1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* ImageType 3x image implementation */
/****** THE REAL WORK IS NYI ******/
#include "math_.h" /* for ceil, floor */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsbitops.h"
#include "gscspace.h"
#include "gscpixel.h"
#include "gsstruct.h"
#include "gxdevice.h"
#include "gxdevmem.h"
#include "gximag3x.h"
#include "gxgstate.h"
#include "gdevbbox.h"
#include <limits.h> /* For INT_MAX etc */
extern_st(st_color_space);
/* Forward references */
static dev_proc_begin_typed_image(gx_begin_image3x);
static image_enum_proc_plane_data(gx_image3x_plane_data);
static image_enum_proc_end_image(gx_image3x_end_image);
static image_enum_proc_flush(gx_image3x_flush);
static image_enum_proc_planes_wanted(gx_image3x_planes_wanted);
/* GC descriptor */
private_st_gs_image3x();
/* Define the image type for ImageType 3x images. */
const gx_image_type_t gs_image_type_3x = {
&st_gs_image3x, gx_begin_image3x,
gx_image_no_sput, gx_image_no_sget, gx_image_default_release,
IMAGE3X_IMAGETYPE
};
static const gx_image_enum_procs_t image3x_enum_procs = {
gx_image3x_plane_data, gx_image3x_end_image,
gx_image3x_flush, gx_image3x_planes_wanted
};
/* Initialize an ImageType 3x image. */
static void
gs_image3x_mask_init(gs_image3x_mask_t *pimm)
{
pimm->InterleaveType = 0; /* not a valid type */
pimm->has_Matte = false;
gs_data_image_t_init(&pimm->MaskDict, 1);
pimm->MaskDict.BitsPerComponent = 0; /* not supplied */
}
void
gs_image3x_t_init(gs_image3x_t * pim, gs_color_space * color_space)
{
gs_pixel_image_t_init((gs_pixel_image_t *) pim, color_space);
pim->type = &gs_image_type_3x;
gs_image3x_mask_init(&pim->Opacity);
gs_image3x_mask_init(&pim->Shape);
}
/*
* We implement ImageType 3 images by interposing a mask clipper in
* front of an ordinary ImageType 1 image. Note that we build up the
* mask row-by-row as we are processing the image.
*
* We export a generalized form of the begin_image procedure for use by
* the PDF and PostScript writers.
*/
typedef struct image3x_channel_state_s {
gx_image_enum_common_t *info;
gx_device *mdev; /* gx_device_memory in default impl. */
/* (only for masks) */
gs_image3_interleave_type_t InterleaveType;
int width, height, full_height, depth;
byte *data; /* (if chunky) */
/* Only the following change dynamically. */
int y;
int skip; /* only for masks, # of rows to skip, */
/* see below */
} image3x_channel_state_t;
typedef struct gx_image3x_enum_s {
gx_image_enum_common;
gx_device *pcdev; /* gx_device_mask_clip in default impl. */
int num_components; /* (not counting masks) */
int bpc; /* pixel BitsPerComponent */
#define NUM_MASKS 2 /* opacity, shape */
image3x_channel_state_t mask[NUM_MASKS], pixel;
} gx_image3x_enum_t;
extern_st(st_gx_image_enum_common);
gs_private_st_suffix_add9(st_image3x_enum, gx_image3x_enum_t,
"gx_image3x_enum_t", image3x_enum_enum_ptrs, image3x_enum_reloc_ptrs,
st_gx_image_enum_common, pcdev, mask[0].info, mask[0].mdev, mask[0].data,
mask[1].info, mask[1].mdev, mask[1].data, pixel.info, pixel.data);
/*
* Begin a generic ImageType 3x image, with client handling the creation of
* the mask image and mask clip devices.
