1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* A stuff for reconnizing and fixing wrong contour signs. */
#include "memory_.h"
#include "math_.h"
#include "gx.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gstypes.h"
#include "gxmatrix.h"
#include "gxhintn.h"
#include "gzpath.h"
#define CURVE_FLATTENING (fixed_1) /* Design units in 'fixed'. */
static double inline line_area_2(fixed p0x, fixed p0y, fixed p1x, fixed p1y)
{ /* Returns area * 2.*/
return ((double)p0x*p1y - (double)p0y*p1x);
}
static double inline bezier_area_2(fixed p0x, fixed p0y, fixed p1x, fixed p1y,
fixed p2x, fixed p2y, fixed p3x, fixed p3y)
{ /* Returns area * 2.*/
return (-(p0y*(6.0*p1x + 3.0*p2x + p3x)) + p0x*(6.0*p1y + 3.0*p2y + p3y) -
3*((double)p1y*p2x + (double)p1y*p3x + 2.0*p2y*p3x - 2.0*p2x*p3y - (double)p1x*(p2y + p3y)))/10;
}
static void t1_hinter__reverse_contour(t1_hinter * self, int c)
{
int b = self->contour[c];
int e = self->contour[c + 1] - 1; /* Skip 'close'. */
int e2 = (b + e + 1) / 2;
int i;
t1_pole p;
/* Reverse all except endpoint ('close') : */
for (i = b + 1; i < e2; i++) {
int j = e - (i - b);
p = self->pole[i];
self->pole[i] = self->pole[j];
self->pole[j] = p;
}
}
#define CONTACT_SIGNAL -100000.0
static double inline bar_winding_angle(fixed x0, fixed y0, fixed x1, fixed y1)
{
double vp = (double)x0 * y1 - (double)y0 * x1;
double sp = (double)x0 * x1 + (double)y0 * y1;
double A;
if (sp == 0) {
if (vp == 0)
return CONTACT_SIGNAL; /* Contours contact. */
A = 1.57079632679489661923; /* pi/2. */
if (vp < 0)
A = -A;
} else
A = atan2(vp, sp);
return A;
}
static double
curve_winding_angle_rec(int k, fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
if (k <= 1)
return bar_winding_angle(x0, y0, x3, y3);
else {
/* Assuming the trapezoid is not self-intersecting and
the curve is inside the trapezoid
due to Type 1 constraints. */
double a0 = bar_winding_angle(x0, y0, x1, y1);
double a1 = bar_winding_angle(x1, y1, x2, y2);
double a2 = bar_winding_angle(x2, y2, x3, y3);
double a3 = bar_winding_angle(x3, y3, x0, y0);
double a = a0 + a1 + a2 + a3;
if (any_abs(a) < 0.1 && a0 != CONTACT_SIGNAL &&
a1 != CONTACT_SIGNAL &&
a2 != CONTACT_SIGNAL &&
a3 != CONTACT_SIGNAL) {
/* The center is outside the trapezoid. */
return -a3;
} else {
fixed x01 = (x0 + x1) / 2, y01 = (y0 + y1) / 2;
fixed x12 = (x1 + x2) / 2, y12 = (y1 + y2) / 2;
fixed x23 = (x2 + x3) / 2, y23 = (y2 + y3) / 2;
fixed x012 = (x01 + x12) / 2, y012 = (y01 + y12) / 2;
fixed x123 = (x12 + x23) / 2, y123 = (y12 + y23) / 2;
fixed x0123 = (x012 + x123) / 2, y0123 = (y012 + y123) / 2;
double A0, A1;
A0 = curve_winding_angle_rec(k - 1, x0, y0, x01, y01, x012, y012, x0123, y0123);
if (A0 == CONTACT_SIGNAL)
return CONTACT_SIGNAL;
A1 = curve_winding_angle_rec(k - 1, x0123, y0123, x123, y123, x23, y23, x3, y3);
if (A1 == CONTACT_SIGNAL)
return CONTACT_SIGNAL;
return A0 + A1;
}
}
}
static int curve_log2_samples(fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
curve_segment s;
s.p1.x = x1;
s.p1.y = y1;
s.p2.x = x2;
s.p2.y = y2;
s.pt.x = x3;
s.pt.y = y3;
return gx_curve_log2_samples(x0, y0, &s, (fixed)CURVE_FLATTENING);
