1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Halftone rendering for imaging library */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gsbitops.h"
#include "gsutil.h" /* for gs_next_ids */
#include "gxdcolor.h"
#include "gxfixed.h"
#include "gxdevice.h" /* for gzht.h */
#include "gxgstate.h"
#include "gzht.h"
#include "gsserial.h"
/* Define the binary halftone device color type. */
/* The type descriptor must be public for Pattern types. */
gs_public_st_composite(st_dc_ht_binary, gx_device_color, "dc_ht_binary",
dc_ht_binary_enum_ptrs, dc_ht_binary_reloc_ptrs);
static dev_color_proc_save_dc(gx_dc_ht_binary_save_dc);
static dev_color_proc_get_dev_halftone(gx_dc_ht_binary_get_dev_halftone);
static dev_color_proc_load(gx_dc_ht_binary_load);
static dev_color_proc_fill_rectangle(gx_dc_ht_binary_fill_rectangle);
static dev_color_proc_fill_masked(gx_dc_ht_binary_fill_masked);
static dev_color_proc_equal(gx_dc_ht_binary_equal);
static dev_color_proc_write(gx_dc_ht_binary_write);
static dev_color_proc_read(gx_dc_ht_binary_read);
const gx_device_color_type_t
gx_dc_type_data_ht_binary =
{&st_dc_ht_binary,
gx_dc_ht_binary_save_dc, gx_dc_ht_binary_get_dev_halftone,
gx_dc_ht_get_phase,
gx_dc_ht_binary_load, gx_dc_ht_binary_fill_rectangle,
gx_dc_ht_binary_fill_masked, gx_dc_ht_binary_equal,
gx_dc_ht_binary_write, gx_dc_ht_binary_read,
gx_dc_ht_binary_get_nonzero_comps
};
#undef gx_dc_type_ht_binary
const gx_device_color_type_t *const gx_dc_type_ht_binary =
&gx_dc_type_data_ht_binary;
#define gx_dc_type_ht_binary (&gx_dc_type_data_ht_binary)
/* GC procedures */
static
ENUM_PTRS_WITH(dc_ht_binary_enum_ptrs, gx_device_color *cptr) return 0;
ENUM_PTR(0, gx_device_color, colors.binary.b_ht);
case 1:
{
gx_ht_tile *tile = cptr->colors.binary.b_tile;
ENUM_RETURN(tile ? tile - tile->index : 0);
}
ENUM_PTRS_END
static RELOC_PTRS_WITH(dc_ht_binary_reloc_ptrs, gx_device_color *cptr)
{
gx_ht_tile *tile = cptr->colors.binary.b_tile;
uint index = tile ? tile->index : 0;
RELOC_PTR(gx_device_color, colors.binary.b_ht);
RELOC_TYPED_OFFSET_PTR(gx_device_color, colors.binary.b_tile, index);
}
RELOC_PTRS_END
#undef cptr
/* Other GC procedures */
private_st_ht_tiles();
static
ENUM_PTRS_BEGIN_PROC(ht_tiles_enum_ptrs)
{
return 0;
}
ENUM_PTRS_END_PROC
static RELOC_PTRS_BEGIN(ht_tiles_reloc_ptrs)
{
/* Reset the bitmap pointers in the tiles. */
/* We know the first tile points to the base of the bits. */
gx_ht_tile *ht_tiles = vptr;
byte *bits = ht_tiles->tiles.data;
uint diff;
if (bits == 0)
return;
RELOC_VAR(bits);
if (size == size_of(gx_ht_tile)) { /* only 1 tile */
ht_tiles->tiles.data = bits;
return;
}
diff = ht_tiles[1].tiles.data - ht_tiles[0].tiles.data;
for (; size; ht_tiles++, size -= size_of(gx_ht_tile), bits += diff) {
ht_tiles->tiles.data = bits;
}
}
RELOC_PTRS_END
private_st_ht_cache();
/* Return the default sizes of the halftone cache. */
uint
gx_ht_cache_default_tiles(void)
{
#ifdef DEBUG
return (gs_debug_c('.') ? max_ht_cached_tiles_SMALL :