*/
typedef struct image3x_channel_values_s {
gs_matrix matrix;
gs_point corner;
gs_int_rect rect;
gs_image_t image;
} image3x_channel_values_t;
static int check_image3x_mask(const gs_image3x_t *pim,
const gs_image3x_mask_t *pimm,
const image3x_channel_values_t *ppcv,
image3x_channel_values_t *pmcv,
image3x_channel_state_t *pmcs,
gs_memory_t *mem);
int
gx_begin_image3x_generic(gx_device * dev,
const gs_gstate *pgs, const gs_matrix *pmat,
const gs_image_common_t *pic, const gs_int_rect *prect,
const gx_drawing_color *pdcolor,
const gx_clip_path *pcpath, gs_memory_t *mem,
image3x_make_mid_proc_t make_mid,
image3x_make_mcde_proc_t make_mcde,
gx_image_enum_common_t **pinfo)
{
const gs_image3x_t *pim = (const gs_image3x_t *)pic;
gx_image3x_enum_t *penum;
gx_device *pcdev = 0;
image3x_channel_values_t mask[2], pixel;
gs_matrix mat;
gx_device *midev[2];
gx_image_enum_common_t *minfo[2];
gs_int_point origin[2];
int code;
int i;
gs_color_space *pmcs = NULL;
/* Validate the parameters. */
if (pim->Height <= 0)
return_error(gs_error_rangecheck);
penum = gs_alloc_struct(mem, gx_image3x_enum_t, &st_image3x_enum,
"gx_begin_image3x");
if (penum == 0)
return_error(gs_error_VMerror);
/* Initialize pointers now in case we bail out. */
penum->mask[0].info = 0, penum->mask[0].mdev = 0, penum->mask[0].data = 0;
penum->mask[1].info = 0, penum->mask[1].mdev = 0, penum->mask[1].data = 0;
penum->pixel.info = 0, penum->pixel.data = 0;
if (prect)
pixel.rect = *prect;
else {
pixel.rect.p.x = pixel.rect.p.y = 0;
pixel.rect.q.x = pim->Width;
pixel.rect.q.y = pim->Height;
}
if ((code = gs_matrix_invert(&pim->ImageMatrix, &pixel.matrix)) < 0 ||
(code = gs_point_transform(pim->Width, pim->Height, &pixel.matrix,
&pixel.corner)) < 0 ||
(code = check_image3x_mask(pim, &pim->Opacity, &pixel, &mask[0],
&penum->mask[0], mem)) < 0 ||
(code = check_image3x_mask(pim, &pim->Shape, &pixel, &mask[1],
&penum->mask[1], mem)) < 0
) {
goto out0;
}
penum->num_components =
gs_color_space_num_components(pim->ColorSpace);
gx_image_enum_common_init((gx_image_enum_common_t *) penum,
(const gs_data_image_t *)pim,
&image3x_enum_procs, dev,
1 + penum->num_components,
pim->format);
penum->pixel.width = pixel.rect.q.x - pixel.rect.p.x;
penum->pixel.height = pixel.rect.q.y - pixel.rect.p.y;
penum->pixel.full_height = pim->Height;
penum->pixel.y = 0;
if (penum->mask[0].data || penum->mask[1].data) {
/* Also allocate a row buffer for the pixel data. */
penum->pixel.data =
gs_alloc_bytes(mem,
(penum->pixel.width * pim->BitsPerComponent *
penum->num_components + 7) >> 3,
"gx_begin_image3x(pixel.data)");
if (penum->pixel.data == 0) {
code = gs_note_error(gs_error_VMerror);
goto out1;
}
}
penum->bpc = pim->BitsPerComponent;
penum->memory = mem;
if (pmat == 0)
pmat = &ctm_only(pgs);
for (i = 0; i < NUM_MASKS; ++i) {
gs_rect mrect;
gx_device *mdev;
/*
* The mask data has to be defined in a DevicePixel color space
* of the correct depth so that no color mapping will occur.