}
static double curve_winding_angle(fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
int k = curve_log2_samples(x0, y0, x1, y1, x2, y2, x3, y3);
return curve_winding_angle_rec(k, x0, y0, x1, y1, x2, y2, x3, y3);
}
static int t1_hinter__is_inside(t1_hinter * self, t1_glyph_space_coord gx, t1_glyph_space_coord gy, int c)
{
int b = self->contour[c];
int e = self->contour[c + 1] - 1;
double a = 0, A;
int i;
for (i = b; i < e;) {
if (self->pole[i + 1].type != offcurve) { /* line or close. */
A = bar_winding_angle(self->pole[i + 0].gx - gx, self->pole[i + 0].gy - gy,
self->pole[i + 1].gx - gx, self->pole[i + 1].gy - gy);
i++;
} else {
A = curve_winding_angle(self->pole[i + 0].gx - gx, self->pole[i + 0].gy - gy,
self->pole[i + 1].gx - gx, self->pole[i + 1].gy - gy,
self->pole[i + 2].gx - gx, self->pole[i + 2].gy - gy,
self->pole[i + 3].gx - gx, self->pole[i + 3].gy - gy);
i += 3;
}
if (A == CONTACT_SIGNAL)
return -1;
a += A;
}
if (any_abs(a) < 0.1)
return 0;
return 1;
}
static inline bool
intersect_bar_bar(fixed q0x, fixed q0y, fixed q1x, fixed q1y, fixed q2x, fixed q2y, fixed q3x, fixed q3y)
{
if (q1x == q0x && q1y == q0y)
return false;
if (q1x == q2x && q1y == q2y)
return false;
if (q0x == q2x && q0y == q2y)
return true;
if (q0x == q3x && q0y == q3y)
return true;
if (q1x == q2x && q1y == q2y)
return true;
if (q1x == q3x && q1y == q3y)
return true;
else {
fixed dx1 = q1x - q0x;
fixed dy1 = q1y - q0y;
fixed dx2 = q2x - q0x;
fixed dy2 = q2y - q0y;
fixed dx3 = q3x - q0x;
fixed dy3 = q3y - q0y;
fixed dx1a = any_abs(dx1);
fixed dy1a = any_abs(dy1);
fixed dx2a = any_abs(dx2);
fixed dy2a = any_abs(dy2);
fixed dx3a = any_abs(dx3);
fixed dy3a = any_abs(dy3);
fixed d = dx1a | dy1a | dx2a | dy2a | dx3a | dy3a;
fixed ry, ey; /* stubs only - don't use them, they are whong here. */
/* gx_intersect_small_bars needs cubes of distances to fit into 62 bits,
Drop extra bits here.
We don't need ry, so don't bother with absolute coordinates. */
while (d >= (1 << (60 / 3))) {
d >>= 1;
dx1 = (dx1 + 1) / 2;
dy1 = (dy1 + 1) / 2;
dx2 = (dy2 + 1) / 2;
dy2 = (dy2 + 1) / 2;
dx3 = (dy3 + 1) / 2;
dy3 = (dy3 + 1) / 2;
}
/* Well, when we drop bits, the intersection isn't precise.
But it happens with big characters only,
which unlikely have close oncurve poles
which belong to different contours.
Due to that we believe the boolean result is precise
with a very high probablility. */
return gx_intersect_small_bars(0, 0, dx1, dy1, dx2, dy2, dx3, dy3, &ry, &ey);
}
}
static inline bool
t1_hinter__intersect_bar_bar(t1_hinter * self, int i, int j)
{
fixed q0x = self->pole[i + 0].gx;
fixed q0y = self->pole[i + 0].gy;
fixed q1x = self->pole[i + 1].gx;
fixed q1y = self->pole[i + 1].gy;
fixed q2x = self->pole[j + 0].gx;
fixed q2y = self->pole[j + 0].gy;
fixed q3x = self->pole[j + 1].gx;
fixed q3y = self->pole[j + 1].gy;
return intersect_bar_bar(q0x, q0y, q1x, q1y, q2x, q2y, q3x, q3y);
}
static bool intersect_curve_bar_rec(int m, int k, fixed X1, fixed Y1,
fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
if (m <= 1)
return intersect_bar_bar(0, 0, X1, Y1, x0, y0, x3, y3);
