1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Fast monochrome image rendering */
#include "gx.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gsbittab.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gsutil.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcolor.h"
#include "gxgstate.h"
#include "gxdevmem.h"
#include "gdevmem.h" /* for mem_mono_device */
#include "gxcpath.h"
#include "gximage.h"
#include "gzht.h"
#include "valgrind.h"
/* Conditionally include statistics code. */
/* #define COLLECT_STATS_IFAST */
/* ------ Strategy procedure ------ */
/* Check the prototype. */
iclass_proc(gs_image_class_1_simple);
/* Use special fast logic for portrait or landscape black-and-white images. */
static irender_proc(image_render_skip);
static irender_proc(image_render_simple);
static irender_proc(image_render_landscape);
int
gs_image_class_1_simple(gx_image_enum * penum, irender_proc_t *render_fn)
{
fixed ox = dda_current(penum->dda.pixel0.x);
fixed oy = dda_current(penum->dda.pixel0.y);
if (penum->use_rop || penum->spp != 1 || penum->bps != 1)
return 0;
switch (penum->posture) {
case image_portrait:
{ /* Use fast portrait algorithm. */
long dev_width =
fixed2long_pixround(ox + penum->x_extent.x) -
fixed2long_pixround(ox);
if (dev_width != penum->rect.w) {
/*
* Add an extra align_bitmap_mod of padding so that
* we can align scaled rows with the device.
*/
long line_size =
bitmap_raster(any_abs(dev_width)) + align_bitmap_mod;
if (penum->adjust != 0 || line_size > max_uint)
return 0;
/* Must buffer a scan line. */
penum->line_width = any_abs(dev_width);
penum->line_size = (uint) line_size;
penum->line = gs_alloc_bytes(penum->memory,
penum->line_size, "image line");
if (penum->line == 0) {
return gs_error_VMerror;
}
}
if_debug2m('b', penum->memory, "[b]render=simple, unpack=copy; rect.w=%d, dev_width=%ld\n",
penum->rect.w, dev_width);
*render_fn = image_render_simple;
break;
}
case image_landscape:
{ /* Use fast landscape algorithm. */
long dev_width =
fixed2long_pixround(oy + penum->x_extent.y) -
fixed2long_pixround(oy);
long line_size =
(dev_width = any_abs(dev_width),
bitmap_raster(dev_width) * 8 +
ROUND_UP(dev_width, 8) * align_bitmap_mod);
if ((dev_width != penum->rect.w && penum->adjust != 0) ||
line_size > max_uint
)
return 0;
/* Must buffer a group of 8N scan lines. */
penum->line_width = dev_width;
penum->line_size = (uint) line_size;
penum->line = gs_alloc_bytes(penum->memory,
penum->line_size, "image line");
if (penum->line == 0) {
return gs_error_VMerror;
}
#ifdef PACIFY_VALGRIND
memset(penum->line, 0, penum->line_size); /* For the number of scan lined < 8 */
#endif
penum->xi_next = penum->line_xy = fixed2int_var_rounded(ox);
if_debug3m('b', penum->memory,
"[b]render=landscape, unpack=copy; rect.w=%d, dev_width=%ld, line_size=%ld\n",
penum->rect.w, dev_width, line_size);
*render_fn = image_render_landscape;
/* Precompute values needed for rasterizing. */
penum->dxy =
float2fixed(penum->matrix.xy +
fixed2float(fixed_epsilon) / 2);
break;
}
default:
return 0;
}
/* Precompute values needed for rasterizing. */
penum->dxx =
float2fixed(penum->matrix.xx + fixed2float(fixed_epsilon) / 2);
/*
* We don't want to spread the samples, but we have to reset unpack_bps
* to prevent the buffer pointer from being incremented by 8 bytes per
* input byte.
*/
penum->unpack = sample_unpack_copy;
penum->unpack_bps = 8;
if (penum->use_mask_color) {
/*
* Set the masked color as 'no_color' to make it transparent
* according to the mask color range and the decoding.
