_is_halftoned);
static const gx_color_map_procs cmap_few = {
cmap_gray_halftoned,
cmap_rgb_halftoned,
cmap_cmyk_halftoned,
cmap_separation_halftoned,
cmap_devicen_halftoned,
cmap_halftoned_is_halftoned
};
static const gx_color_map_procs cmap_many = {
cmap_gray_direct,
cmap_rgb_direct,
cmap_cmyk_direct,
cmap_separation_direct,
cmap_devicen_direct,
cmap_direct_is_halftoned
};
const gx_color_map_procs *const cmap_procs_default = &cmap_many;
/* Determine the color mapping procedures for a device. */
/* Note that the default procedure doesn't consult the gs_gstate. */
const gx_color_map_procs *
gx_get_cmap_procs(const gs_gstate *pgs, const gx_device * dev)
{
return (pgs->get_cmap_procs)(pgs, dev);
}
const gx_color_map_procs *
gx_default_get_cmap_procs(const gs_gstate *pgs, const gx_device * dev)
{
return (gx_device_must_halftone(dev) ? &cmap_few : &cmap_many);
}
/* Set the color mapping procedures in the graphics state. */
void
gx_set_cmap_procs(gs_gstate * pgs, const gx_device * dev)
{
pgs->cmap_procs = gx_get_cmap_procs(pgs, dev);
}
/* Remap the color in the graphics state. */
int
gx_remap_color(gs_gstate * pgs)
{
const gs_color_space *pcs = gs_currentcolorspace_inline(pgs);
int code = 0;
/* The current color in the graphics state is always used for */
/* the texture, never for the source. */
/* skip remap if the dev_color is already set and is type "pure" (a common case) */
if (!gx_dc_is_pure(gs_currentdevicecolor_inline(pgs)))
code = (*pcs->type->remap_color) (gs_currentcolor_inline(pgs),
pcs, gs_currentdevicecolor_inline(pgs),
(gs_gstate *) pgs, pgs->device,
gs_color_select_texture);
return code;
}
/* Indicate that a color space has no underlying concrete space. */
const gs_color_space *
gx_no_concrete_space(const gs_color_space * pcs, const gs_gstate * pgs)
{
return NULL;
}
/* Indicate that a color space is concrete. */
const gs_color_space *
gx_same_concrete_space(const gs_color_space * pcs, const gs_gstate * pgs)
{
return pcs;
}
/* Indicate that a color cannot be concretized. */
int
gx_no_concretize_color(const gs_client_color * pcc, const gs_color_space * pcs,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
return_error(gs_error_rangecheck);
}
/* If someone has specified a table for handling named spot colors then we will
be attempting to do the special handling to go directly to the device colors
here */
bool
gx_remap_named_color(const gs_client_color * pcc, const gs_color_space * pcs,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
gx_color_value device_values[GX_DEVICE_COLOR_MAX_COMPONENTS];
byte *pname;
uint name_size;
gsicc_rendering_param_t rendering_params;
int code;
gsicc_namedcolor_t named_color_sep;
gsicc_namedcolor_t *named_color_devn = NULL;
gsicc_namedcolor_t *named_color_ptr = NULL;
uchar num_des_comps = dev->color_info.num_components;
uchar k;
frac conc[GS_CLIENT_COLOR_MAX_COMPONENTS];
int i = pcs->type->num_components(pcs);
cmm_dev_profile_t *dev_profile = NULL;
gs_color_space_index type = gs_color_space_get_index(pcs);
uchar num_src_comps = 1;
/* Define the rendering intents. */
rendering_params.black_point_comp = pgs->blackptcomp;
rendering_params.graphics_type_tag = dev->graphics_type_tag;
rendering_params.override_icc = false;
rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
rendering_params.rendering_intent = pgs->renderingintent;
rendering_params.cmm = gsCMM_DEFAULT;
if (type == gs_color_space_index_Separation) {
named_color_sep.colorant_name = pcs->params.separation.sep_name;
named_color_sep.name_size = strlen(pcs->params.separation.sep_name);
named_color_ptr = &named_color_sep;
} else if (type == gs_color_space_index_DeviceN) {
char **names = pcs->params.device_n.names;
num_src_comps = pcs->params.device_n.num_components;
/* Allocate and initialize name structure */
named_color_devn =
(gsicc_namedcolor_t*)gs_alloc_bytes(dev->memory->non_gc_memory,
num_src_comps * sizeof(gsicc_namedcolor_t),
"gx_remap_named_color");
if (named_color_devn == NULL)
return false; /* Clearly a bigger issue. But lets not end here */
for (k = 0; k < num_src_comps; k++) {
pname = (byte *)names[k];
name_size = strlen(names[k]);
named_color_devn[k].colorant_name = (char*)pname;
named_color_devn[k].name_size = name_size;
}
named_color_ptr = named_color_devn;
} else
return false; /* Only sep and deviceN for named color replacement */
code = gsicc_transform_named_color(pcc->paint.values, named_color_ptr,
num_src_comps, device_values, pgs, dev, NULL, &rendering_params);
if (named_color_devn != NULL)
gs_free_object(dev->memory->non_gc_memory, named_color_devn,
"gx_remap_named_color");
if (code == 0) {
/* Named color was found and set. Note that gsicc_transform_named_color
MUST set ALL the colorant values AND they must be in the proper
order already. If we have specified the colorants with
-sICCOutputColors (i.e. if you are using an NCLR output profile) then
we should be good. If not or if instead one used SeparationColorNames and
SeparationOrder to set up the device, then we need to make a copy
of the gs_gstate and make sure that we set color_component_map is
properly set up for the gx_remap_concrete_devicen proc. */
for (k = 0; k < num_des_comps; k++)
conc[k] = float2frac(((float)device_values[k]) / 65535.0);
/* If we are looking to create the equivalent CMYK value then no need
to worry about NCLR profiles or about altering the colorant map */
if (!named_color_equivalent_cmyk_colors(pgs)) {
/* We need to apply transfer functions, possibily halftone and
encode the color for the device. To get proper mapping of the
colors to the device positions, you MUST specify -sICCOutputColors
which will enumerate the positions of the colorants and enable
proper color management for the CMYK portions IF you are using
an NCLR output profile. */
code = dev_proc(dev, get_profile)(dev, &dev_profile);
if (code < 0)
return false;
/* Check if the profile is DeviceN (NCLR) */
if (dev_profile->device_profile[GS_DEFAULT_DEVICE_PROFILE]->data_cs == gsNCHANNEL) {
if (dev_profile->spotnames == NULL)
return false;
if (!dev_profile->spotnames->equiv_cmyk_set) {
/* Note that if the improper NCLR profile is used, then the
composite preview will be wrong. */
code = gsicc_set_devicen_equiv_colors(dev, pgs,
dev_profile->device_profile[GS_DEFAULT_DEVICE_PROFILE]);
if (code < 0)
return false;
dev_profile->spotnames->equiv_cmyk_set = true;
}
gx_remap_concrete_devicen(conc, pdc, pgs, dev, select, pcs);
} else {
gs_gstate temp_state = *((const gs_gstate *)pgs);
/* No NCLR profile with spot names. So set up the
color_component_map in the gs_gstate. Again, note that
gsicc_transform_named_color must have set ALL the device
colors */
for (k = 0; k < dev->color_info.num_components; k++)
temp_state.color_component_map.color_map[k] = k;
temp_state.color_component_map.num_components = dev->color_info.num_components;
gx_remap_concrete_devicen(conc, pdc, &temp_state, dev, select, pcs);
}
} else {
gx_remap_concrete_devicen(conc, pdc, pgs, dev, select, pcs);
}
/* Save original color space and color info into dev color */
i = any_abs(i);
for (i--; i >= 0; i--)
pdc->ccolor.paint.values[i] = pcc->paint.values[i];
pdc->ccolor_valid = true;
return true;
}
return false;
}
/* By default, remap a color by concretizing it and then remapping the concrete
color. */
int
gx_default_remap_color(const gs_client_color * pcc, const gs_color_space * pcs,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
frac conc[GS_CLIENT_COLOR_MAX_COMPONENTS];
const gs_color_space *pconcs;
int i = pcs->type->num_components(pcs);
int code = (*pcs->type->concretize_color)(pcc, pcs, conc, pgs, dev);
cmm_dev_profile_t *dev_profile;
if (code < 0)
return code;