*/
if (penum->mask[i].depth == 0) { /* mask not supplied */
midev[i] = 0;
minfo[i] = 0;
continue;
}
code = gs_cspace_new_DevicePixel(mem, &pmcs, penum->mask[i].depth);
if (code < 0)
goto out1;
mrect.p.x = mrect.p.y = 0;
mrect.q.x = penum->mask[i].width;
mrect.q.y = penum->mask[i].height;
if ((code = gs_matrix_multiply(&mask[i].matrix, pmat, &mat)) < 0 ||
(code = gs_bbox_transform(&mrect, &mat, &mrect)) < 0
)
goto out1;
/* Bug 700438: If the rectangle is out of range, bail */
if (mrect.p.x >= (double)INT_MAX || mrect.q.x <= (double)INT_MIN ||
mrect.p.y >= (double)INT_MAX || mrect.q.y <= (double)INT_MIN) {
code = gs_note_error(gs_error_rangecheck);
goto out1;
}
/* This code was changed for bug 686843/687411, but in a way that
* a) looked wrong, and b) doesn't appear to make a difference. Revert
* it to the sane version until we have evidence why not. */
origin[i].x = (int)floor(mrect.p.x);
origin[i].y = (int)floor(mrect.p.y);
code = make_mid(&mdev, dev,
(int)ceil(mrect.q.x) - origin[i].x,
(int)ceil(mrect.q.y) - origin[i].y,
penum->mask[i].depth, mem);
if (code < 0)
goto out1;
code = dev_proc(dev, get_profile)(dev, &mdev->icc_struct);
if (code < 0)
goto out1; /* Device not yet open */
rc_increment(mdev->icc_struct);
penum->mask[i].mdev = mdev;
gs_image_t_init(&mask[i].image, pmcs);
mask[i].image.ColorSpace = pmcs;
mask[i].image.adjust = false;
mask[i].image.image_parent_type = gs_image_type3x;
{
const gx_image_type_t *type1 = mask[i].image.type;
const gs_image3x_mask_t *pixm =
(i == 0 ? &pim->Opacity : &pim->Shape);
/* Use memcpy because direct assignment breaks ANSI aliasing */
/* rules and causes SEGV with gcc 4.5.1 */
memcpy(&mask[i].image, &pixm->MaskDict, sizeof(pixm->MaskDict));
mask[i].image.type = type1;
mask[i].image.BitsPerComponent = pixm->MaskDict.BitsPerComponent;
}
{
gs_matrix m_mat;
/*
* Adjust the translation for rendering the mask to include a
* negative translation by origin.{x,y} in device space.
*/
m_mat = *pmat;
m_mat.tx -= origin[i].x;
m_mat.ty -= origin[i].y;
/*
* Peter put in a comment that said " Note that pgs = NULL here,
* since we don't want to have to create another gs_gstate with
* default log_op, etc." and passed NULL instead of pgs to this
* routine. However Image type 1 need the gs_gstate (see
* bug 688348) thus his optimization was removed.
* dcolor = NULL is OK because this is an opaque image with
* CombineWithColor = false.
*/
code = gx_device_begin_typed_image(mdev, pgs, &m_mat,
(const gs_image_common_t *)&mask[i].image,
&mask[i].rect, NULL, NULL,
mem, &penum->mask[i].info);
if (code < 0)
goto out2;
}
midev[i] = mdev;
minfo[i] = penum->mask[i].info;
rc_decrement_only(pmcs, "gx_begin_image3x_generic(pmcs)");
pmcs = NULL;
}
gs_image_t_init(&pixel.image, pim->ColorSpace);
{
const gx_image_type_t *type1 = pixel.image.type;
*(gs_pixel_image_t *)&pixel.image = *(const gs_pixel_image_t *)pim;
pixel.image.type = type1;
pixel.image.image_parent_type = gs_image_type3x;
}
code = make_mcde(dev, pgs, pmat, (const gs_image_common_t *)&pixel.image,
prect, pdcolor, pcpath, mem, &penum->pixel.info,
&pcdev, midev, minfo, origin, pim);
if (code < 0)
goto out3;
penum->pcdev = pcdev;
/*
* Set num_planes, plane_widths, and plane_depths from the values in the
* enumerators for the mask(s) and the image data.