*/
penum->masked = true;
if (penum->mask_color.values[0] == 1) {
/* if v0 == 1, 1 is transparent since v1 must be == 1 to be a valid range */
set_nonclient_dev_color(penum->map[0].inverted ? penum->icolor0 : penum->icolor1,
gx_no_color_index);
} else if (penum->mask_color.values[1] == 0) {
/* if v1 == 0, 0 is transparent since v0 must be == 0 to be a valid range */
set_nonclient_dev_color(penum->map[0].inverted ? penum->icolor1 : penum->icolor0,
gx_no_color_index);
} else {
/*
* The only other possible in-range value is v0 = 0, v1 = 1.
* The image is completely transparent!
*/
*render_fn = image_render_skip;
}
penum->map[0].decoding = sd_none;
}
return 0;
}
/* ------ Rendering procedures ------ */
#define DC_IS_NULL(pdc)\
(gx_dc_is_pure(pdc) && (pdc)->colors.pure == gx_no_color_index)
/* Skip over a completely transparent image. */
static int
image_render_skip(gx_image_enum * penum, const byte * buffer, int data_x,
uint w, int h, gx_device * dev)
{
return h;
}
/*
* Scale (and possibly reverse) one scan line of a monobit image.
* This is used for both portrait and landscape image processing.
* We pass in an x offset (0 <= line_x < align_bitmap_mod * 8) so that
* we can align the result with the eventual device X.
*
* To be precise, the input to this routine is the w bits starting at
* bit data_x in buffer. These w bits expand to abs(x_extent) bits,
* either inverted (zero = 0xff) or not (zero = 0), starting at bit
* line_x in line which corresponds to coordinate
* fixed2int_pixround(xcur + min(x_extent, 0)). Note that the entire
* bytes containing the first and last output bits are affected: the
* other bits in those bytes are set to zero (i.e., the value of the
* 'zero' argument).
*/
#ifdef COLLECT_STATS_IFAST
struct stats_image_fast_s {
long
calls, all0s, all1s, runs, lbit0, byte00, byte01, byte02, byte03,
byte04, rbit0, lbit1, byte1, rbit1, thin, thin2, nwide, bwide,
nfill, bfill;
} stats_image_fast;
# define INCS(stat) ++stats_image_fast.stat
# define ADDS(stat, n) stats_image_fast.stat += n
#else
# define INCS(stat) DO_NOTHING
# define ADDS(stat, n) DO_NOTHING
#endif
static inline void
fill_row(byte *line, int line_x, uint raster, int value)
{
memset(line + (line_x >> 3), value, raster - (line_x >> 3));
}
static void
image_simple_expand(byte * line, int line_x, uint raster,
const byte * buffer, int data_x, uint w,
fixed xcur, fixed x_extent, byte zero /* 0 or 0xff */ )
{
int dbitx = data_x & 7;
byte sbit = 0x80 >> dbitx;
byte sbitmask = 0xff >> dbitx;
uint wx = dbitx + w;
gx_dda_fixed xl;
gx_dda_step_fixed dxx4, dxx8, dxx16, dxx24, dxx32;
register const byte *psrc = buffer + (data_x >> 3);
/*
* The following 3 variables define the end of the input data row.
* We would put them in a struct, except that no compiler that we
* know of will optimize individual struct members as though they
* were simple variables (e.g., by putting them in registers).
*
* endp points to the byte that contains the bit just beyond the
* end of the row. endx gives the bit number of this bit within
* the byte, with 0 being the *least* significant bit. endbit is
* a mask for this bit.
*/
const byte *endp = psrc + (wx >> 3);
int endx = ~wx & 7;
byte endbit = 1 << endx;
/*
* The following 3 variables do the same for start of the last run
* of the input row (think of it as a pointer to just beyond the
* end of the next-to-last run).
*/
const byte *stop = endp;
int stopx;
byte stopbit = endbit;
byte data;
byte one = ~zero;
fixed xl0;
#ifdef PACIFY_VALGRIND
byte vbits;
#endif
if (w == 0)
return;
INCS(calls);
/* Scan backward for the last transition. */
if (stopbit == 0x80)
--stop, stopbit = 1;
else
stopbit <<= 1;
/* Now (stop, stopbit) give the last bit of the row. */
#ifdef PACIFY_VALGRIND
/* Here, we are dealing with a row of bits, rather than bytes.
* If the width of the bits is not a multiple of 8, we don't
* fill out the last byte, and valgrind (correctly) tracks the
* bits in that last byte as being a mix of defined and undefined.
* When we are scanning through the row bitwise, everything works
* fine, but our "skip whole bytes" code can confuse valgrind.