pconcs = cs_concrete_space(pcs, pgs);
if (!pconcs)
return gs_note_error(gs_error_undefined);
code = dev_proc(dev, get_profile)(dev, &dev_profile);
if (code < 0)
return code;
code = (*pconcs->type->remap_concrete_color)(pconcs, conc, pdc, pgs, dev, select, dev_profile);
/* Save original color space and color info into dev color */
i = any_abs(i);
for (i--; i >= 0; i--)
pdc->ccolor.paint.values[i] = pcc->paint.values[i];
pdc->ccolor_valid = true;
return code;
}
/* Color remappers for the standard color spaces. */
/* Note that we use D... instead of Device... in some places because */
/* gcc under VMS only retains 23 characters of procedure names. */
/* DeviceGray */
int
gx_concretize_DeviceGray(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
pconc[0] = gx_unit_frac(pc->paint.values[0]);
return 0;
}
int
gx_remap_concrete_DGray(const gs_color_space * pcs, const frac * pconc,
gx_device_color * pdc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select,
const cmm_dev_profile_t *dev_profile)
{
(*pgs->cmap_procs->map_gray)(pconc[0], pdc, pgs, dev, select);
return 0;
}
int
gx_remap_DeviceGray(const gs_client_color * pc, const gs_color_space * pcs,
gx_device_color * pdc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select)
{
frac fgray = gx_unit_frac(pc->paint.values[0]);
int code;
/* We are in here due to the fact that we are using a color space that
was set in the graphic state before the ICC manager was intitialized
and the color space was never actually "installed" and hence set
over to a proper ICC color space. We will "install" this color space
at this time */
if (pgs->icc_manager->default_gray != NULL) {
gs_color_space *pcs_notconst = (gs_color_space*) pcs;
pcs_notconst->cmm_icc_profile_data = pgs->icc_manager->default_gray;
gsicc_adjust_profile_rc(pgs->icc_manager->default_gray, 1, "gx_remap_DeviceGray");
pcs_notconst->type = &gs_color_space_type_ICC;
code =
(*pcs_notconst->type->remap_color)(gs_currentcolor_inline(pgs),
pcs_notconst,
gs_currentdevicecolor_inline(pgs),
pgs, pgs->device,
gs_color_select_texture);
return code;
}
/* Save original color space and color info into dev color */
pdc->ccolor.paint.values[0] = pc->paint.values[0];
pdc->ccolor_valid = true;
(*pgs->cmap_procs->map_gray)(fgray, pdc, pgs, dev, select);
return 0;
}
/* DeviceRGB */
int
gx_concretize_DeviceRGB(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
pconc[0] = gx_unit_frac(pc->paint.values[0]);
pconc[1] = gx_unit_frac(pc->paint.values[1]);
pconc[2] = gx_unit_frac(pc->paint.values[2]);
return 0;
}
int
gx_remap_concrete_DRGB(const gs_color_space * pcs, const frac * pconc,
gx_device_color * pdc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select,
const cmm_dev_profile_t *dev_profile)
{
gx_remap_concrete_rgb(pconc[0], pconc[1], pconc[2], pdc, pgs, dev, select);
return 0;
}
int
gx_remap_DeviceRGB(const gs_client_color * pc, const gs_color_space * pcs,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
frac fred = gx_unit_frac(pc->paint.values[0]), fgreen = gx_unit_frac(pc->paint.values[1]),
fblue = gx_unit_frac(pc->paint.values[2]);
/* Save original color space and color info into dev color */
pdc->ccolor.paint.values[0] = pc->paint.values[0];
pdc->ccolor.paint.values[1] = pc->paint.values[1];
pdc->ccolor.paint.values[2] = pc->paint.values[2];
pdc->ccolor_valid = true;
gx_remap_concrete_rgb(fred, fgreen, fblue, pdc, pgs, dev, select);
return 0;
}
/* DeviceCMYK */
int
gx_concretize_DeviceCMYK(const gs_client_color * pc, const gs_color_space * pcs,
frac * pconc, const gs_gstate * pgs, gx_device *dev)
{
pconc[0] = gx_unit_frac(pc->paint.values[0]);
pconc[1] = gx_unit_frac(pc->paint.values[1]);
pconc[2] = gx_unit_frac(pc->paint.values[2]);
pconc[3] = gx_unit_frac(pc->paint.values[3]);
return 0;
}
int
gx_remap_concrete_DCMYK(const gs_color_space * pcs, const frac * pconc,
gx_device_color * pdc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select,
const cmm_dev_profile_t *dev_profile)
{
/****** IGNORE alpha ******/
gx_remap_concrete_cmyk(pconc[0], pconc[1], pconc[2], pconc[3], pdc,
pgs, dev, select, pcs);
return 0;
}
int
gx_remap_DeviceCMYK(const gs_client_color * pc, const gs_color_space * pcs,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select)
{
/****** IGNORE alpha ******/
/* Save original color space and color info into dev color */
pdc->ccolor.paint.values[0] = pc->paint.values[0];
pdc->ccolor.paint.values[1] = pc->paint.values[1];
pdc->ccolor.paint.values[2] = pc->paint.values[2];
pdc->ccolor.paint.values[3] = pc->paint.values[3];
pdc->ccolor_valid = true;
gx_remap_concrete_cmyk(gx_unit_frac(pc->paint.values[0]),
gx_unit_frac(pc->paint.values[1]),
gx_unit_frac(pc->paint.values[2]),
gx_unit_frac(pc->paint.values[3]),
pdc, pgs, dev, select, pcs);
return 0;
}
/* ------ Utility for selecting the dev_ht from the pgs using the dev->graphics_type_tag ----- */
static gs_HT_objtype_t
tag_to_HT_objtype[8] = { HT_OBJTYPE_DEFAULT,
HT_OBJTYPE_TEXT, /* GS_TEXT_TAG = 0x1 */
HT_OBJTYPE_IMAGE, /* GS_IMAGE_TAG = 0x2 */
HT_OBJTYPE_DEFAULT,
HT_OBJTYPE_VECTOR, /* GS_VECTOR_TAG = 0x4 */
HT_OBJTYPE_DEFAULT, HT_OBJTYPE_DEFAULT, HT_OBJTYPE_DEFAULT
};
/* Return the selected dev_ht[] or the pgs->dev_ht[HT_OBJTYPE_DEFAULT] */
gx_device_halftone *
gx_select_dev_ht(const gs_gstate *pgs)
{
gs_HT_objtype_t objtype;
/* This function only works with 3 bits currently. Flag here in case we add object types */
assert(HT_OBJTYPE_COUNT == 4);
objtype = tag_to_HT_objtype[pgs->device->graphics_type_tag & 7];
if (pgs->dev_ht[objtype] == NULL)
objtype = HT_OBJTYPE_DEFAULT;
return pgs->dev_ht[objtype];
}
/* ------ Render Gray color. ------ */
static void
cmap_gray_halftoned(frac gray, gx_device_color * pdc,
const gs_gstate * pgs, gx_device * dev, gs_color_select_t select)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
/* map to the color model */
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
cmprocs->map_gray(cmdev, gray, cm_comps);
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count == 0) {
/* No transfer function to apply */
} else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++)
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
else {
if (gx_get_opmsupported(dev) == GX_CINFO_OPMSUPPORTED) { /* CMYK-like color space */
i = dev->color_info.black_component;
if (i < ncomps)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
} else {
for (i = 0; i < ncomps; i++)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
}
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
static void
cmap_gray_direct(frac gray, gx_device_color * pdc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color;
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
/* map to the color model */
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
cmprocs->map_gray(cmdev, gray, cm_comps);
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count == 0) {
for (i = 0; i < ncomps; i++)
cv[i] = frac2cv(cm_comps[i]);
} else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++) {
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
else {
if (gx_get_opmsupported(dev) == GX_CINFO_OPMSUPPORTED) { /* CMYK-like color space */
i = dev->color_info.black_component;
if (i < ncomps)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
for (i = 0; i < ncomps; i++)
cv[i] = frac2cv(cm_comps[i]);
} else {
for (i = 0; i < ncomps; i++) {
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
}
}
/* encode as a color index */
color = dev_proc(dev, encode_color)(dev, cv);
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index) {
color_set_pure(pdc, color);
return;
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