max_ht_cached_tiles);
#else
return max_ht_cached_tiles;
#endif
}
uint
gx_ht_cache_default_bits_size(void)
{
#ifdef DEBUG
return (gs_debug_c('.') ? max_ht_cache_bits_size_SMALL :
max_ht_cache_bits_size);
#else
return max_ht_cache_bits_size;
#endif
}
/* Allocate a halftone cache. max_bits_size is number of bytes */
gx_ht_cache *
gx_ht_alloc_cache(gs_memory_t * mem, uint max_tiles, uint max_bits_size)
{
gx_ht_cache *pcache =
gs_alloc_struct(mem, gx_ht_cache, &st_ht_cache,
"alloc_ht_cache(struct)");
byte *tbits =
gs_alloc_bytes(mem, max_bits_size, "alloc_ht_cache(bits)");
gx_ht_tile *ht_tiles =
gs_alloc_struct_array(mem, max_tiles, gx_ht_tile, &st_ht_tiles,
"alloc_ht_cache(ht_tiles)");
if (pcache == 0 || tbits == 0 || ht_tiles == 0) {
gs_free_object(mem, ht_tiles, "alloc_ht_cache(ht_tiles)");
gs_free_object(mem, tbits, "alloc_ht_cache(bits)");
gs_free_object(mem, pcache, "alloc_ht_cache(struct)");
return 0;
}
pcache->bits = tbits;
pcache->bits_size = max_bits_size;
pcache->ht_tiles = ht_tiles;
pcache->num_tiles = max_tiles;
pcache->order.cache = pcache;
pcache->order.transfer = 0;
gx_ht_clear_cache(pcache);
return pcache;
}
/* Free a halftone cache. */
void
gx_ht_free_cache(gs_memory_t * mem, gx_ht_cache * pcache)
{
gs_free_object(mem, pcache->ht_tiles, "free_ht_cache(ht_tiles)");
gs_free_object(mem, pcache->bits, "free_ht_cache(bits)");
gs_free_object(mem, pcache, "free_ht_cache(struct)");
}
/* Render a given level into a halftone cache. */
static int render_ht(gx_ht_tile *, int, const gx_ht_order *,
gx_bitmap_id);
static gx_ht_tile *
gx_render_ht_default(gx_ht_cache * pcache, int b_level)
{
const gx_ht_order *porder = &pcache->order;
int level = porder->levels[b_level];
gx_ht_tile *bt;
if (pcache->num_cached < porder->num_levels )
bt = &pcache->ht_tiles[level / pcache->levels_per_tile];
else
bt = &pcache->ht_tiles[b_level]; /* one tile per b_level */
if (bt->level != level) {
int code = render_ht(bt, level, porder, pcache->base_id + b_level);
if (code < 0)
return 0;
}
return bt;
}
/* save information about the operand binary halftone color */
static void
gx_dc_ht_binary_save_dc(const gx_device_color * pdevc,
gx_device_color_saved * psdc)
{
psdc->type = pdevc->type;
psdc->colors.binary.b_color[0] = pdevc->colors.binary.color[0];
psdc->colors.binary.b_color[1] = pdevc->colors.binary.color[1];
psdc->colors.binary.b_level = pdevc->colors.binary.b_level;
psdc->colors.binary.b_index = pdevc->colors.binary.b_index;
psdc->phase = pdevc->phase;
}
/* get the halftone used for a binary halftone color */
static const gx_device_halftone *
gx_dc_ht_binary_get_dev_halftone(const gx_device_color * pdevc)
{
return pdevc->colors.binary.b_ht;
}
/* Load the device color into the halftone cache if needed. */
static int
gx_dc_ht_binary_load(gx_device_color * pdevc, const gs_gstate * pgs,
gx_device * dev, gs_color_select_t select)
{
int component_index = pdevc->colors.binary.b_index;
const gx_ht_order *porder =
(component_index < 0 ?