* We know that we won't match the "data == 0xff" for the final
* byte (i.e. the undefinedness of some of the bits doesn't matter
* to the correctness of the routine), but valgrind is not smart
* enough to realise that we know this. Accordingly, we get a false
* positive "undefined memory read".
* How do we fix this? Well, one way would be to read in the
* partial last byte, and explicitly set the undefined bits to
* be 0.
* *stop &= ~(stopbit-1);
* Unfortunately, stop is a const *, so we can't do that (we could
* break const, but it is just conceivable that the caller might
* pass the next string of bits out in a later call, and so we
* might be corrupting valid data).
* Instead, we make a call to a valgrind helper. */
VALGRIND_GET_VBITS(stop,&vbits,1);
if ((vbits & stopbit)==0) { /* At least our stop bit must be addressable already! */
byte zero = 0;
VALGRIND_SET_VBITS(stop,&zero,1);
}
#endif
{
byte stopmask = -stopbit << 1;
byte last = *stop;
if (stop == psrc) /* only 1 input byte */
stopmask &= sbitmask;
if (last & stopbit) {
/* The last bit is a 1: look for a 0-to-1 transition. */
if (~last & stopmask) { /* Transition in last byte. */
last |= stopbit - 1;
} else { /* No transition in the last byte. */
while (stop > psrc && stop[-1] == 0xff)
--stop;
if (stop == psrc ||
(stop == psrc + 1 && !(~*psrc & sbitmask))
) {
/* The input is all 1s. Clear the row and exit. */
INCS(all1s);
fill_row(line, line_x, raster, one);
goto end;
}
last = *--stop;
}
stopx = byte_bit_run_length_0[byte_reverse_bits[last]] - 1;
} else {
/* The last bit is a 0: look for a 1-to-0 transition. */
if (last & stopmask) { /* Transition in last byte. */
last &= -stopbit;
} else { /* No transition in the last byte. */
while (stop > psrc && stop[-1] == 0)
--stop;
if (stop == psrc ||
(stop == psrc + 1 && !(*psrc & sbitmask))
) {
/* The input is all 0s. Clear the row and exit. */
INCS(all0s);
fill_row(line, line_x, raster, zero);
goto end;
}
last = *--stop;
}
stopx = byte_bit_run_length_0[byte_reverse_bits[last ^ 0xff]] - 1;
}
if (stopx < 0)
stopx = 7, ++stop;
stopbit = 1 << stopx;
}
/* Pre-clear the row. */
fill_row(line, line_x, raster, zero);
/* Extreme negative values of x_extent cause the xl0 calculation
* to explode. Workaround this here. */
if (x_extent < min_int + 0x100)
x_extent += 0x100;
/* Set up the DDAs. */
xl0 =
(x_extent >= 0 ?
fixed_fraction(fixed_pre_pixround(xcur)) :
fixed_fraction(fixed_pre_pixround(xcur + x_extent)) - x_extent);
xl0 += int2fixed(line_x);
/* We should never get a negative x10 here. If we do, all bets are off. */
if (xl0 < 0)
xl0 = 0, x_extent = 0;
dda_init(xl, xl0, x_extent, w);
dxx4 = xl.step;
dda_step_add(dxx4, xl.step);
/* egcc - 2.91.66 generates incorrect code for
* dda_step_add(dxx4, dxx4);
* Using the temp variable.
*/
dxx8 = dxx4;
dda_step_add(dxx4, dxx8);
dxx8 = dxx4;
dda_step_add(dxx8, dxx4);
dxx16 = dxx8;
dda_step_add(dxx16, dxx8);
dxx24 = dxx16;
dda_step_add(dxx24, dxx8);
dxx32 = dxx24;
dda_step_add(dxx32, dxx8);
/*
* Loop invariants:
* data = *psrc;
* sbit = 1 << n, 0<=n<=7.