else {
gs_rect box0, box1;
if (X1 < 0)
box0.p.x = X1, box0.q.x = 0;
else
box0.p.x = 0, box0.q.x = X1;
if (Y1 < 0)
box0.p.y = Y1, box0.q.y = 0;
else
box0.p.y = 0, box0.q.y = Y1;
box1.p.x = box1.q.x = x0;
box1.p.y = box1.q.y = y0;
if (box1.p.x > x1)
box1.p.x = x1;
if (box1.q.x < x1)
box1.q.x = x1;
if (box1.p.y > y1)
box1.p.y = y1;
if (box1.q.y < y1)
box1.q.y = y1;
if (box1.p.x > x2)
box1.p.x = x2;
if (box1.q.x < x2)
box1.q.x = x2;
if (box1.p.y > y2)
box1.p.y = y2;
if (box1.q.y < y2)
box1.q.y = y2;
if (box1.p.x > x3)
box1.p.x = x3;
if (box1.q.x < x3)
box1.q.x = x3;
if (box1.p.y > y3)
box1.p.y = y3;
if (box1.q.y < y3)
box1.q.y = y3;
if (box0.p.x > box1.q.x)
return false;
if (box0.q.x < box1.p.x)
return false;
if (box0.p.y > box1.q.y)
return false;
if (box0.q.y < box1.p.y)
return false;
}
{ fixed x01 = (x0 + x1) / 2, y01 = (y0 + y1) / 2;
fixed x12 = (x1 + x2) / 2, y12 = (y1 + y2) / 2;
fixed x23 = (x2 + x3) / 2, y23 = (y2 + y3) / 2;
fixed x012 = (x01 + x12) / 2, y012 = (y01 + y12) / 2;
fixed x123 = (x12 + x23) / 2, y123 = (y12 + y23) / 2;
fixed x0123 = (x012 + x123) / 2, y0123 = (y012 + y123) / 2;
if (k <= 1) {
if (intersect_curve_bar_rec(m - 1, k, X1, Y1, x0, y0, x01, y01, x012, y012, x0123, y0123))
return true;
if (intersect_curve_bar_rec(m - 1, k, X1, Y1, x0123, y0123, x123, y123, x23, y23, x3, y3))
return true;
} else {
fixed X01 = X1 / 2;
fixed Y01 = Y1 / 2;
if (intersect_curve_bar_rec(m - 1, k - 1, X01, Y01, x0, y0, x01, y01, x012, y012, x0123, y0123))
return true;
if (intersect_curve_bar_rec(m - 1, k - 1, X01, Y01, x0123, y0123, x123, y123, x23, y23, x3, y3))
return true;
if (intersect_curve_bar_rec(m - 1, k - 1, X1 - X01, Y1 - Y01, x0 - X01, y0 - Y01, x01 - X01, y01 - Y01,
x012 - X01, y012 - Y01, x0123 - X01, y0123 - Y01))
return true;
if (intersect_curve_bar_rec(m - 1, k - 1, X1 - X01, Y1 - Y01, x0123 - X01, y0123 - Y01,
x123 - X01, y123 - Y01, x23 - X01, y23 - Y01, x3 - X01, y3 - Y01))
return true;
}
}
return false;
}
static int bar_samples(fixed dx, fixed dy)
{
int l = (any_abs(dx) | any_abs(dy)) / CURVE_FLATTENING, m = 0;
while (l) {
l >>= 1;
m++;
}
return m;
}
static bool t1_hinter__intersect_curve_bar(t1_hinter * self, int i, int j)
{
fixed X0 = self->pole[j].gx;
fixed Y0 = self->pole[j].gy;
fixed X1 = self->pole[j + 1].gx - X0;
fixed Y1 = self->pole[j + 1].gy - Y0;
fixed x0 = self->pole[i].gx - X0;
fixed y0 = self->pole[i].gy - Y0;
fixed x1 = self->pole[i + 1].gx - X0;
fixed y1 = self->pole[i + 1].gy - Y0;
fixed x2 = self->pole[i + 2].gx - X0;
fixed y2 = self->pole[i + 2].gy - Y0;
fixed x3 = self->pole[i + 3].gx - X0;
fixed y3 = self->pole[i + 3].gy - Y0;
int k = curve_log2_samples(0, 0, x1, y1, x2, y2, x3, y3);
int m = bar_samples(X1, Y1);
return intersect_curve_bar_rec(m, k, X1, Y1, x0, y0, x1, y1, x2, y2, x3, y3);
}
static bool intersect_curve_curve_rec(int ka, int kb,
fixed ax0, fixed ay0, fixed ax1, fixed ay1, fixed ax2, fixed ay2, fixed ax3, fixed ay3,
fixed bx0, fixed by0, fixed bx1, fixed by1, fixed bx2, fixed by2, fixed bx3, fixed by3)
{
if (ka <= 1 && kb <= 1)
return intersect_bar_bar(ax0, ay0, ax3, ay3, bx0, by0, bx3, by3);