&pdevc->colors.binary.b_ht->order :
&pdevc->colors.binary.b_ht->components[component_index].corder);
gx_ht_cache *pcache = porder->cache;
if (pcache->order.bit_data != porder->bit_data)
gx_ht_init_cache(pgs->memory, pcache, porder);
/*
* We do not load the cache now. Instead we wait until we are ready
* to actually render the color. This allows multiple colors to be
* loaded without cache conflicts. (Cache conflicts can occur when
* if two device colors use the same cache elements. This can occur
* when the tile size is large enough that we do not have a separate
* tile for each half tone level.) See gx_dc_ht_binary_load_cache.
*/
pdevc->colors.binary.b_tile = NULL;
return 0;
}
/*
* Load the half tone tile in the halftone cache.
*/
static int
gx_dc_ht_binary_load_cache(const gx_device_color * pdevc)
{
int component_index = pdevc->colors.binary.b_index;
const gx_ht_order *porder =
&pdevc->colors.binary.b_ht->components[component_index].corder;
gx_ht_cache *pcache = porder->cache;
int b_level = pdevc->colors.binary.b_level;
int level = porder->levels[b_level];
gx_ht_tile *bt;
if (pcache->num_cached < porder->num_levels )
bt = &pcache->ht_tiles[level / pcache->levels_per_tile];
else
bt = &pcache->ht_tiles[b_level]; /* one tile per b_level */
if (bt->level != level) {
int code = render_ht(bt, level, porder, pcache->base_id + b_level);
if (code < 0)
return_error(gs_error_Fatal);
}
((gx_device_color *)pdevc)->colors.binary.b_tile = bt;
return 0;
}
/* Fill a rectangle with a binary halftone. */
/* Note that we treat this as "texture" for RasterOp. */
static int
gx_dc_ht_binary_fill_rectangle(const gx_device_color * pdevc, int x, int y,
int w, int h, gx_device * dev, gs_logical_operation_t lop,
const gx_rop_source_t * source)
{
gx_rop_source_t no_source;
fit_fill(dev, x, y, w, h);
/* Load the halftone cache for the color */
gx_dc_ht_binary_load_cache(pdevc);
/*
* Observation of H-P devices and documentation yields confusing
* evidence about whether white pixels in halftones are always
* opaque. It appears that for black-and-white devices, these
* pixels are *not* opaque.
*/
if (dev->color_info.depth > 1)
lop &= ~lop_T_transparent;
if (source == NULL && lop_no_S_is_T(lop))
return (*dev_proc(dev, strip_tile_rectangle)) (dev,
&pdevc->colors.binary.b_tile->tiles,
x, y, w, h, pdevc->colors.binary.color[0],
pdevc->colors.binary.color[1],
pdevc->phase.x, pdevc->phase.y);
/* Adjust the logical operation per transparent colors. */
if (pdevc->colors.binary.color[0] == gx_no_color_index)
lop = rop3_use_D_when_T_0(lop);
if (pdevc->colors.binary.color[1] == gx_no_color_index)
lop = rop3_use_D_when_T_1(lop);
if (source == NULL)
set_rop_no_source(source, no_source, dev);
return (*dev_proc(dev, strip_copy_rop2))
(dev, source->sdata,
source->sourcex, source->sraster, source->id,
(source->use_scolors ? source->scolors : NULL),
&pdevc->colors.binary.b_tile->tiles,
pdevc->colors.binary.color,
x, y, w, h, pdevc->phase.x, pdevc->phase.y,
lop, source->planar_height);
}
static int
gx_dc_ht_binary_fill_masked(const gx_device_color * pdevc, const byte * data,
int data_x, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_device * dev, gs_logical_operation_t lop, bool invert)
{
/*
* Load the halftone cache for the color. We do not do it earlier
* because for small halftone caches, each cache tile may be used for
* for more than one halftone level. This can cause conflicts if more
* than one device color has been set and they use the same cache
* entry.