*/
for (data = *psrc;;) {
int x0, n, bit;
byte *bp;
static const byte lmasks[9] = {
0xff, 0x7f, 0x3f, 0x1f, 0xf, 7, 3, 1, 0
};
static const byte rmasks[9] = {
0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff
};
INCS(runs);
/* Scan a run of zeros. */
data ^= 0xff; /* invert */
while (data & sbit) {
dda_next(xl);
sbit >>= 1;
INCS(lbit0);
}
if (!sbit) { /* Scan a run of zero bytes. */
sw: if ((data = psrc[1]) != 0) {
psrc++;
INCS(byte00);
} else if ((data = psrc[2]) != 0) {
dda_state_next(xl.state, dxx8);
psrc += 2;
INCS(byte01);
} else if ((data = psrc[3]) != 0) {
dda_state_next(xl.state, dxx16);
psrc += 3;
INCS(byte02);
} else if ((data = psrc[4]) != 0) {
dda_state_next(xl.state, dxx24);
psrc += 4;
INCS(byte03);
} else {
dda_state_next(xl.state, dxx32);
psrc += 4;
INCS(byte04);
goto sw;
}
if (data > 0xf)
sbit = 0x80;
else {
sbit = 0x08;
dda_state_next(xl.state, dxx4);
}
data ^= 0xff; /* invert */
while (data & sbit) {
dda_next(xl);
sbit >>= 1;
INCS(rbit0);
}
}
x0 = dda_current_fixed2int(xl);
if (psrc >= stop && sbit == stopbit) {
/*
* We've scanned the last run of 0s.
* Prepare to fill the final run of 1s.
* Use int64_t to avoid overflow.
*/
n = fixed2int((int64_t)xl0 + (int64_t)x_extent) - x0;
} else { /* Scan a run of ones. */
/* We know the current bit is a one. */
data ^= 0xff; /* un-invert */
do {
dda_next(xl);
sbit >>= 1;
INCS(lbit1);
}
while (data & sbit);
if (!sbit) { /* Scan a run of 0xff bytes. */
while ((data = *++psrc) == 0xff) {
dda_state_next(xl.state, dxx8);
INCS(byte1);
}
if (data < 0xf0)
sbit = 0x80;
else {
sbit = 0x08;
dda_state_next(xl.state, dxx4);
}
while (data & sbit) {
dda_next(xl);
sbit >>= 1;
INCS(rbit1);
}
}
n = dda_current_fixed2int(xl) - x0;
}
/* Fill the run in the scan line. */
if (n < 0)
x0 += n, n = -n;
bp = line + (x0 >> 3);
bit = x0 & 7;
if ((n += bit) <= 8) {
*bp ^= lmasks[bit] - lmasks[n];
INCS(thin);
} else if ((n -= 8) <= 8) {
*bp ^= lmasks[bit];
bp[1] ^= rmasks[n];
INCS(thin2);
} else {
*bp++ ^= lmasks[bit];
if (n >= 56) {
int nb = n >> 3;
memset(bp, one, nb);
bp += nb;
INCS(nwide);
ADDS(bwide, nb);
} else {
ADDS(bfill, n >> 3);
while ((n -= 8) >= 0)
*bp++ = one;
INCS(nfill);
}
*bp ^= rmasks[n & 7];
}
if (psrc >= stop && sbit == stopbit)
break;
}
end:
{
#ifdef PACIFY_VALGRIND
VALGRIND_SET_VBITS(stop,&vbits,1);
#endif
}
}
/* Copy one rendered scan line to the device. */
static int
copy_portrait(gx_image_enum * penum, const byte * data, int dx, int raster,
int x, int y, int w, int h, gx_device * dev)
{
const gx_device_color *pdc0;
const gx_device_color *pdc1;
uint align = ALIGNMENT_MOD(data, align_bitmap_mod);
/*
* We know that the lookup table maps 1 bit to 1 bit,
* so it can only have 2 states: straight-through or invert.
*/
if (penum->map[0].table.lookup4x1to32[0])
pdc0 = penum->icolor1, pdc1 = penum->icolor0;
else
pdc0 = penum->icolor0, pdc1 = penum->icolor1;
data -= align;
dx += align << 3;
if (gx_dc_is_pure(pdc0) && gx_dc_is_pure(pdc1)) {
/* Just use copy_mono. */
dev_proc_copy_mono((*copy_mono)) =
(h == 1 || (raster & (align_bitmap_mod - 1)) == 0 ?
dev_proc(dev, copy_mono) : gx_copy_mono_unaligned);
return (*copy_mono)
(dev, data, dx, raster, gx_no_bitmap_id,
x, y, w, h, pdc0->colors.pure, pdc1->colors.pure);
}
/*
* At least one color isn't pure: if the other one is transparent, use
* the opaque color's fill_masked procedure. Note that we use a
* slightly unusual representation for transparent here (per
* gx_begin_image1): a pure color with pixel value gx_no_color_index.