*/
{
int added_depth = 0;
int pi = 0;
for (i = 0; i < NUM_MASKS; ++i) {
if (penum->mask[i].depth == 0) /* no mask */
continue;
switch (penum->mask[i].InterleaveType) {
case interleave_chunky:
/* Add the mask data to the depth of the image data. */
added_depth += pim->BitsPerComponent;
break;
case interleave_separate_source:
/* Insert the mask as a separate plane. */
penum->plane_widths[pi] = penum->mask[i].width;
penum->plane_depths[pi] = penum->mask[i].depth;
++pi;
break;
default: /* can't happen */
code = gs_note_error(gs_error_Fatal);
goto out3;
}
}
memcpy(&penum->plane_widths[pi], &penum->pixel.info->plane_widths[0],
penum->pixel.info->num_planes * sizeof(penum->plane_widths[0]));
memcpy(&penum->plane_depths[pi], &penum->pixel.info->plane_depths[0],
penum->pixel.info->num_planes * sizeof(penum->plane_depths[0]));
penum->plane_depths[pi] += added_depth;
penum->num_planes = pi + penum->pixel.info->num_planes;
}
if (midev[0])
gx_device_retain(midev[0], true); /* will free explicitly */
if (midev[1])
gx_device_retain(midev[1], true); /* ditto */
gx_device_retain(pcdev, true); /* ditto */
*pinfo = (gx_image_enum_common_t *) penum;
return 0;
out3:
if (penum->mask[1].info)
gx_image_end(penum->mask[1].info, false);
if (penum->mask[0].info)
gx_image_end(penum->mask[0].info, false);
out2:
if (penum->mask[1].mdev) {
gs_closedevice(penum->mask[1].mdev);
gs_free_object(mem, penum->mask[1].mdev,
"gx_begin_image3x(mask[1].mdev)");
}
if (penum->mask[0].mdev) {
gs_closedevice(penum->mask[0].mdev);
gs_free_object(mem, penum->mask[0].mdev,
"gx_begin_image3x(mask[0].mdev)");
}
out1:
rc_decrement(pmcs, "gx_begin_image3x_generic(pmcs)");
gs_free_object(mem, penum->mask[0].data, "gx_begin_image3x(mask[0].data)");
gs_free_object(mem, penum->mask[1].data, "gx_begin_image3x(mask[1].data)");
gs_free_object(mem, penum->pixel.data, "gx_begin_image3x(pixel.data)");
out0:
gs_free_object(mem, penum, "gx_begin_image3x");
return code;
}
static bool
check_image3x_extent(double mask_coeff, double data_coeff)
{
if (mask_coeff == 0)
return data_coeff == 0;
if (data_coeff == 0 || (mask_coeff > 0) != (data_coeff > 0))
return false;
return true;
}
/*
* Check mask parameters.
* Reads ppcv->{matrix,corner,rect}, sets pmcv->{matrix,corner,rect} and
* pmcs->{InterleaveType,width,height,full_height,depth,data,y,skip}.
* If the mask is omitted, sets pmcs->depth = 0 and returns normally.
*/
static bool
check_image3x_mask(const gs_image3x_t *pim, const gs_image3x_mask_t *pimm,
const image3x_channel_values_t *ppcv,
image3x_channel_values_t *pmcv,
image3x_channel_state_t *pmcs, gs_memory_t *mem)
{
int mask_width = pimm->MaskDict.Width, mask_height = pimm->MaskDict.Height;
int code;
if (pimm->MaskDict.BitsPerComponent == 0) { /* mask missing */
pmcs->depth = 0;
pmcs->InterleaveType = 0; /* not a valid type */
return 0;
}
if (mask_height <= 0)
return_error(gs_error_rangecheck);
switch (pimm->InterleaveType) {
/*case interleave_scan_lines:*/ /* not supported */
default:
return_error(gs_error_rangecheck);
case interleave_chunky:
if (mask_width != pim->Width ||
mask_height != pim->Height ||
pimm->MaskDict.BitsPerComponent != pim->BitsPerComponent ||
pim->format != gs_image_format_chunky
)
return_error(gs_error_rangecheck);
break;
case interleave_separate_source:
switch (pimm->MaskDict.BitsPerComponent) {
case 1: case 2: case 4: case 8: case 12: case 16:
break;
default:
return_error(gs_error_rangecheck);
}
}
if (!check_image3x_extent(pim->ImageMatrix.xx,
pimm->MaskDict.ImageMatrix.xx) ||
!check_image3x_extent(pim->ImageMatrix.xy,
pimm->MaskDict.ImageMatrix.xy) ||
!check_image3x_extent(pim->ImageMatrix.yx,
pimm->MaskDict.ImageMatrix.yx) ||
!check_image3x_extent(pim->ImageMatrix.yy,
pimm->MaskDict.ImageMatrix.yy)
)
return_error(gs_error_rangecheck);
if ((code = gs_matrix_invert(&pimm->MaskDict.ImageMatrix, &pmcv->matrix)) < 0 ||
(code = gs_point_transform(mask_width, mask_height,
&pmcv->matrix, &pmcv->corner)) < 0
)
return code;
if (fabs(ppcv->matrix.tx - pmcv->matrix.tx) >= 0.5 ||
fabs(ppcv->matrix.ty - pmcv->matrix.ty) >= 0.5 ||