*/
int code = gx_dc_ht_binary_load_cache(pdevc);
if (code < 0)
return code;
return gx_dc_default_fill_masked(pdevc, data, data_x, raster, id,
x, y, w, h, dev, lop, invert);
}
/* Compare two binary halftones for equality. */
static bool
gx_dc_ht_binary_equal(const gx_device_color * pdevc1,
const gx_device_color * pdevc2)
{
return pdevc2->type == pdevc1->type &&
pdevc1->phase.x == pdevc2->phase.x &&
pdevc1->phase.y == pdevc2->phase.y &&
gx_dc_binary_color0(pdevc1) == gx_dc_binary_color0(pdevc2) &&
gx_dc_binary_color1(pdevc1) == gx_dc_binary_color1(pdevc2) &&
pdevc1->colors.binary.b_level == pdevc2->colors.binary.b_level;
}
/*
* Flags to indicate the pieces of a binary halftone that are included
* in its string representation. The first byte of the string holds this
* set of flags.
*
* The binary halftone tile is never transmitted as part of the string
* representation, so there is also no flag bit for it.
*/
enum {
dc_ht_binary_has_color0 = 0x01,
dc_ht_binary_has_color1 = 0x02,
dc_ht_binary_has_level = 0x04,
dc_ht_binary_has_index = 0x08,
dc_ht_binary_has_phase_x = 0x10,
dc_ht_binary_has_phase_y = 0x20,
};
/*
* Serialize a binany halftone device color.
*
* Operands:
*
* pdevc pointer to device color to be serialized
*
* psdc pointer ot saved version of last serialized color (for
* this band)
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to buffer in which to write the data
*
* psize pointer to a location that, on entry, contains the size of
* the buffer pointed to by pdata; on return, the size of
* the data required or actually used will be written here.
*
* Returns:
* 1, with *psize set to 0, if *psdc and *pdevc represent the same color
*
* 0, with *psize set to the amount of data written, if everything OK
*
* gs_error_rangecheck, with *psize set to the size of buffer required,
* if *psize was not large enough
*
* < 0, != gs_error_rangecheck, in the event of some other error; in this
* case *psize is not changed.
*/
static int
gx_dc_ht_binary_write(
const gx_device_color * pdevc,
const gx_device_color_saved * psdc0,
const gx_device * dev,
int64_t offset,
byte * pdata,
uint * psize )
{
int req_size = 1; /* flag bits */
int flag_bits = 0;
uint tmp_size;
byte * pdata0 = pdata;
const gx_device_color_saved * psdc = psdc0;
int code;
if (offset != 0)
return_error(gs_error_unregistered); /* Not implemented yet. */
/* check if operand and saved colors are the same type */
if (psdc != 0 && psdc->type != pdevc->type)
psdc = 0;
/* check for the information that must be transmitted */
if ( psdc == 0 ||
pdevc->colors.binary.color[0] != psdc->colors.binary.b_color[0] ) {
flag_bits |= dc_ht_binary_has_color0;
tmp_size = 0;
(void)gx_dc_write_color( pdevc->colors.binary.color[0],
dev,
pdata,
&tmp_size );
req_size += tmp_size;
}
if ( psdc == NULL ||
pdevc->colors.binary.color[1] != psdc->colors.binary.b_color[1] ) {
flag_bits |= dc_ht_binary_has_color1;
tmp_size = 0;
(void)gx_dc_write_color( pdevc->colors.binary.color[1],
dev,
pdata,
&tmp_size );
req_size += tmp_size;
}
if ( psdc == NULL ||
pdevc->colors.binary.b_level != psdc->colors.binary.b_level ) {
flag_bits |= dc_ht_binary_has_level;
req_size += enc_u_sizew(pdevc->colors.binary.b_level);
}
if ( psdc == NULL ||
pdevc->colors.binary.b_index != psdc->colors.binary.b_index ) {
flag_bits |= dc_ht_binary_has_index;
req_size += 1;
}
if ( psdc == NULL ||
pdevc->phase.x != psdc->phase.x ) {
flag_bits |= dc_ht_binary_has_phase_x;
req_size += enc_u_sizew(pdevc->phase.x);
}
if ( psdc == NULL ||