/* ------ Render RGB color. ------ */
static void
cmap_rgb_halftoned(frac r, frac g, frac b, gx_device_color * pdc,
const gs_gstate * pgs, gx_device * dev, gs_color_select_t select)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
/* map to the color model */
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
cmprocs->map_rgb(cmdev, pgs, r, g, b, cm_comps);
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count != 0) {
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++)
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
else
for (i = 0; i < ncomps; i++)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
static void
cmap_rgb_direct(frac r, frac g, frac b, gx_device_color * pdc,
const gs_gstate * pgs, gx_device * dev, gs_color_select_t select)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color;
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
/* map to the color model */
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
cmprocs->map_rgb(cmdev, pgs, r, g, b, cm_comps);
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count == 0) {
for (i = 0; i < ncomps; i++)
cv[i] = frac2cv(cm_comps[i]);
} else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++) {
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
else
for (i = 0; i < ncomps; i++) {
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
/* encode as a color index */
color = dev_proc(dev, encode_color)(dev, cv);
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index) {
color_set_pure(pdc, color);
return;
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
/* ------ Render CMYK color. ------ */
static void
cmap_cmyk_direct(frac c, frac m, frac y, frac k, gx_device_color * pdc,
const gs_gstate * pgs, gx_device * dev, gs_color_select_t select,
const gs_color_space *source_pcs)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color;
uint black_index;
cmm_dev_profile_t *dev_profile;
gsicc_colorbuffer_t src_space = gsUNDEFINED;
bool gray_to_k;
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
/* map to the color model */
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
cmprocs->map_cmyk(cmdev, c, m, y, k, cm_comps);
/* apply the transfer function(s); convert to color values */
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
if (pgs->effective_transfer_non_identity_count != 0)
for (i = 0; i < ncomps; i++)
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
} else {
/* Check if source space is gray. In this case we are to use only the
transfer function on the K channel. Do this only if gray to K is
also set */
dev_proc(dev, get_profile)(dev, &dev_profile);
gray_to_k = dev_profile->devicegraytok;
if (source_pcs != NULL && source_pcs->cmm_icc_profile_data != NULL) {
src_space = source_pcs->cmm_icc_profile_data->data_cs;
} else if (source_pcs != NULL && source_pcs->icc_equivalent != NULL) {
src_space = source_pcs->icc_equivalent->cmm_icc_profile_data->data_cs;
}
if (src_space == gsGRAY && gray_to_k) {
/* Find the black channel location */
black_index = dev_proc(dev, get_color_comp_index)(dev, "Black",
strlen("Black"), SEPARATION_NAME);
cm_comps[black_index] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[black_index]),
effective_transfer[black_index]);
} else if (pgs->effective_transfer_non_identity_count != 0)
for (i = 0; i < ncomps; i++)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
}
/* We make a test for direct vs. halftoned, rather than */
/* duplicating most of the code of this procedure. */
if (gx_device_must_halftone(dev)) {
if (gx_render_device_DeviceN(cm_comps, pdc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
return;
}
/* if output device supports devn, we need to make sure we send it the
proper color type */
if (dev_proc(dev, dev_spec_op)(dev, gxdso_supports_devn, NULL, 0)) {
for (i = 0; i < ncomps; i++)
pdc->colors.devn.values[i] = frac2cv(cm_comps[i]);
pdc->type = gx_dc_type_devn;
} else {
for (i = 0; i < ncomps; i++)
cv[i] = frac2cv(cm_comps[i]);
color = dev_proc(dev, encode_color)(dev, cv);
if (color != gx_no_color_index)
color_set_pure(pdc, color);
else {
if (gx_render_device_DeviceN(cm_comps, pdc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
}
return;
}
/* ------ Render Separation All color. ------ */
/*
* This routine maps DeviceN components into the order of the device's
* colorants.
*
* Parameters:
* pcc - Pointer to DeviceN components.
* pcolor_component_map - Map from DeviceN to the Devices colorants.
* A negative value indicates component is not to be mapped.
* plist - Pointer to list for mapped components
* num_comps - num_comps that we need to zero (may be more than
* is set if we are mapping values for an NCLR ICC profile
* via an alternate tint transform for a sep value) --
* i.e. cmyk+og values and we may have some spots that
* are supported but may have reached the limit and
* using the alt tint values. Need to make sure to zero all.
*
* Returns:
* Mapped components in plist.
*/
static inline void
map_components_to_colorants(const frac * pcc,
const gs_devicen_color_map * pcolor_component_map, frac * plist,
int num_colorants)
{
int i;
int pos;
/* Clear all output colorants first */
for (i = num_colorants - 1; i >= 0; i--) {
plist[i] = frac_0;
}
/* Map color components into output list */
for (i = pcolor_component_map->num_components - 1; i >= 0; i--) {
pos = pcolor_component_map->color_map[i];
if (pos >= 0)
plist[pos] = pcc[i];
}
}
static bool
named_color_supported(const gs_gstate * pgs)
{
gs_color_space *pcs = gs_currentcolorspace_inline(pgs);
gs_color_space_index type = gs_color_space_get_index(pcs);
if (pgs->icc_manager->device_named == NULL)
return false;
if (type == gs_color_space_index_Separation && pcs->params.separation.named_color_supported)
return true;
if (type == gs_color_space_index_DeviceN && pcs->params.device_n.named_color_supported)
return true;
return false;
}
/* Routines for handling CM of CMYK components of a DeviceN color space */
static bool
devicen_has_cmyk(gx_device * dev, cmm_profile_t *des_profile)
{
gs_devn_params *devn_params;
devn_params = dev_proc(dev, ret_devn_params)(dev);
if (devn_params == NULL) {
if (des_profile != NULL && des_profile->data_cs == gsCMYK)
return true;
else
return false;
}
return(devn_params->num_std_colorant_names == 4);
}
static void
devicen_sep_icc_cmyk(frac cm_comps[], const gs_gstate * pgs,
const gs_color_space * pcs, gx_device *dev)
{
gsicc_link_t *icc_link;
gsicc_rendering_param_t rendering_params;
unsigned short psrc[GS_CLIENT_COLOR_MAX_COMPONENTS];
unsigned short psrc_cm[GS_CLIENT_COLOR_MAX_COMPONENTS];
int k, code;
unsigned short *psrc_temp;
gsicc_rendering_param_t render_cond;
cmm_dev_profile_t *dev_profile = NULL;
cmm_profile_t *des_profile = NULL;
cmm_profile_t *src_profile = pgs->icc_manager->default_cmyk;
code = dev_proc(dev, get_profile)(dev, &dev_profile);
/* If we can't transform them, we will just leave them as is. */
if (code < 0)
return;
gsicc_extract_profile(dev->graphics_type_tag,
dev_profile, &des_profile, &render_cond);
/* Define the rendering intents. */
rendering_params.black_point_comp = pgs->blackptcomp;
rendering_params.graphics_type_tag = dev->graphics_type_tag;
rendering_params.override_icc = false;
rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
rendering_params.rendering_intent = pgs->renderingintent;
rendering_params.cmm = gsCMM_DEFAULT;
/* Sigh, frac to full 16 bit. Need to clean this up */
for (k = 0; k < 4; k++) {
psrc[k] = frac2cv(cm_comps[k]);
}
/* Determine what src profile to use. First choice is the attributes
process color space if it is the correct type. Second choice is
the alternate tint transform color space if it is the correct type.