*/
{
const gx_device_color *pdc;
bool invert;
if (DC_IS_NULL(pdc1)) {
pdc = pdc0;
invert = true;
} else {
if (!DC_IS_NULL(pdc0)) {
int code = gx_device_color_fill_rectangle
(pdc0, x, y, w, h, dev, lop_default, NULL);
if (code < 0)
return code;
}
pdc = pdc1;
invert = false;
}
return (*pdc->type->fill_masked)
(pdc, data, dx, raster, gx_no_bitmap_id, x, y, w, h,
dev, lop_default, invert);
}
}
/* Rendering procedure for a monobit image with no */
/* skew or rotation and pure colors. */
static int
image_render_simple(gx_image_enum * penum, const byte * buffer, int data_x,
uint w, int h, gx_device * dev)
{
dev_proc_copy_mono((*copy_mono)) = dev_proc(dev, copy_mono);
const fixed dxx = penum->dxx;
const byte *line;
uint line_width, line_size;
int line_x;
fixed xcur = dda_current(penum->dda.pixel0.x);
int ix = fixed2int_pixround(xcur);
int ixr;
const int iy = penum->yci, ih = penum->hci;
gx_device_color * const pdc0 = penum->icolor0;
gx_device_color * const pdc1 = penum->icolor1;
int dy;
int code;
if (h == 0)
return 0;
if ((!DC_IS_NULL(pdc0) &&
(code = gx_color_load(pdc0, penum->pgs, dev)) < 0) ||
(!DC_IS_NULL(pdc1) &&
(code = gx_color_load(pdc1, penum->pgs, dev)) < 0)
)
return code;
if (penum->line == 0) { /* A direct BitBlt is possible. */
line = buffer;
line_size = (w + 7) >> 3;
line_width = w;
line_x = 0;
} else if (copy_mono == mem_mono_copy_mono &&
dxx > 0 && gx_dc_is_pure(pdc1) && gx_dc_is_pure(pdc0) &&
/* We know the colors must be (0,1) or (1,0). */
(pdc0->colors.pure ^ pdc1->colors.pure) == 1 &&
!penum->clip_image &&
/*
* Even if clip_image is false, the clipping rectangle
* might lie partly outside the device coordinate space
* if the Margins values are non-zero.
*/
ix >= 0 &&
(ixr = fixed2int_pixround(xcur + penum->x_extent.x) - 1) <
dev->width &&
iy >= 0 && iy + ih <= dev->height
) {
/* Do the operation directly into the memory device bitmap. */
int line_ix;
int ib_left = ix >> 3, ib_right = ixr >> 3;
byte *scan_line = scan_line_base((gx_device_memory *) dev, iy);
byte save_left, save_right, mask;
line_x = ix & (align_bitmap_mod * 8 - 1);
line_ix = ix - line_x;
line_size = (ixr >> 3) + 1 - (line_ix >> 3);
line_width = ixr + 1 - ix;
/* We must save and restore any unmodified bits in */
/* the two edge bytes. */
save_left = scan_line[ib_left];
save_right = scan_line[ib_right];
image_simple_expand(scan_line + (line_ix >> 3), line_x,
line_size, buffer, data_x, w, xcur,
penum->x_extent.x,
(byte)((pdc0->colors.pure == 0) !=
(penum->map[0].table.lookup4x1to32[0] == 0) ?