else if (ka <= 1) {
int m = bar_samples(ax3 - ax0, ay3 - ay0);
return intersect_curve_bar_rec(m, kb, ax3 - ax0, ay3 - ay0,
bx0 - ax0, by0 - ay0, bx1 - ax0, by1 - ay0, bx2 - ax0, by2 - ay0, bx3 - ax0, by3 - ay0);
} else if (kb <= 1) {
int m = bar_samples(bx3 - bx0, by3 - by0);
return intersect_curve_bar_rec(m, ka, bx3 - bx0, by3 - by0,
ax0 - bx0, ay0 - by0, ax1 - bx0, ay1 - by0, ax2 - bx0, ay2 - by0, ax3 - bx0, ay3 - by0);
} else {
gs_rect box0, box1;
box0.p.x = box0.q.x = ax0;
box0.p.y = box0.q.y = ay0;
if (box0.p.x > ax1)
box0.p.x = ax1;
if (box0.q.x < ax1)
box0.q.x = ax1;
if (box0.p.y > ay1)
box0.p.y = ay1;
if (box0.q.y < ay1)
box0.q.y = ay1;
if (box0.p.x > ax2)
box0.p.x = ax2;
if (box0.q.x < ax2)
box0.q.x = ax2;
if (box0.p.y > ay2)
box0.p.y = ay2;
if (box0.q.y < ay2)
box0.q.y = ay2;
if (box0.p.x > ax3)
box0.p.x = ax3;
if (box0.q.x < ax3)
box0.q.x = ax3;
if (box0.p.y > ay3)
box0.p.y = ay3;
if (box0.q.y < ay3)
box0.q.y = ay3;
box1.p.x = box1.q.x = bx0;
box1.p.y = box1.q.y = by0;
if (box1.p.x > bx1)
box1.p.x = bx1;
if (box1.q.x < bx1)
box1.q.x = bx1;
if (box1.p.y > by1)
box1.p.y = by1;
if (box1.q.y < by1)
box1.q.y = by1;
if (box1.p.x > bx2)
box1.p.x = bx2;
if (box1.q.x < bx2)
box1.q.x = bx2;
if (box1.p.y > by2)
box1.p.y = by2;
if (box1.q.y < by2)
box1.q.y = by2;
if (box1.p.x > bx3)
box1.p.x = bx3;
if (box1.q.x < bx3)
box1.q.x = bx3;
if (box1.p.y > by3)
box1.p.y = by3;
if (box1.q.y < by3)
box1.q.y = by3;
if (box0.p.x > box1.q.x)
return false;
if (box0.q.x < box1.p.x)
return false;
if (box0.p.y > box1.q.y)
return false;
if (box0.q.y < box1.p.y)
return false;
}
{ fixed ax01 = (ax0 + ax1) / 2, ay01 = (ay0 + ay1) / 2;
fixed ax12 = (ax1 + ax2) / 2, ay12 = (ay1 + ay2) / 2;
fixed ax23 = (ax2 + ax3) / 2, ay23 = (ay2 + ay3) / 2;
fixed ax012 = (ax01 + ax12) / 2, ay012 = (ay01 + ay12) / 2;
fixed ax123 = (ax12 + ax23) / 2, ay123 = (ay12 + ay23) / 2;
fixed ax0123 = (ax012 + ax123) / 2, ay0123 = (ay012 + ay123) / 2;
fixed bx01 = (bx0 + bx1) / 2, by01 = (by0 + by1) / 2;
fixed bx12 = (bx1 + bx2) / 2, by12 = (by1 + by2) / 2;
fixed bx23 = (bx2 + bx3) / 2, by23 = (by2 + by3) / 2;
fixed bx012 = (bx01 + bx12) / 2, by012 = (by01 + by12) / 2;
fixed bx123 = (bx12 + bx23) / 2, by123 = (by12 + by23) / 2;
fixed bx0123 = (bx012 + bx123) / 2, by0123 = (by012 + by123) / 2;
if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0, ay0, ax01, ay01, ax012, ay012, ax0123, ay0123,
bx0, by0, bx01, by01, bx012, by012, bx0123, by0123))
return true;
if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0, ay0, ax01, ay01, ax012, ay012, ax0123, ay0123,
bx0123, by0123, bx123, by123, bx23, by23, bx3, by3))
return true;
if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0123, ay0123, ax123, ay123, ax23, ay23, ax3, ay3,
bx0, by0, bx01, by01, bx012, by012, bx0123, by0123))
return true;
if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0123, ay0123, ax123, ay123, ax23, ay23, ax3, ay3,
bx0123, by0123, bx123, by123, bx23, by23, bx3, by3))
return true;
}
return false;
}
static bool t1_hinter__intersect_curve_curve(t1_hinter * self, int i, int j)
{