Third type is default_cmyk. If we have an issue with bad profiles then
the color values will just remain as they were from the source */
if (gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN) {
if (pcs->params.device_n.devn_process_space != NULL &&
pcs->params.device_n.devn_process_space->cmm_icc_profile_data != NULL &&
pcs->params.device_n.devn_process_space->cmm_icc_profile_data->data_cs == gsCMYK) {
src_profile = pcs->params.device_n.devn_process_space->cmm_icc_profile_data;
} else if (pcs->base_space != NULL &&
pcs->base_space->cmm_icc_profile_data != NULL &&
pcs->base_space->cmm_icc_profile_data->data_cs == gsCMYK &&
USE_ALT_MAP) {
src_profile = pcs->base_space->cmm_icc_profile_data;
}
} else if (gs_color_space_get_index(pcs) == gs_color_space_index_Separation) {
if (pcs->base_space != NULL &&
pcs->base_space->cmm_icc_profile_data != NULL &&
pcs->base_space->cmm_icc_profile_data->data_cs == gsCMYK &&
USE_ALT_MAP) {
src_profile = pcs->base_space->cmm_icc_profile_data;
}
}
icc_link = gsicc_get_link_profile(pgs, dev, src_profile, des_profile,
&rendering_params, pgs->memory, dev_profile->devicegraytok);
if (icc_link == NULL && src_profile != pgs->icc_manager->default_cmyk) {
icc_link = gsicc_get_link_profile(pgs, dev,
pgs->icc_manager->default_cmyk, des_profile,
&rendering_params, pgs->memory, dev_profile->devicegraytok);
}
/* If we can't transform them, we will just leave them as is. */
if (icc_link == NULL)
return;
/* Transform the color */
if (icc_link->is_identity) {
psrc_temp = &(psrc[0]);
} else {
/* Transform the color */
psrc_temp = &(psrc_cm[0]);
(icc_link->procs.map_color)(dev, icc_link, psrc, psrc_temp, 2);
}
/* This needs to be optimized */
for (k = 0; k < 4; k++) {
cm_comps[k] = float2frac(((float)psrc_temp[k]) / 65535.0);
}
/* Release the link */
gsicc_release_link(icc_link);
}
static void
cmap_separation_halftoned(frac all, gx_device_color * pdc,
const gs_gstate * pgs, gx_device * dev, gs_color_select_t select,
const gs_color_space *pcs)
{
uint i, ncomps = dev->color_info.num_components;
bool additive = dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE;
frac comp_value = all;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gsicc_rendering_param_t render_cond;
cmm_dev_profile_t *dev_profile = NULL;
cmm_profile_t *des_profile = NULL;
dev_proc(dev, get_profile)(dev, &dev_profile);
gsicc_extract_profile(dev->graphics_type_tag,
dev_profile, &des_profile, &render_cond);
if (pgs->color_component_map.sep_type == SEP_ALL) {
/*
* Invert the photometric interpretation for additive
* color spaces because separations are always subtractive.
*/
if (additive)
comp_value = frac_1 - comp_value;
/* Use the "all" value for all components */
for (i = 0; i < pgs->color_component_map.num_colorants; i++)
cm_comps[i] = comp_value;
} else {
if (pgs->color_component_map.sep_type == SEP_NONE) {
color_set_null(pdc);
return;
}
/* map to the color model */
map_components_to_colorants(&all, &(pgs->color_component_map), cm_comps,
pgs->color_component_map.num_colorants);
}
if (devicen_has_cmyk(dev, des_profile) &&
des_profile->data_cs == gsCMYK &&
!named_color_supported(pgs)) {
devicen_sep_icc_cmyk(cm_comps, pgs, pcs, dev);
}
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count != 0) {
if (additive)
for (i = 0; i < ncomps; i++)
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
else
for (i = 0; i < ncomps; i++)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
static void
cmap_separation_direct(frac all, gx_device_color * pdc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select, const gs_color_space *pcs)
{
uint i, ncomps = dev->color_info.num_components;
bool additive = dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE;
frac comp_value = all;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color;
bool use_rgb2dev_icc = false;
gsicc_rendering_param_t render_cond;
cmm_dev_profile_t *dev_profile = NULL;
cmm_profile_t *des_profile = NULL;
dev_proc(dev, get_profile)(dev, &dev_profile);
gsicc_extract_profile(dev->graphics_type_tag,
dev_profile, &des_profile, &render_cond);
if (pgs->color_component_map.sep_type == SEP_ALL) {
/*
* Invert the photometric interpretation for additive
* color spaces because separations are always subtractive.
*/
if (additive)
comp_value = frac_1 - comp_value;
/* Use the "all" value for all components */
for (i = 0; i < pgs->color_component_map.num_colorants; i++)
cm_comps[i] = comp_value;
/* If our device space is CIELAB then we really want to treat this
as RGB during the fill up here of the separation value and then
go ahead and convert from RGB to CIELAB. The PDF spec is not clear
on how addivite devices should behave with the ALL option but it
is clear from testing the AR 10 does simply do the RGB = 1 - INK
type of mapping */
if (des_profile->data_cs == gsCIELAB || des_profile->islab) {
use_rgb2dev_icc = true;
}
} else {
if (pgs->color_component_map.sep_type == SEP_NONE) {
color_set_null(pdc);
return;
}
/* map to the color model */
map_components_to_colorants(&comp_value, &(pgs->color_component_map), cm_comps,
pgs->color_component_map.num_colorants);
}
/* Check if we have the standard colorants. If yes, then we will apply
ICC color management to those colorants. */
if (devicen_has_cmyk(dev, des_profile) && des_profile->data_cs == gsCMYK &&
!named_color_supported(pgs)) {
/* We need to do a CMYK to CMYK conversion here. This will always
use the default CMYK profile and the device's output profile.