pdevc->phase.y != psdc->phase.y ) {
flag_bits |= dc_ht_binary_has_phase_y;
req_size += enc_u_sizew(pdevc->phase.y);
}
/* check if there is anything to be done */
if (flag_bits == 0) {
*psize = 0;
return 1;
}
/* check if sufficient space has been provided */
if (req_size > *psize) {
*psize = req_size;
return_error(gs_error_rangecheck);
}
/* write out the flag byte */
*pdata++ = (byte)flag_bits;
/* write out such other parts of the device color as are required */
if ((flag_bits & dc_ht_binary_has_color0) != 0) {
tmp_size = req_size - (pdata - pdata0);
code = gx_dc_write_color( pdevc->colors.binary.color[0],
dev,
pdata,
&tmp_size );
if (code < 0)
return code;
pdata += tmp_size;
}
if ((flag_bits & dc_ht_binary_has_color1) != 0) {
tmp_size = req_size - (pdata - pdata0);
code = gx_dc_write_color( pdevc->colors.binary.color[1],
dev,
pdata,
&tmp_size );
if (code < 0)
return code;
pdata += tmp_size;
}
if ((flag_bits & dc_ht_binary_has_level) != 0)
enc_u_putw(pdevc->colors.binary.b_level, pdata);
if ((flag_bits & dc_ht_binary_has_index) != 0)
*pdata++ = pdevc->colors.binary.b_index;
if ((flag_bits & dc_ht_binary_has_phase_x) != 0)
enc_u_putw(pdevc->phase.x, pdata);
if ((flag_bits & dc_ht_binary_has_phase_y) != 0)
enc_u_putw(pdevc->phase.y, pdata);
*psize = pdata - pdata0;
return 0;
}
/*
* Reconstruct a binary halftone device color from its serial representation.
*
* Operands:
*
* pdevc pointer to the location in which to write the
* reconstructed device color
*
* pgs pointer to the current gs_gstate (to access the
* current halftone)
*
* prior_devc pointer to the current device color (this is provided
* separately because the device color is not part of the
* gs_gstate)
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to the buffer to be read
*
* size size of the buffer to be read; this should be large
* enough to hold the entire color description
*
* mem pointer to the memory to be used for allocations
* (ignored here)
*
* Returns:
*
* # of bytes read if everthing OK, < 0 in the event of an error
*/
static int
gx_dc_ht_binary_read(
gx_device_color * pdevc,
const gs_gstate * pgs,
const gx_device_color * prior_devc,
const gx_device * dev, /* ignored */
int64_t offset,
const byte * pdata,
uint size,
gs_memory_t * mem, /* ignored */
int x0,
int y0)
{
gx_device_color devc;
const byte * pdata0 = pdata;
int code, flag_bits;
if (offset != 0)
return_error(gs_error_unregistered); /* Not implemented yet. */
/* if prior information is available, use it */
if (prior_devc != 0 && prior_devc->type == gx_dc_type_ht_binary)
devc = *prior_devc;
else
memset(&devc, 0, sizeof(devc)); /* clear pointers */
devc.type = gx_dc_type_ht_binary;
/* the halftone is always taken from the gs_gstate */
devc.colors.binary.b_ht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];
/* cache is not provided until the device color is used */
devc.colors.binary.b_tile = 0;
/* verify the minimum amount of information */
if (size == 0)
return_error(gs_error_rangecheck);
size --;
flag_bits = *pdata++;
/* read the other information provided */
if ((flag_bits & dc_ht_binary_has_color0) != 0) {
code = gx_dc_read_color( &devc.colors.binary.color[0],
dev,
pdata,
size );
if (code < 0)
return code;
size -= code;
pdata += code;
}
if ((flag_bits & dc_ht_binary_has_color1) != 0) {
code = gx_dc_read_color( &devc.colors.binary.color[1],
dev,
pdata,
size );
if (code < 0)
return code;
size -= code;
pdata += code;
}
if ((flag_bits & dc_ht_binary_has_level) != 0) {