fabs(ppcv->corner.x - pmcv->corner.x) >= 0.5 ||
fabs(ppcv->corner.y - pmcv->corner.y) >= 0.5
)
return_error(gs_error_rangecheck);
pmcv->rect.p.x = ppcv->rect.p.x * mask_width / pim->Width;
pmcv->rect.p.y = ppcv->rect.p.y * mask_height / pim->Height;
pmcv->rect.q.x = (ppcv->rect.q.x * mask_width + pim->Width - 1) /
pim->Width;
pmcv->rect.q.y = (ppcv->rect.q.y * mask_height + pim->Height - 1) /
pim->Height;
/* Initialize the channel state in the enumerator. */
pmcs->InterleaveType = pimm->InterleaveType;
pmcs->width = pmcv->rect.q.x - pmcv->rect.p.x;
pmcs->height = pmcv->rect.q.y - pmcv->rect.p.y;
pmcs->full_height = pimm->MaskDict.Height;
pmcs->depth = pimm->MaskDict.BitsPerComponent;
if (pmcs->InterleaveType == interleave_chunky) {
/* Allocate a buffer for the data. */
pmcs->data =
gs_alloc_bytes(mem,
(pmcs->width * pimm->MaskDict.BitsPerComponent + 7) >> 3,
"gx_begin_image3x(mask data)");
if (pmcs->data == 0)
return_error(gs_error_VMerror);
}
pmcs->y = pmcs->skip = 0;
return 0;
}
/*
* Return > 0 if we want more data from channel 1 now, < 0 if we want more
* from channel 2 now, 0 if we want both.
*/
static int
channel_next(const image3x_channel_state_t *pics1,
const image3x_channel_state_t *pics2)
{
/*
* The invariant we need to maintain is that we always have at least as
* much channel N as channel N+1 data, where N = 0 = opacity, 1 = shape,
* and 2 = pixel. I.e., for any two consecutive channels c1 and c2, we
* require c1.y / c1.full_height >= c2.y / c2.full_height, or, to avoid
* floating point, c1.y * c2.full_height >= c2.y * c1.full_height. We
* know this condition is true now; return a value that indicates how to
* maintain it.
*/
int h1 = pics1->full_height;
int h2 = pics2->full_height;
long current = pics1->y * (long)h2 - pics2->y * (long)h1;
#ifdef DEBUG
if (current < 0)
lprintf4("channel_next invariant fails: %d/%d < %d/%d\n",
pics1->y, pics1->full_height,
pics2->y, pics2->full_height);
#endif
return ((current -= h1) >= 0 ? -1 :
current + h2 >= 0 ? 0 : 1);
}
/* Define the default implementation of ImageType 3 processing. */
static IMAGE3X_MAKE_MID_PROC(make_midx_default); /* check prototype */
static int
make_midx_default(gx_device **pmidev, gx_device *dev, int width, int height,
int depth, gs_memory_t *mem)
{
const gx_device_memory *mdproto = gdev_mem_device_for_bits(depth);
gx_device_memory *midev;
int code;
if (width != 0)
if (height > max_ulong/width) /* protect against overflow in bitmap size */
return_error(gs_error_VMerror);
if (mdproto == 0)
return_error(gs_error_rangecheck);
midev = gs_alloc_struct(mem, gx_device_memory, &st_device_memory,
"make_mid_default");
if (midev == 0)
return_error(gs_error_VMerror);
gs_make_mem_device(midev, mdproto, mem, 0, NULL);
midev->bitmap_memory = mem;
midev->width = width;
midev->height = height;
check_device_separable((gx_device *)midev);
gx_device_fill_in_procs((gx_device *)midev);
code = dev_proc(midev, open_device)((gx_device *)midev);
if (code < 0) {
gs_free_object(mem, midev, "make_midx_default");
return code;
}
midev->is_open = true;
dev_proc(midev, fill_rectangle)
((gx_device *)midev, 0, 0, width, height, (gx_color_index)0);
*pmidev = (gx_device *)midev;
return 0;
}
static IMAGE3X_MAKE_MCDE_PROC(make_mcdex_default); /* check prototype */
static int
make_mcdex_default(gx_device *dev, const gs_gstate *pgs,
const gs_matrix *pmat, const gs_image_common_t *pic,
const gs_int_rect *prect, const gx_drawing_color *pdcolor,
const gx_clip_path *pcpath, gs_memory_t *mem,
gx_image_enum_common_t **pinfo,
gx_device **pmcdev, gx_device *midev[2],
gx_image_enum_common_t *pminfo[2],
const gs_int_point origin[2],
const gs_image3x_t *pim)
{
/**************** NYI ****************/
/*
* There is no soft-mask analogue of make_mcde_default, because
* soft-mask clipping is a more complicated operation, implemented
* by the general transparency code. As a default, we simply ignore
* the soft mask. However, we have to create an intermediate device
* that can be freed at the end and that simply forwards all calls.