fixed ax0 = self->pole[i].gx;
fixed ay0 = self->pole[i].gy;
fixed ax1 = self->pole[i + 1].gx;
fixed ay1 = self->pole[i + 1].gy;
fixed ax2 = self->pole[i + 2].gx;
fixed ay2 = self->pole[i + 2].gy;
fixed ax3 = self->pole[i + 3].gx;
fixed ay3 = self->pole[i + 3].gy;
fixed bx0 = self->pole[j].gx;
fixed by0 = self->pole[j].gy;
fixed bx1 = self->pole[j + 1].gx;
fixed by1 = self->pole[j + 1].gy;
fixed bx2 = self->pole[j + 2].gx;
fixed by2 = self->pole[j + 2].gy;
fixed bx3 = self->pole[j + 3].gx;
fixed by3 = self->pole[j + 3].gy;
int ka = curve_log2_samples(ax0, ay0, ax1, ay1, ax2, ay2, ax3, ay3);
int kb = curve_log2_samples(bx0, by0, bx1, by1, bx2, by2, bx3, by3);
return intersect_curve_curve_rec(ka, kb,
ax0, ay0, ax1, ay1, ax2, ay2, ax3, ay3,
bx0, by0, bx1, by1, bx2, by2, bx3, by3);
}
static bool t1_hinter__contour_intersection(t1_hinter * self, int c0, int c1)
{
int b0 = self->contour[c0];
int e0 = self->contour[c0 + 1] - 1;
int b1 = self->contour[c1];
int e1 = self->contour[c1 + 1] - 1;
int i, j;
for (i = b0; i < e0;) {
if (self->pole[i + 1].type != offcurve) { /* line or close. */
for (j = b1; j < e1;) {
if (self->pole[j + 1].type != offcurve) { /* line or close. */
if (t1_hinter__intersect_bar_bar(self, i, j))
return true;
j++;
} else {
if (t1_hinter__intersect_curve_bar(self, j, i))
return true;
j += 3;
}
}
i++;
} else {
for (j = b1; j < e1;) {
if (self->pole[j + 1].type != offcurve) { /* line or close. */
if (t1_hinter__intersect_curve_bar(self, i, j))
return true;
j++;
} else {
if (t1_hinter__intersect_curve_curve(self, j, i))
return true;
j += 3;
}
}
i += 3;
}
}
return false;
}
#define MAX_NORMALIZING_CONTOURS 5
static void t1_hinter__fix_subglyph_contour_signs(t1_hinter * self, int first_contour, int last_contour)
{
double area[MAX_NORMALIZING_CONTOURS];
int i, j, k, l, m;
double a = 0;
byte inside[MAX_NORMALIZING_CONTOURS][MAX_NORMALIZING_CONTOURS];
int nesting[MAX_NORMALIZING_CONTOURS];
gs_rect bbox[MAX_NORMALIZING_CONTOURS];
byte isolated[MAX_NORMALIZING_CONTOURS];
int nesting_sum;
if (first_contour == last_contour) {
/* Don't fix a single contour. */
return;
}
/* Compute contour bboxes : */
k = 0;
for(i = first_contour; i <= last_contour; i++) {
int b = self->contour[i];
int e = self->contour[i + 1] - 1;
bbox[k].p.x = bbox[k].q.x = self->pole[b].gx;
bbox[k].p.y = bbox[k].q.y = self->pole[b].gy;
/* 'close' has same coords as the starting point. */
for (j = b; j < e; j++) {
t1_glyph_space_coord x = self->pole[j].gx;
t1_glyph_space_coord y = self->pole[j].gy;
if (bbox[k].p.x > x)
bbox[k].p.x = x;
if (bbox[k].q.x < x)
bbox[k].q.x = x;
if (bbox[k].p.y > y)
bbox[k].p.y = y;
if (bbox[k].q.y < y)
bbox[k].q.y = y;
}
k++;
}
/* mark contacting bboxes : */
memset(isolated, 0, sizeof(isolated));
for (i = 0; i < k; i++) {
for (j = i + 1; j < k; j++) {
if (bbox[i].p.x > bbox[j].q.x)
continue;
if (bbox[i].q.x < bbox[j].p.x)
continue;
if (bbox[i].p.y > bbox[j].q.y)
continue;
if (bbox[i].q.y < bbox[j].p.y)
continue;
isolated[i] = isolated[j] = 1; /* mark not isolated. */
}
}
/* Make a list of non-isolated contours : */
j = 0;
for (i = 0; i < k; i++) {