We probably need to add some checking here
and possibly permute the colorants, much as is done on the input
side for the case when we add DeviceN icc source profiles for use
in PDF and PS data. Also, don't do this if we are doing mapping
through the named color mapping. */
devicen_sep_icc_cmyk(cm_comps, pgs, pcs, dev);
}
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count == 0)
for (i = 0; i < ncomps; i++)
cv[i] = frac2cv(cm_comps[i]);
else if (additive)
for (i = 0; i < ncomps; i++) {
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
else
for (i = 0; i < ncomps; i++) {
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
if (use_rgb2dev_icc && pgs->icc_manager->default_rgb != NULL) {
/* After the transfer function go ahead and do the mapping from RGB to
the device profile. */
gsicc_link_t *icc_link;
gsicc_rendering_param_t rendering_params;
unsigned short psrc[GS_CLIENT_COLOR_MAX_COMPONENTS], psrc_cm[GS_CLIENT_COLOR_MAX_COMPONENTS];
rendering_params.black_point_comp = pgs->blackptcomp;
rendering_params.graphics_type_tag = dev->graphics_type_tag;
rendering_params.override_icc = false;
rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
rendering_params.rendering_intent = pgs->renderingintent;
rendering_params.cmm = gsCMM_DEFAULT;
icc_link = gsicc_get_link_profile(pgs, dev, pgs->icc_manager->default_rgb,
des_profile, &rendering_params,
pgs->memory, dev_profile->devicegraytok);
/* Transform the color */
for (i = 0; i < ncomps; i++) {
psrc[i] = cv[i];
}
(icc_link->procs.map_color)(dev, icc_link, &(psrc[0]), &(psrc_cm[0]), 2);
gsicc_release_link(icc_link);
for (i = 0; i < ncomps; i++) {
cv[i] = psrc_cm[i];
}
}
/* if output device supports devn, we need to make sure we send it the
proper color type */
if (dev_proc(dev, dev_spec_op)(dev, gxdso_supports_devn, NULL, 0)) {
for (i = 0; i < ncomps; i++)
pdc->colors.devn.values[i] = cv[i];
pdc->type = gx_dc_type_devn;
return;
}
/* encode as a color index */
color = dev_proc(dev, encode_color)(dev, cv);
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index) {
color_set_pure(pdc, color);
return;
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
/* ------ DeviceN color mapping */
/*
* This routine is called to map a DeviceN colorspace to a DeviceN
* output device which requires halftoning. T
*/
static void
cmap_devicen_halftoned(const frac * pcc,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select, const gs_color_space *pcs)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gsicc_rendering_param_t render_cond;
cmm_dev_profile_t *dev_profile = NULL;
cmm_profile_t *des_profile = NULL;
if (pcs->params.device_n.all_none == true) {
color_set_null(pdc);
return;
}
dev_proc(dev, get_profile)(dev, &dev_profile);
gsicc_extract_profile(dev->graphics_type_tag,
dev_profile, &des_profile, &render_cond);
/* map to the color model */
map_components_to_colorants(pcc, &(pgs->color_component_map), cm_comps,
pgs->color_component_map.num_colorants);
/* See comments in cmap_devicen_direct for details on below operations */
if (devicen_has_cmyk(dev, des_profile) &&
des_profile->data_cs == gsCMYK &&
!named_color_supported(pgs)) {
devicen_sep_icc_cmyk(cm_comps, pgs, pcs, dev);
}
/* apply the transfer function(s); convert to color values */
if (pgs->effective_transfer_non_identity_count != 0) {
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++)
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
else
for (i = 0; i < ncomps; i++)
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
}
/* We need to finish halftoning */
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
/*
* This routine is called to map a DeviceN colorspace to a DeviceN
* output device which does not require halftoning.
*/
static void
cmap_devicen_direct(const frac * pcc,
gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev,
gs_color_select_t select, const gs_color_space *pcs)
{
uchar i, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color;
gsicc_rendering_param_t render_cond;
cmm_dev_profile_t *dev_profile = NULL;
cmm_profile_t *des_profile = NULL;
if (pcs->params.device_n.all_none == true) {
color_set_null(pdc);
return;
}
dev_proc(dev, get_profile)(dev, &dev_profile);
gsicc_extract_profile(dev->graphics_type_tag,
dev_profile, &des_profile, &render_cond);
/* See the comment below */
/* map to the color model */
if (dev_profile->spotnames != NULL && dev_profile->spotnames->equiv_cmyk_set) {
map_components_to_colorants(pcc, dev_profile->spotnames->color_map,
cm_comps, ncomps);
} else {
map_components_to_colorants(pcc, &(pgs->color_component_map), cm_comps,
pgs->color_component_map.num_colorants);
}
/* Check if we have the standard colorants. If yes, then we will apply
ICC color management to those colorants. To understand why, consider
the example where I have a Device with CMYK + O and I have a
DeviceN color in the document that is specified for any set of
these colorants, and suppose that I let them pass through
witout any color management. This is probably not the
desired effect since I could have a DeviceN color fill that had 10% C,
20% M 0% Y 0% K and 0% O. I would like this to look the same
as a CMYK color that will be color managed and specified with 10% C,
20% M 0% Y 0% K. Hence the CMYK values should go through the same
color management as a stand alone CMYK value. */
if (devicen_has_cmyk(dev, des_profile) && des_profile->data_cs == gsCMYK &&
!named_color_supported(pgs)) {
/* We need to do a CMYK to CMYK conversion here. This will always
use the default CMYK profile and the device's output profile.
We probably need to add some checking here
and possibly permute the colorants, much as is done on the input
side for the case when we add DeviceN icc source profiles for use
in PDF and PS data. Also, don't do this if we are doing mapping
through the named color mapping. */
devicen_sep_icc_cmyk(cm_comps, pgs, pcs, dev);
}
/* apply the transfer function(s); convert to color values.