0xff : 0));
if (ix & 7)
mask = (byte) (0xff00 >> (ix & 7)),
scan_line[ib_left] =
(save_left & mask) + (scan_line[ib_left] & ~mask);
if ((ixr + 1) & 7)
mask = (byte) (0xff00 >> ((ixr + 1) & 7)),
scan_line[ib_right] =
(scan_line[ib_right] & mask) + (save_right & ~mask);
if (ih <= 1)
return 1;
/****** MAY BE UNALIGNED ******/
line = scan_line + (line_ix >> 3);
for (dy = 1; dy < ih; dy++) {
int code = (*copy_mono)
(dev, line, line_x, line_size, gx_no_bitmap_id,
ix, iy + dy, line_width, 1,
(gx_color_index)0, (gx_color_index)1);
if (code < 0)
return code;
}
return 0;
} else {
line = penum->line;
line_size = penum->line_size;
line_width = penum->line_width;
line_x = ix & (align_bitmap_mod * 8 - 1);
image_simple_expand(penum->line, line_x, line_size,
buffer, data_x, w, xcur,
penum->x_extent.x, 0);
}
/* Finally, transfer the scan line to the device. */
if (dxx < 0)
ix -= line_width;
for (dy = 0; dy < ih; dy++) {
int code = copy_portrait(penum, line, line_x, line_size,
ix, iy + dy, line_width, 1, dev);
if (code < 0)
return code;
}
return 1;
}
/* Rendering procedure for a 90 degree rotated monobit image */
/* with pure colors. We buffer and then flip 8 scan lines at a time. */
static int copy_landscape(gx_image_enum *, int, int, bool, gx_device *);
static int
image_render_landscape(gx_image_enum * penum, const byte * buffer, int data_x,
uint w, int h, gx_device * dev)
{
byte *line = penum->line;
uint raster = bitmap_raster(penum->line_width);
int ix = penum->xci, iw = penum->wci;
int xinc, xmod;
byte *row;
const byte *orig_row = 0;
bool y_neg = penum->dxy < 0;
if (is_fneg(penum->matrix.yx))
ix += iw, iw = -iw, xinc = -1;
else
xinc = 1;
/*
* Because of clipping, there may be discontinuous jumps in the values
* of ix (xci). If this happens, or if we are at the end of the data or
* a client has requested flushing, flush the flipping buffer.
*/
if (ix != penum->xi_next || h == 0) {
int xi = penum->xi_next;
int code =
(xinc > 0 ?
copy_landscape(penum, penum->line_xy, xi, y_neg, dev) :
copy_landscape(penum, xi, penum->line_xy, y_neg, dev));
if (code < 0)
return code;
penum->line_xy = penum->xi_next = ix;
if (h == 0)
return code;
}
for (; iw != 0; iw -= xinc) {
if (xinc < 0)
--ix;
xmod = ix & 7;
row = line + xmod * raster;
if (orig_row == 0) {
image_simple_expand(row, 0, raster,
buffer, data_x, w,
dda_current(penum->dda.pixel0.y),
penum->x_extent.y, 0);
orig_row = row;
} else
memcpy(row, orig_row, raster);
if (xinc > 0) {
++ix;
if (xmod == 7) {
int code =
copy_landscape(penum, penum->line_xy, ix, y_neg, dev);
if (code < 0)
return code;
orig_row = 0;
penum->line_xy = ix;
}
} else {
if (xmod == 0) {
int code =
copy_landscape(penum, ix, penum->line_xy, y_neg, dev);
if (code < 0)
return code;
orig_row = 0;
penum->line_xy = ix;
}
}
}
penum->xi_next = ix;
return 0;
}
/* Flip and copy one group of scan lines. */
static int
copy_landscape(gx_image_enum * penum, int x0, int x1, bool y_neg,
gx_device * dev)
{
byte *line = penum->line;
uint line_width = penum->line_width;
uint raster = bitmap_raster(line_width);
byte *flipped = line + raster * 8;
int w = x1 - x0;
int y = fixed2int_pixround(dda_current(penum->dda.pixel0.y));
if (w == 0 || line_width == 0)
return 0;
/* Flip the buffered data from raster x 8 to align_bitmap_mod x */
/* line_width. */
if (line_width > 0) {
int i = (line_width-1)>>3;
#ifdef PACIFY_VALGRIND
if (line_width & 7) {
memflip8x8_eol(line + i, raster,
flipped + (i << (log2_align_bitmap_mod + 3)),
align_bitmap_mod,
line_width & 7);
i--;
}
#endif
for (; i >= 0; --i)
memflip8x8(line + i, raster,
flipped + (i << (log2_align_bitmap_mod + 3)),
align_bitmap_mod);
}
/* Transfer the scan lines to the device. */
if (w < 0)
x0 = x1, w = -w;
if (y_neg)
y -= line_width;
return copy_portrait(penum, flipped, x0 & 7, align_bitmap_mod,
x0, y, w, line_width, dev);
}
|