if (isolated[i]) {
isolated[j] = first_contour + i;
j++;
}
}
k = j;
/* So far we skip isolated contours. */
if (k <= 1)
return; /* Nothing to fix. */
/* Compute contour signes : */
for(i = 0; i < k; i++) {
int c = isolated[i];
int b = self->contour[c];
int e = self->contour[c + 1] - 1;
a = 0;
/* 'close' has same coords as the starting point. */
for (j = b; j < e; ) {
if (self->pole[j + 1].type != offcurve) { /* line or close. */
a += line_area_2(self->pole[j + 0].gx, self->pole[j + 0].gy,
self->pole[j + 1].gx, self->pole[j + 1].gy);
j++;
} else {
a += bezier_area_2(self->pole[j + 0].gx, self->pole[j + 0].gy,
self->pole[j + 1].gx, self->pole[j + 1].gy,
self->pole[j + 2].gx, self->pole[j + 2].gy,
self->pole[j + 3].gx, self->pole[j + 3].gy);
j += 3;
}
}
area[i] = a;
}
/* If contours have different signs, don't adjust. */
for (i = 1; i < k; i++) {
if (area[0] * area[i] < 0)
return;
}
/* Compute the insideness matrix :
For any contoor pair A, B,
check if some point of A is inside B. */
for (i = 0; i < k; i++) {
inside[i][i] = 0;
for (j = 0; j < k; j++) {
if (i != j) {
int b = self->contour[isolated[i]];
int code = t1_hinter__is_inside(self, self->pole[b].gx, self->pole[b].gy, isolated[j]);
if (code < 0) {
/* Contours have a common point - don't fix. */
return;
}
inside[i][j] = (byte)code;
if (i > j && inside[j][i]) {
/* Contours intersect, don't fix. */
return;
}
}
}
}
/* Transitive closure : */
do {
m = 0;
for (i = 0; i < k; i++) {
for (j = 0; j < k; j++) {
if (i != j) {
for (l = 0; l < k; l++) {
if (j != l && inside[i][j] && inside[j][l]) {
if (inside[l][i]) {
/* Cycled - don't fix. */
return;
}
if (!inside[i][l])
m = 1;
inside[i][l] = 1;
}
}
}
}
}
} while(m);
/* Compute nesting numbers : */
nesting_sum = 0;
memset(nesting, 0, sizeof(nesting));
for (i = 0; i < k; i++) {
for (j = 0; j < k; j++) {
if (inside[i][j]) {
nesting[i]++;
nesting_sum++;
}
}
}
if (nesting_sum == 0) {
/* No nesting contours - don't fix.
We want to save time from computing contour intersections. */
return;
}
/* Check contour intersections : */
for (i = 0; i < k; i++) {
for (j = 0; j < k; j++) {
if (inside[i][j]) {
if (t1_hinter__contour_intersection(self, isolated[i], isolated[j])) {
/* Contours intersect - don't fix. */
return;
}
}
}
}
/* Fix signs : */
for (i = 0; i < k; i++) {
if ((nesting[i] & 1) != (area[i] < 0))
t1_hinter__reverse_contour(self, isolated[i]);
}
/* Note we didn't fix negative isolated contours.
We never meet such cases actually. */
}
void t1_hinter__fix_contour_signs(t1_hinter * self)
{
int i;
if (self->subglyph_count >= 3) {
/* 3 or more subglyphs.
We didn't meet so complex characters with wrong contours signs.
Skip it for saving the CPU time. */
return;
}
for (i = 1; i <= self->subglyph_count; i++) {
int first_contour = self->subglyph[i - 1];
int last_contour = self->subglyph[i] - 1;
if (last_contour - first_contour >= MAX_NORMALIZING_CONTOURS) {
/* 4 or more contours.
We didn't meet so complex characters with wrong contours signs.
Skip it for saving the CPU time. */
continue;
}
t1_hinter__fix_subglyph_contour_signs(self, first_contour, last_contour);
}
}
|