assign directly if output device supports devn */
if (dev_proc(dev, dev_spec_op)(dev, gxdso_supports_devn, NULL, 0)) {
if (pgs->effective_transfer_non_identity_count == 0)
for (i = 0; i < ncomps; i++)
pdc->colors.devn.values[i] = frac2cv(cm_comps[i]);
else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++)
pdc->colors.devn.values[i] = frac2cv(gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]));
else
for (i = 0; i < ncomps; i++)
pdc->colors.devn.values[i] = frac2cv(frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]));
pdc->type = gx_dc_type_devn;
return;
}
if (pgs->effective_transfer_non_identity_count == 0)
for (i = 0; i < ncomps; i++)
cv[i] = frac2cv(cm_comps[i]);
else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++) {
cm_comps[i] = gx_map_color_frac(pgs,
cm_comps[i], effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
else
for (i = 0; i < ncomps; i++) {
cm_comps[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cm_comps[i]), effective_transfer[i]);
cv[i] = frac2cv(cm_comps[i]);
}
/* encode as a color index */
color = dev_proc(dev, encode_color)(dev, cv);
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index) {
color_set_pure(pdc, color);
return;
}
if (gx_render_device_DeviceN(cm_comps, pdc, dev, gx_select_dev_ht(pgs),
&pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
}
/* ------ Halftoning check ----- */
static bool
cmap_halftoned_is_halftoned(const gs_gstate * pgs, gx_device * dev)
{
return true;
}
static bool
cmap_direct_is_halftoned(const gs_gstate * pgs, gx_device * dev)
{
return false;
}
/* ------ Transfer function mapping ------ */
/* Define an identity transfer function. */
float
gs_identity_transfer(double value, const gx_transfer_map * pmap)
{
return (float) value;
}
/* Define the generic transfer function for the library layer. */
/* This just returns what's already in the map. */
float
gs_mapped_transfer(double value, const gx_transfer_map * pmap)
{
return gx_map_color_float(pmap, value);
}
/* Set a transfer map to the identity map. */
void
gx_set_identity_transfer(gx_transfer_map *pmap)
{
int i;
pmap->proc = gs_identity_transfer;
/* We still have to fill in the cached values. */
for (i = 0; i < transfer_map_size; ++i)
pmap->values[i] = bits2frac(i, log2_transfer_map_size);
}
#if FRAC_MAP_INTERPOLATE /* NOTA BENE */
/* Map a color fraction through a transfer map. */
/* We only use this if we are interpolating. */
frac
gx_color_frac_map(frac cv, const frac * values)
{
#define cp_frac_bits (frac_bits - log2_transfer_map_size)
int cmi = frac2bits_floor(cv, log2_transfer_map_size);
frac mv = values[cmi];
int rem, mdv;
/* Interpolate between two adjacent values if needed. */
rem = cv - bits2frac(cmi, log2_transfer_map_size);
if (rem == 0)
return mv;
mdv = values[cmi + 1] - mv;
#if ARCH_INTS_ARE_SHORT
/* Only use long multiplication if necessary. */
if (mdv < -(1 << (16 - cp_frac_bits)) ||
mdv > 1 << (16 - cp_frac_bits)
)
return mv + (uint) (((ulong) rem * mdv) >> cp_frac_bits);
#endif
return mv + ((rem * mdv) >> cp_frac_bits);
#undef cp_frac_bits
}
#endif /* FRAC_MAP_INTERPOLATE */
/* ------ Default device color mapping ------ */
/* White-on-black */
gx_color_index
gx_default_w_b_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{ /* Map values >= 1/2 to 1, < 1/2 to 0. */
int i, ncomps = dev->color_info.num_components;
gx_color_value cv_all = 0;
for (i = 0; i < ncomps; i++)
cv_all |= cv[i];
return cv_all > gx_max_color_value / 2 ? (gx_color_index)1
: (gx_color_index)0;
}
int
gx_default_w_b_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{ /* Map 1 to max_value, 0 to 0. */
prgb[0] = prgb[1] = prgb[2] = -(gx_color_value) color;
return 0;
}
gx_color_index
gx_default_w_b_mono_encode_color(gx_device *dev, const gx_color_value cv[])
{
return cv[0] > gx_max_color_value / 2 ? (gx_color_index)1
: (gx_color_index)0;
}
int
gx_default_w_b_mono_decode_color(gx_device * dev, gx_color_index color,
gx_color_value pgray[1])
{ /* Map 0 to max_value, 1 to 0. */
pgray[0] = -(gx_color_value) color;
return 0;
}
/* Black-on-white */
gx_color_index
gx_default_b_w_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
uchar i, ncomps = dev->color_info.num_components;
gx_color_value cv_all = 0;
for (i = 0; i < ncomps; i++)
cv_all |= cv[i];
return cv_all > gx_max_color_value / 2 ? (gx_color_index)0
: (gx_color_index)1;
}
int
gx_default_b_w_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{ /* Map 0 to max_value, 1 to 0. */
prgb[0] = prgb[1] = prgb[2] = -((gx_color_value) color ^ 1);
return 0;
}
gx_color_index
gx_default_b_w_mono_encode_color(gx_device *dev, const gx_color_value cv[])
{
return cv[0] > gx_max_color_value / 2 ? (gx_color_index)0
: (gx_color_index)1;
}
int
gx_default_b_w_mono_decode_color(gx_device * dev, gx_color_index color,
gx_color_value pgray[1])
{ /* Map 0 to max_value, 1 to 0. */
pgray[0] = -((gx_color_value) color ^ 1);
return 0;
}
/* RGB mapping for gray-scale devices */
gx_color_index
gx_default_gray_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{ /* We round the value rather than truncating it. */
gx_color_value gray =
(((cv[0] * (ulong) lum_red_weight) +
(cv[1] * (ulong) lum_green_weight) +
(cv[2] * (ulong) lum_blue_weight) +
(lum_all_weights / 2)) / lum_all_weights
* dev->color_info.max_gray +
(gx_max_color_value / 2)) / gx_max_color_value;
return gray;
}
int
gx_default_gray_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
gx_color_value gray = (gx_color_value)
(color * gx_max_color_value / dev->color_info.max_gray);
prgb[0] = gray;
prgb[1] = gray;
prgb[2] = gray;
return 0;
}
gx_color_index
gx_default_gray_encode_color(gx_device * dev, const gx_color_value cv[])
{
gx_color_value gray = (cv[0] * dev->color_info.max_gray +
(gx_max_color_value / 2)) / gx_max_color_value;
return gray;
}
int
gx_default_gray_decode_color(gx_device * dev, gx_color_index color,
gx_color_value *cv)
{
gx_color_value gray = (gx_color_value)
(color * gx_max_color_value / dev->color_info.max_gray);
cv[0] = gray;
return 0;
}
gx_color_index
gx_default_8bit_map_gray_color(gx_device * dev, const gx_color_value cv[])
{
gx_color_index color = gx_color_value_to_byte(cv[0]);
return color;
}
int
gx_default_8bit_map_color_gray(gx_device * dev, gx_color_index color,
gx_color_value pgray[1])
{
pgray[0] = (gx_color_value)(color * gx_max_color_value / 255);
return 0;
}
/* RGB mapping for 24-bit true (RGB) color devices */
gx_color_index
gx_default_rgb_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
if (dev->color_info.depth == 24)
return gx_color_value_to_byte(cv[2]) +
((uint) gx_color_value_to_byte(cv[1]) << 8) +
((ulong) gx_color_value_to_byte(cv[0]) << 16);
else {
COLROUND_VARS;
int bpc = dev->color_info.depth / 3;
COLROUND_SETUP(bpc);
return (((COLROUND_ROUND(cv[0]) << bpc) +
COLROUND_ROUND(cv[1])) << bpc) +
COLROUND_ROUND(cv[2]);
}
}
/* Map a color index to a r-g-b color. */
int
gx_default_rgb_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
if (dev->color_info.depth == 24) {
prgb[0] = gx_color_value_from_byte(color >> 16);
prgb[1] = gx_color_value_from_byte((color >> 8) & 0xff);
prgb[2] = gx_color_value_from_byte(color & 0xff);
} else {
uint bits_per_color = dev->color_info.depth / 3;
uint color_mask = (1 << bits_per_color) - 1;
prgb[0] = ((color >> (bits_per_color * 2)) & color_mask) *
(ulong) gx_max_color_value / color_mask;