* The most convenient device for this purpose is the bbox device.
*/
gx_device_bbox *bbdev;
int code;
cmm_dev_profile_t *icc_struct;
code = dev_proc(dev, get_profile)(dev, &icc_struct);
if (code < 0) {
return(code);
}
bbdev = gs_alloc_struct_immovable(mem, gx_device_bbox, &st_device_bbox,
"make_mcdex_default");
if (bbdev == 0)
return_error(gs_error_VMerror);
gx_device_bbox_init(bbdev, dev, mem);
bbdev->icc_struct = icc_struct;
rc_increment(bbdev->icc_struct);
gx_device_bbox_fwd_open_close(bbdev, false);
code = dev_proc(bbdev, begin_typed_image)
((gx_device *)bbdev, pgs, pmat, pic, prect, pdcolor, pcpath, mem,
pinfo);
if (code < 0) {
gs_free_object(mem, bbdev, "make_mcdex_default");
return code;
}
*pmcdev = (gx_device *)bbdev;
return 0;
}
static int
gx_begin_image3x(gx_device * dev,
const gs_gstate * pgs, const gs_matrix * pmat,
const gs_image_common_t * pic, const gs_int_rect * prect,
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
gs_memory_t * mem, gx_image_enum_common_t ** pinfo)
{
return gx_begin_image3x_generic(dev, pgs, pmat, pic, prect, pdcolor,
pcpath, mem, make_midx_default,
make_mcdex_default, pinfo);
}
/* Process the next piece of an ImageType 3 image. */
static int
gx_image3x_plane_data(gx_image_enum_common_t * info,
const gx_image_plane_t * planes, int height,
int *rows_used)
{
gx_image3x_enum_t *penum = (gx_image3x_enum_t *) info;
int pixel_height = penum->pixel.height;
int pixel_used = 0;
int mask_height[2];
int mask_used[2];
int h1 = pixel_height - penum->pixel.y;
int h;
const gx_image_plane_t *pixel_planes;
gx_image_plane_t pixel_plane, mask_plane[2];
int code = 0;
int i, pi = 0;
int num_chunky = 0;
for (i = 0; i < NUM_MASKS; ++i) {
int mh = mask_height[i] = penum->mask[i].height;
mask_plane[i].data = 0;
mask_plane[i].raster = 0;
mask_used[i] = 0;
if (!penum->mask[i].depth)
continue;
h1 = min(h1, ((mh > penum->mask[i].y) ? (mh - penum->mask[i].y) : mh));
if (penum->mask[i].InterleaveType == interleave_chunky)
++num_chunky;
}
h = min(height, h1);
/* Initialized rows_used in case we get an error. */
*rows_used = 0;
if (h <= 0)
return 0;
/* Handle masks from separate sources. */
for (i = 0; i < NUM_MASKS; ++i)
if (penum->mask[i].InterleaveType == interleave_separate_source) {
/*
* In order to be able to recover from interruptions, we must
* limit separate-source processing to 1 scan line at a time.