const byte *pdata_start = pdata;
if (size < 1)
return_error(gs_error_rangecheck);
enc_u_getw(devc.colors.binary.b_level, pdata);
size -= pdata - pdata_start;
}
if ((flag_bits & dc_ht_binary_has_index) != 0) {
if (size == 0)
return_error(gs_error_rangecheck);
--size;
devc.colors.binary.b_index = *pdata++;
}
if ((flag_bits & dc_ht_binary_has_phase_x) != 0) {
const byte *pdata_start = pdata;
if (size < 1)
return_error(gs_error_rangecheck);
enc_u_getw(devc.phase.x, pdata);
devc.phase.x += x0;
size -= pdata - pdata_start;
}
if ((flag_bits & dc_ht_binary_has_phase_y) != 0) {
const byte *pdata_start = pdata;
if (size < 1)
return_error(gs_error_rangecheck);
enc_u_getw(devc.phase.y, pdata);
devc.phase.y += y0;
size -= pdata - pdata_start;
}
/* everything looks good */
*pdevc = devc;
return pdata - pdata0;
}
/*
* Get the nonzero components of a binary halftone. This is used to
* distinguish components that are given zero intensity due to halftoning
* from those for which the original color intensity was in fact zero.
*
* Since this device color type involves only a single halftone component,
* we can reasonably assume that b_level != 0. Hence, we need to check
* for components with identical intensities in color[0] and color[1].
*/
int
gx_dc_ht_binary_get_nonzero_comps(
const gx_device_color * pdevc,
const gx_device * dev,
gx_color_index * pcomp_bits )
{
int code;
gx_color_value cvals_0[GX_DEVICE_COLOR_MAX_COMPONENTS],
cvals_1[GX_DEVICE_COLOR_MAX_COMPONENTS];
if ( (code = dev_proc(dev, decode_color)( (gx_device *)dev,
pdevc->colors.binary.color[0],
cvals_0 )) >= 0 &&
(code = dev_proc(dev, decode_color)( (gx_device *)dev,
pdevc->colors.binary.color[1],
cvals_1 )) >= 0 ) {
int i, ncomps = dev->color_info.num_components;
int mask = 0x1, comp_bits = 0;
for (i = 0; i < ncomps; i++, mask <<= 1) {
if (cvals_0[i] != 0 || cvals_1[i] != 0)
comp_bits |= mask;
}
*pcomp_bits = comp_bits;
code = 0;
}
return code;
}
/* Initialize the tile cache for a given screen. */
/* Cache as many different levels as will fit. */
void
gx_ht_init_cache(const gs_memory_t *mem, gx_ht_cache * pcache, const gx_ht_order * porder)
{
uint width = porder->width;
uint height = porder->height;
uint size = width * height + 1;
int width_unit =
(width <= ht_mask_bits / 2 ? ht_mask_bits / width * width :
width);
int height_unit = height;
uint raster = porder->raster;
uint tile_bytes = raster * height;
uint shift = porder->shift;
int num_cached;
int i;
byte *tbits = pcache->bits;
/* Non-monotonic halftones may have more bits than size. */
if (porder->num_bits >= size)
size = porder->num_bits + 1;
/* Make sure num_cached is within bounds */
num_cached = pcache->bits_size / tile_bytes;
if (num_cached > size)
num_cached = size;
if (num_cached > pcache->num_tiles)
num_cached = pcache->num_tiles;
if (num_cached == size &&
tile_bytes * num_cached <= pcache->bits_size / 2
) {
/*
* We can afford to replicate every tile in the cache,
* which will reduce breakage when tiling. Since
* horizontal breakage is more expensive than vertical,
* and since wide shallow fills are more common than
* narrow deep fills, we replicate the tile horizontally.
* We do have to be careful not to replicate the tile
* to an absurdly large size, however.
*/
uint rep_raster =
((pcache->bits_size / num_cached) / height) &
~(align_bitmap_mod - 1);
uint rep_count = rep_raster * 8 / width;
/*
* There's no real value in replicating the tile
* beyond the point where the byte width of the replicated
* tile is a multiple of a long.