prgb[1] = ((color >> (bits_per_color)) & color_mask) *
(ulong) gx_max_color_value / color_mask;
prgb[2] = (color & color_mask) *
(ulong) gx_max_color_value / color_mask;
}
return 0;
}
/* CMYK mapping for RGB devices (should never be called!) */
gx_color_index
gx_default_map_cmyk_color(gx_device * dev, const gx_color_value cv[])
{ /* Convert to RGB */
frac rgb[3];
gx_color_value rgb_cv[3];
color_cmyk_to_rgb(cv2frac(cv[0]), cv2frac(cv[1]), cv2frac(cv[2]), cv2frac(cv[3]),
NULL, rgb, dev->memory);
rgb_cv[0] = frac2cv(rgb[0]);
rgb_cv[1] = frac2cv(rgb[1]);
rgb_cv[2] = frac2cv(rgb[2]);
return (*dev_proc(dev, map_rgb_color)) (dev, rgb_cv);
}
/* Mapping for CMYK devices */
gx_color_index
cmyk_1bit_map_cmyk_color(gx_device * dev, const gx_color_value cv[])
{
#define CV_BIT(v) ((v) >> (gx_color_value_bits - 1))
return (gx_color_index)
(CV_BIT(cv[3]) + (CV_BIT(cv[2]) << 1) + (CV_BIT(cv[1]) << 2) + (CV_BIT(cv[0]) << 3));
#undef CV_BIT
}
/* Shouldn't be called: decode_color should be cmyk_1bit_map_color_cmyk */
int
cmyk_1bit_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
if (color & 1)
prgb[0] = prgb[1] = prgb[2] = 0;
else {
prgb[0] = (color & 8 ? 0 : gx_max_color_value);
prgb[1] = (color & 4 ? 0 : gx_max_color_value);
prgb[2] = (color & 2 ? 0 : gx_max_color_value);
}
return 0;
}
int
cmyk_1bit_map_color_cmyk(gx_device * dev, gx_color_index color,
gx_color_value pcv[4])
{
pcv[0] = (color & 8 ? 0 : gx_max_color_value);
pcv[1] = (color & 4 ? 0 : gx_max_color_value);
pcv[2] = (color & 2 ? 0 : gx_max_color_value);
pcv[3] = (color & 1 ? 0 : gx_max_color_value);
return 0;
}
gx_color_index
cmyk_8bit_map_cmyk_color(gx_device * dev, const gx_color_value cv[])
{
gx_color_index color =
gx_color_value_to_byte(cv[3]) +
((uint)gx_color_value_to_byte(cv[2]) << 8) +
((uint)gx_color_value_to_byte(cv[1]) << 16) +
((uint)gx_color_value_to_byte(cv[0]) << 24);
#if ARCH_SIZEOF_GX_COLOR_INDEX > 4
return color;
#else
return (color == gx_no_color_index ? color ^ 1 : color);
#endif
}
gx_color_index
cmyk_16bit_map_cmyk_color(gx_device * dev, const gx_color_value cv[])
{
gx_color_index color =
(uint64_t)cv[3] +
((uint64_t)cv[2] << 16) +
((uint64_t)cv[1] << 32) +
((uint64_t)cv[0] << 48);
return (color == gx_no_color_index ? color ^ 1 : color);
}
/* Shouldn't be called: decode_color should be cmyk_8bit_map_color_cmyk */
int
cmyk_8bit_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
int
not_k = (int) (~color & 0xff),
r = not_k - (int) (color >> 24),
g = not_k - (int) ((color >> 16) & 0xff),
b = not_k - (int) ((color >> 8) & 0xff);
prgb[0] = (r < 0 ? 0 : gx_color_value_from_byte(r));
prgb[1] = (g < 0 ? 0 : gx_color_value_from_byte(g));
prgb[2] = (b < 0 ? 0 : gx_color_value_from_byte(b));
return 0;
}
int
cmyk_8bit_map_color_cmyk(gx_device * dev, gx_color_index color,
gx_color_value pcv[4])
{
pcv[0] = gx_color_value_from_byte((color >> 24) & 0xff);
pcv[1] = gx_color_value_from_byte((color >> 16) & 0xff);
pcv[2] = gx_color_value_from_byte((color >> 8) & 0xff);
pcv[3] = gx_color_value_from_byte(color & 0xff);
return 0;
}
int
cmyk_16bit_map_color_cmyk(gx_device * dev, gx_color_index color,
gx_color_value pcv[4])
{
pcv[0] = ((color >> 24) >> 24) & 0xffff;
pcv[1] = ((color >> 16) >> 16) & 0xffff;
pcv[2] = ( color >> 16) & 0xffff;
pcv[3] = ( color ) & 0xffff;
return 0;
}
int
cmyk_16bit_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
gx_color_value c = ((color >> 24) >> 24) & 0xffff;
gx_color_value m = ((color >> 16) >> 16) & 0xffff;
gx_color_value y = ( color >> 16) & 0xffff;
gx_color_value not_k = (~color ) & 0xffff;
int r = not_k - c;
int g = not_k - m;
int b = not_k - y;
prgb[0] = (r < 0 ? 0 : r);
prgb[1] = (g < 0 ? 0 : g);
prgb[2] = (b < 0 ? 0 : b);
return 0;
}
frac
gx_unit_frac(float fvalue)
{
frac f = frac_0;
if (is_fneg(fvalue))
f = frac_0;
else if (is_fge1(fvalue))
f = frac_1;
else
f = float2frac(fvalue);
return f;
}
static void
cmapper_transfer_halftone_add(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
gs_color_select_t select = data->select;
uchar ncomps = dev->color_info.num_components;
frac frac_value;
uchar i;
frac cv_frac[GX_DEVICE_COLOR_MAX_COMPONENTS];
/* apply the transfer function(s) */
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
cv_frac[i] = gx_map_color_frac(pgs, frac_value, effective_transfer[i]);
}
/* Halftoning */
if (gx_render_device_DeviceN(&(cv_frac[0]), &data->devc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(&data->devc, pgs, dev, select);
}
static void
cmapper_transfer_halftone_op(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
gs_color_select_t select = data->select;
uchar ncomps = dev->color_info.num_components;
frac frac_value;
uchar i;
frac cv_frac[GX_DEVICE_COLOR_MAX_COMPONENTS];
/* apply the transfer function(s) */
uint k = dev->color_info.black_component;
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
if (i == k) {
cv_frac[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[i]);
} else {
cv_frac[i] = frac_value; /* Ignore transfer, see PLRM3 p. 494 */
}
}
/* Halftoning */
if (gx_render_device_DeviceN(&(cv_frac[0]), &data->devc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(&data->devc, pgs, dev, select);
}
static void
cmapper_transfer_halftone_sub(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
gs_color_select_t select = data->select;
uchar ncomps = dev->color_info.num_components;
frac frac_value;
uchar i;
frac cv_frac[GX_DEVICE_COLOR_MAX_COMPONENTS];
/* apply the transfer function(s) */
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
cv_frac[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[i]);
}
/* Halftoning */
if (gx_render_device_DeviceN(&(cv_frac[0]), &data->devc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(&data->devc, pgs, dev, select);
}
static void
cmapper_transfer_add(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
uchar ncomps = dev->color_info.num_components;
frac frac_value;
uchar i;
gx_color_index color;
/* apply the transfer function(s) */
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
frac_value = gx_map_color_frac(pgs,
frac_value, effective_transfer[i]);
pconc[i] = frac2cv(frac_value);
}
/* Halftoning */
color = dev_proc(dev, encode_color)(dev, &(pconc[0]));
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(&data->devc, color);
}
static void
cmapper_transfer_op(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
frac frac_value;
gx_color_index color;
uint k = dev->color_info.black_component;
/* Ignore transfer for non blacks, see PLRM3 p. 494 */
frac_value = cv2frac(pconc[k]);
frac_value = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[k]);
pconc[k] = frac2cv(frac_value);
/* Halftoning */
color = dev_proc(dev, encode_color)(dev, &(pconc[0]));
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(&data->devc, color);
}
static void
cmapper_transfer_sub(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
uchar ncomps = dev->color_info.num_components;
frac frac_value;
uchar i;
gx_color_index color;
/* apply the transfer function(s) */
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
frac_value = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[i]);
pconc[i] = frac2cv(frac_value);
}
/* Halftoning */
color = dev_proc(dev, encode_color)(dev, &(pconc[0]));
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(&data->devc, color);
}