*/
if (h > 1)
h = 1;
mask_plane[i] = planes[pi++];
}
pixel_planes = &planes[pi];
/* Handle chunky masks. */
if (num_chunky) {
int bpc = penum->bpc;
int num_components = penum->num_components;
int width = penum->pixel.width;
/* Pull apart the source data and the mask data. */
/* We do this in the simplest (not fastest) way for now. */
uint bit_x = bpc * (num_components + num_chunky) * planes[pi].data_x;
const byte *sptr = planes[0].data + (bit_x >> 3);
int sbit = bit_x & 7;
byte *pptr = penum->pixel.data;
int pbit = 0;
byte pbbyte = (pbit ? (byte)(*pptr & (0xff00 >> pbit)) : 0);
byte *dptr[NUM_MASKS];
int dbit[NUM_MASKS];
byte dbbyte[NUM_MASKS];
int depth[NUM_MASKS];
int x;
if (h > 1) {
/* Do the operation one row at a time. */
h = 1;
}
for (i = 0; i < NUM_MASKS; ++i)
if (penum->mask[i].data) {
depth[i] = penum->mask[i].depth;
mask_plane[i].data = dptr[i] = penum->mask[i].data;
mask_plane[i].data_x = 0;
/* raster doesn't matter */
dbit[i] = 0;
dbbyte[i] = 0;
} else
depth[i] = 0;
pixel_plane.data = pptr;
pixel_plane.data_x = 0;
/* raster doesn't matter */
pixel_planes = &pixel_plane;
for (x = 0; x < width; ++x) {
uint value;
for (i = 0; i < NUM_MASKS; ++i)
if (depth[i]) {
if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0)
return_error(gs_error_rangecheck);
if (sample_store_next12(value, &dptr[i], &dbit[i], depth[i],
&dbbyte[i]) < 0)
return_error(gs_error_rangecheck);
}
for (i = 0; i < num_components; ++i) {
if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0)
return_error(gs_error_rangecheck);
if (sample_store_next12(value, &pptr, &pbit, bpc, &pbbyte) < 0)
return_error(gs_error_rangecheck);
}
}
for (i = 0; i < NUM_MASKS; ++i)
if (penum->mask[i].data) {
sample_store_flush(dptr[i], dbit[i], dbbyte[i]);
}
sample_store_flush(pptr, pbit, pbbyte);
}
/*
* Process the mask data first, so it will set up the mask
* device for clipping the pixel data.
*/
for (i = 0; i < NUM_MASKS; ++i)
if (mask_plane[i].data) {
/*
* If, on the last call, we processed some mask rows
* successfully but processing the pixel rows was interrupted,
* we set rows_used to indicate the number of pixel rows
* processed (since there is no way to return two rows_used
* values). If this happened, some mask rows may get presented
* again. We must skip over them rather than processing them
* again.
*/
int skip = penum->mask[i].skip;
if (skip >= h) {
penum->mask[i].skip = skip - (mask_used[i] = h);
} else {
int mask_h = h - skip;
mask_plane[i].data += skip * mask_plane[i].raster;
penum->mask[i].skip = 0;
code = gx_image_plane_data_rows(penum->mask[i].info,
&mask_plane[i],
mask_h, &mask_used[i]);
mask_used[i] += skip;
}
*rows_used = mask_used[i];
penum->mask[i].y += mask_used[i];
if (code < 0)
return code;
}
if (pixel_planes[0].data) {
/*
* If necessary, flush any buffered mask data to the mask clipping
* device.
*/
for (i = 0; i < NUM_MASKS; ++i)
if (penum->mask[i].info)
gx_image_flush(penum->mask[i].info);
code = gx_image_plane_data_rows(penum->pixel.info, pixel_planes, h,
&pixel_used);
/*
* There isn't any way to set rows_used if different amounts of
* the mask and pixel data were used. Fake it.
*/
*rows_used = pixel_used;
/*
* Don't return code yet: we must account for the fact that
* some mask data may have been processed.
*/
penum->pixel.y += pixel_used;
if (code < 0) {
/*
* We must prevent the mask data from being processed again.
* We rely on the fact that h > 1 is only possible if the
* mask and pixel data have the same Y scaling.
*/
for (i = 0; i < NUM_MASKS; ++i)
if (mask_used[i] > pixel_used) {
int skip = mask_used[i] - pixel_used;
penum->mask[i].skip = skip;
penum->mask[i].y -= skip;
mask_used[i] = pixel_used;
}
}
}
if_debug7m('b', penum->memory,
"[b]image3x h=%d %sopacity.y=%d %sopacity.y=%d %spixel.y=%d\n",
h, (mask_plane[0].data ? "+" : ""), penum->mask[0].y,
(mask_plane[1].data ? "+" : ""), penum->mask[1].y,
(pixel_planes[0].data ? "+" : ""), penum->pixel.y);
if (penum->mask[0].depth == 0 || penum->mask[0].y >= penum->mask[0].height) {
if (penum->mask[1].depth == 0 || penum->mask[1].y >= penum->mask[1].height) {
if (penum->pixel.y >= penum->pixel.height) {
return 1;
}
}
}
/*
* The mask may be complete (gx_image_plane_data_rows returned 1),
* but there may still be pixel rows to go, so don't return 1 here.