*/
if (rep_count > sizeof(ulong) * 8)
rep_count = sizeof(ulong) * 8;
width_unit = width * rep_count;
raster = bitmap_raster(width_unit);
tile_bytes = raster * height;
}
pcache->base_id = gs_next_ids(mem, porder->num_levels + 1);
pcache->order = *porder;
/* The transfer function is irrelevant, and might become dangling. */
pcache->order.transfer = 0;
pcache->num_cached = num_cached;
pcache->levels_per_tile = (size + num_cached - 1) / num_cached;
pcache->tiles_fit = -1;
memset(tbits, 0, pcache->bits_size);
for (i = 0; i < num_cached; i++, tbits += tile_bytes) {
register gx_ht_tile *bt = &pcache->ht_tiles[i];
bt->level = 0;
bt->index = i;
bt->tiles.data = tbits;
bt->tiles.raster = raster;
bt->tiles.size.x = width_unit;
bt->tiles.size.y = height_unit;
bt->tiles.rep_width = width;
bt->tiles.rep_height = height;
bt->tiles.shift = bt->tiles.rep_shift = shift;
bt->tiles.num_planes = 1;
}
pcache->render_ht = gx_render_ht_default;
}
/*
* Compute and save the rendering of a given gray level
* with the current halftone. The cache holds multiple tiles,
* where each tile covers a range of possible levels.
* We adjust the tile whose range includes the desired level incrementally;
* this saves a lot of time for the average image, where gray levels
* don't change abruptly. Note that the "level" is the number of bits,
* not the index in the levels vector.
*/
static int
render_ht(gx_ht_tile * pbt, int level /* [1..num_bits-1] */ ,
const gx_ht_order * porder, gx_bitmap_id new_id)
{
byte *data = pbt->tiles.data;
int code;
if_debug7('H', "[H]Halftone cache slot "PRI_INTPTR": old=%d, new=%d, w=%d(%d), h=%d(%d):\n",
(intptr_t)data, pbt->level, level,
pbt->tiles.size.x, porder->width,
pbt->tiles.size.y, porder->num_bits / porder->width);
#ifdef DEBUG
if (level < 0 || level > porder->num_bits) {
lprintf3("Error in render_ht: level=%d, old level=%d, num_bits=%d\n",
level, pbt->level, porder->num_bits);
return_error(gs_error_Fatal);
}
#endif
code = porder->procs->render(pbt, level, porder);
if (code < 0)
return code;
pbt->level = level;
pbt->tiles.id = new_id;
pbt->tiles.num_planes = 1;
/*
* Check whether we want to replicate the tile in the cache.
* Since we only do this when all the renderings will fit
* in the cache, we only do it once per level, and it doesn't
* have to be very efficient.
*/
/****** TEST IS WRONG if width > rep_width but tile.raster ==
****** order raster.
******/
if (pbt->tiles.raster > porder->raster)
bits_replicate_horizontally(data, pbt->tiles.rep_width,
pbt->tiles.rep_height, porder->raster,
pbt->tiles.size.x, pbt->tiles.raster);
if (pbt->tiles.size.y > pbt->tiles.rep_height &&
pbt->tiles.shift == 0
)
bits_replicate_vertically(data, pbt->tiles.rep_height,
pbt->tiles.raster, pbt->tiles.size.y);
#ifdef DEBUG
if (gs_debug_c('H')) {
const byte *p = pbt->tiles.data;
int wb = pbt->tiles.raster;
const byte *ptr = p + wb * pbt->tiles.size.y;
while (p < ptr) {
dmprintf8(porder->data_memory, " %d%d%d%d%d%d%d%d",
*p >> 7, (*p >> 6) & 1, (*p >> 5) & 1,
(*p >> 4) & 1, (*p >> 3) & 1, (*p >> 2) & 1,
(*p >> 1) & 1, *p & 1);
if ((++p - data) % wb == 0)
dmputc(porder->data_memory, '\n');
}
}
#endif
return 0;
}
|