/* This is used by image color render to handle the cases where we need to
perform either a transfer function or halftoning on the color values
during an ICC color flow. In this case, the color is already in the
device color space but in 16bpp color values. */
static void
cmapper_halftone(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
const gs_gstate * pgs = data->pgs;
gx_device * dev = data->dev;
gs_color_select_t select = data->select;
uchar ncomps = dev->color_info.num_components;
uchar i;
frac cv_frac[GX_DEVICE_COLOR_MAX_COMPONENTS];
/* We need this to be in frac form */
for (i = 0; i < ncomps; i++) {
cv_frac[i] = cv2frac(pconc[i]);
}
if (gx_render_device_DeviceN(&(cv_frac[0]), &data->devc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(&data->devc, pgs, dev, select);
}
/* This is used by image color render to handle the cases where we need to
perform either a transfer function or halftoning on the color values
during an ICC color flow. In this case, the color is already in the
device color space but in 16bpp color values. */
static void
cmapper_vanilla(gx_cmapper_t *data)
{
gx_color_value *pconc = &data->conc[0];
gx_device * dev = data->dev;
gx_color_index color;
color = dev_proc(dev, encode_color)(dev, &(pconc[0]));
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(&data->devc, color);
}
void
gx_get_cmapper(gx_cmapper_t *data, const gs_gstate *pgs,
gx_device *dev, bool has_transfer, bool has_halftone,
gs_color_select_t select)
{
memset(&(data->conc[0]), 0, sizeof(gx_color_value[GX_DEVICE_COLOR_MAX_COMPONENTS]));
data->pgs = pgs;
data->dev = dev;
data->select = select;
data->devc.type = gx_dc_type_none;
data->direct = 0;
/* Per spec. Images with soft mask, and the mask, do not use transfer function */
if (pgs->effective_transfer_non_identity_count == 0 ||
(dev_proc(dev, dev_spec_op)(dev, gxdso_in_smask, NULL, 0)) > 0)
has_transfer = 0;
if (has_transfer) {
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
if (has_halftone)
data->set_color = cmapper_transfer_halftone_add;
else
data->set_color = cmapper_transfer_add;
} else if (gx_get_opmsupported(dev) == GX_CINFO_OPMSUPPORTED) {
if (has_halftone)
data->set_color = cmapper_transfer_halftone_op;
else
data->set_color = cmapper_transfer_op;
} else {
if (has_halftone)
data->set_color = cmapper_transfer_halftone_sub;
else
data->set_color = cmapper_transfer_sub;
}
} else {
if (has_halftone)
data->set_color = cmapper_halftone;
else {
int code = dev_proc(dev, dev_spec_op)(dev, gxdso_is_encoding_direct, NULL, 0);
data->set_color = cmapper_vanilla;
data->direct = (code == 1);
}
}
}
/* This is used by image color render to handle the cases where we need to
perform either a transfer function or halftoning on the color values
during an ICC color flow. In this case, the color is already in the
device color space but in 16bpp color values. */
void
cmap_transfer_halftone(gx_color_value *pconc, gx_device_color * pdc,
const gs_gstate * pgs, gx_device * dev, bool has_transfer,
bool has_halftone, gs_color_select_t select)
{
uchar ncomps = dev->color_info.num_components;
frac frac_value;
uchar i;
frac cv_frac[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color;
gx_color_value color_val[GX_DEVICE_COLOR_MAX_COMPONENTS];
/* apply the transfer function(s) */
if (has_transfer) {
if (pgs->effective_transfer_non_identity_count == 0) {
for (i = 0; i < ncomps; i++)
cv_frac[i] = cv2frac(pconc[i]);
} else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
cv_frac[i] = gx_map_color_frac(pgs,
frac_value, effective_transfer[i]);
}
} else {
if (gx_get_opmsupported(dev) == GX_CINFO_OPMSUPPORTED) { /* CMYK-like color space */
uint k = dev->color_info.black_component;
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
if (i == k) {
cv_frac[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[i]);
} else {
cv_frac[i] = cv2frac(pconc[i]); /* Ignore transfer, see PLRM3 p. 494 */
}
}
} else {
for (i = 0; i < ncomps; i++) {
frac_value = cv2frac(pconc[i]);
cv_frac[i] = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[i]);
}
}
}
} else {
if (has_halftone) {
/* We need this to be in frac form */
for (i = 0; i < ncomps; i++) {
cv_frac[i] = cv2frac(pconc[i]);
}
}
}
/* Halftoning */
if (has_halftone) {
if (gx_render_device_DeviceN(&(cv_frac[0]), pdc, dev,
gx_select_dev_ht(pgs), &pgs->screen_phase[select]) == 1)
gx_color_load_select(pdc, pgs, dev, select);
} else {
/* We have a frac value from the transfer function. Do the encode.
which does not take a frac value... */
for (i = 0; i < ncomps; i++) {
color_val[i] = frac2cv(cv_frac[i]);
}
color = dev_proc(dev, encode_color)(dev, &(color_val[0]));
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(pdc, color);
}
}
/* This is used by image color render to apply only the transfer function.
We follow this up with threshold rendering. */
void
cmap_transfer(gx_color_value *pconc, const gs_gstate * pgs, gx_device * dev)
{
uchar ncomps = dev->color_info.num_components;
uchar i;
/* apply the transfer function(s) */
if (pgs->effective_transfer_non_identity_count == 0) {
/* No transfer function to apply */
} else if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE)
for (i = 0; i < ncomps; i++)
pconc[i] = frac2cv(gx_map_color_frac(pgs,
cv2frac(pconc[i]), effective_transfer[i]));
else {
if (gx_get_opmsupported(dev) == GX_CINFO_OPMSUPPORTED) { /* CMYK-like color space */
i = dev->color_info.black_component;
if (i < ncomps)
pconc[i] = frac2cv(frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cv2frac(pconc[i])), effective_transfer[i]));
} else {
for (i = 0; i < ncomps; i++)
pconc[i] = frac2cv(frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - cv2frac(pconc[i])), effective_transfer[i]));
}
}
}
/* A planar version which applies only one transfer function */
void
cmap_transfer_plane(gx_color_value *pconc, const gs_gstate *pgs,
gx_device *dev, int plane)
{
frac frac_value;
frac cv_frac;
/* apply the transfer function(s) */
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
frac_value = cv2frac(pconc[0]);
cv_frac = gx_map_color_frac(pgs, frac_value, effective_transfer[plane]);
pconc[0] = frac2cv(cv_frac);
} else {
if (gx_get_opmsupported(dev) == GX_CINFO_OPMSUPPORTED) { /* CMYK-like color space */
uint k = dev->color_info.black_component;
if (plane == k) {
frac_value = cv2frac(pconc[0]);
cv_frac = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[plane]);
pconc[0] = frac2cv(cv_frac);
}
} else {
frac_value = cv2frac(pconc[0]);
cv_frac = frac_1 - gx_map_color_frac(pgs,
(frac)(frac_1 - frac_value), effective_transfer[plane]);
pconc[0] = frac2cv(cv_frac);
}
}
}
bool
gx_device_uses_std_cmap_procs(gx_device * dev, const gs_gstate * pgs)
{
const gx_cm_color_map_procs *pprocs;
gsicc_rendering_param_t render_cond;
cmm_dev_profile_t *dev_profile = NULL;
cmm_profile_t *des_profile = NULL;
dev_proc(dev, get_profile)(dev, &dev_profile);
gsicc_extract_profile(dev->graphics_type_tag,
dev_profile, &des_profile, &render_cond);
if (des_profile != NULL) {
const gx_device *cmdev;
pprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
/* Check if they are forwarding procs */
switch(des_profile->num_comps) {
case 1:
if (pprocs == &DeviceGray_procs) {
return true;
}
break;
case 3:
if (pprocs == &DeviceRGB_procs) {
return true;
}
break;
case 4:
if (pprocs == &DeviceCMYK_procs) {
return true;
}
break;
default:
break;
}
}
return false;
}
|