*/
return (code < 0 ? code : 0);
}
/* Flush buffered data. */
static int
gx_image3x_flush(gx_image_enum_common_t * info)
{
gx_image3x_enum_t * const penum = (gx_image3x_enum_t *) info;
int code = gx_image_flush(penum->mask[0].info);
if (code >= 0)
code = gx_image_flush(penum->mask[1].info);
if (code >= 0)
code = gx_image_flush(penum->pixel.info);
return code;
}
/* Determine which data planes are wanted. */
static bool
gx_image3x_planes_wanted(const gx_image_enum_common_t * info, byte *wanted)
{
const gx_image3x_enum_t * const penum = (const gx_image3x_enum_t *) info;
/*
* We always want at least as much of the mask(s) to be filled as the
* pixel data.
*/
bool
sso = penum->mask[0].InterleaveType == interleave_separate_source,
sss = penum->mask[1].InterleaveType == interleave_separate_source;
if (sso & sss) {
/* Both masks have separate sources. */
int mask_next = channel_next(&penum->mask[1], &penum->pixel);
memset(wanted + 2, (mask_next <= 0 ? 0xff : 0), info->num_planes - 2);
wanted[1] = (mask_next >= 0 ? 0xff : 0);
if (wanted[1]) {
mask_next = channel_next(&penum->mask[0], &penum->mask[1]);
wanted[0] = mask_next >= 0;
} else
wanted[0] = 0;
return false; /* see below */
} else if (sso | sss) {
/* Only one separate source. */
const image3x_channel_state_t *pics =
(sso ? &penum->mask[0] : &penum->mask[1]);
int mask_next = channel_next(pics, &penum->pixel);
wanted[0] = (mask_next >= 0 ? 0xff : 0);
memset(wanted + 1, (mask_next <= 0 ? 0xff : 0), info->num_planes - 1);
/*
* In principle, wanted will always be true for both mask and pixel
* data if the full_heights are equal. Unfortunately, even in this
* case, processing may be interrupted after a mask row has been
* passed to the underlying image processor but before the data row
* has been passed, in which case pixel data will be 'wanted', but
* not mask data, for the next call. Therefore, we must return
* false.
*/
return false
/*(next == 0 &&
pics->full_height == penum->pixel.full_height)*/;
} else {
/* Everything is chunky, only 1 plane. */
wanted[0] = 0xff;
return true;
}
}
/* Clean up after processing an ImageType 3x image. */
static int
gx_image3x_end_image(gx_image_enum_common_t * info, bool draw_last)
{
gx_image3x_enum_t *penum = (gx_image3x_enum_t *) info;
gs_memory_t *mem = penum->memory;
gx_device *mdev0 = penum->mask[0].mdev;
int ocode =
(penum->mask[0].info ? gx_image_end(penum->mask[0].info, draw_last) :
0);
gx_device *mdev1 = penum->mask[1].mdev;
int scode =
(penum->mask[1].info ? gx_image_end(penum->mask[1].info, draw_last) :
0);
gx_device *pcdev = penum->pcdev;
int pcode = gx_image_end(penum->pixel.info, draw_last);
rc_decrement(pcdev->icc_struct, "gx_image3x_end_image(pcdev->icc_struct)");
pcdev->icc_struct = NULL;
gs_closedevice(pcdev);
if (mdev0)
gs_closedevice(mdev0);
if (mdev1)
gs_closedevice(mdev1);
gs_free_object(mem, penum->mask[0].data,
"gx_image3x_end_image(mask[0].data)");
gs_free_object(mem, penum->mask[1].data,
"gx_image3x_end_image(mask[1].data)");
gs_free_object(mem, penum->pixel.data,
"gx_image3x_end_image(pixel.data)");
gs_free_object(mem, pcdev, "gx_image3x_end_image(pcdev)");
gs_free_object(mem, mdev0, "gx_image3x_end_image(mask[0].mdev)");
gs_free_object(mem, mdev1, "gx_image3x_end_image(mask[1].mdev)");
gx_image_free_enum(&info);
return (pcode < 0 ? pcode : scode < 0 ? scode : ocode);
}
|