1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/* Copyright (C) 2014-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Methods for decoding and unpacking image data. Used for color
monitoring in clist and for creating TIFF files for xpswrite device */
#include "gximdecode.h"
#include "string_.h"
/* We need to have the unpacking proc so that we can monitor the data for color
or decode during xpswrite */
void
get_unpack_proc(gx_image_enum_common_t *pie, image_decode_t *imd,
gs_image_format_t format, const float *decode) {
static sample_unpack_proc_t procs[2][6] = {
{ sample_unpack_1, sample_unpack_2,
sample_unpack_4, sample_unpack_8,
sample_unpack_12, sample_unpackicc_16
},
{ sample_unpack_1_interleaved, sample_unpack_2_interleaved,
sample_unpack_4_interleaved, sample_unpack_8_interleaved,
sample_unpack_12, sample_unpackicc_16
} };
int num_planes = pie->num_planes;
bool interleaved = (num_planes == 1 && pie->plane_depths[0] != imd->bps);
int i;
int index_bps = (imd->bps < 8 ? imd->bps >> 1 : (imd->bps >> 2) + 1);
int log2_xbytes = (imd->bps <= 8 ? 0 : arch_log2_sizeof_frac);
switch (format) {
case gs_image_format_chunky:
imd->spread = 1 << log2_xbytes;
break;
case gs_image_format_component_planar:
imd->spread = (imd->spp) << log2_xbytes;
break;
case gs_image_format_bit_planar:
imd->spread = (imd->spp) << log2_xbytes;
break;
default:
imd->spread = 0;
}
if (interleaved) {
int num_components = pie->plane_depths[0] / imd->bps;
for (i = 1; i < num_components; i++) {
if (decode[0] != decode[i * 2 + 0] ||
decode[1] != decode[i * 2 + 1])
break;
}
if (i == num_components)
interleaved = false; /* Use single table. */
}
imd->unpack = procs[interleaved][index_bps];
}
/* We also need the mapping method for the unpacking proc */
void
get_map(image_decode_t *imd, gs_image_format_t format, const float *decode)
{
int ci = 0;
int decode_type;
int bps = imd->bps;
int spp = imd->spp;
static const float default_decode[] = {
0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
};
const float *this_decode = &decode[ci * 2];
const float *map_decode; /* decoding used to */
/* construct the expansion map */
const float *real_decode; /* decoding for expanded samples */
decode_type = 3; /* 0=custom, 1=identity, 2=inverted, 3=impossible */
for (ci = 0; ci < spp; ci += 2) {
decode_type &= (decode[ci] == 0. && decode[ci + 1] == 1.) |
(decode[ci] == 1. && decode[ci + 1] == 0.) << 1;
}
/* Initialize the maps from samples to intensities. */
for (ci = 0; ci < spp; ci++) {
sample_map *pmap = &imd->map[ci];
if (bps > 8)
imd->applymap = applymap16;
else
imd->applymap = applymap8;
/* If the decoding is [0 1] or [1 0], we can fold it */
/* into the expansion of the sample values; */
/* otherwise, we have to use the floating point method. */
this_decode = &decode[ci * 2];
map_decode = real_decode = this_decode;
if (!(decode_type & 1)) {
if ((decode_type & 2) && bps <= 8) {
real_decode = default_decode;
}
else {
map_decode = default_decode;
}
}
if (bps > 2 || format != gs_image_format_chunky) {
if (bps <= 8)
image_init_map(&pmap->table.lookup8[0], 1 << bps,
map_decode);
}
else { /* The map index encompasses more than one pixel. */
byte map[4];
register int i;
image_init_map(&map[0], 1 << bps, map_decode);
switch (bps) {
case 1:
{
register bits32 *p = &pmap->table.lookup4x1to32[0];
if (map[0] == 0 && map[1] == 0xff)
memcpy((byte *)p, lookup4x1to32_identity, 16 * 4);
else if (map[0] == 0xff && map[1] == 0)
memcpy((byte *)p, lookup4x1to32_inverted, 16 * 4);
else
for (i = 0; i < 16; i++, p++)
((byte *)p)[0] = map[i >> 3],
((byte *)p)[1] = map[(i >> 2) & 1],
((byte *)p)[2] = map[(i >> 1) & 1],
((byte *)p)[3] = map[i & 1];
}
break;
case 2:
{
register bits16 *p = &pmap->table.lookup2x2to16[0];
for (i = 0; i < 16; i++, p++)
((byte *)p)[0] = map[i >> 2],
((byte *)p)[1] = map[i & 3];
}
break;
}
}
pmap->decode_base /* = decode_lookup[0] */ = real_decode[0];
pmap->decode_factor =
(real_decode[1] - real_decode[0]) /
(bps <= 8 ? 255.0 : (float)frac_1);
pmap->decode_max /* = decode_lookup[15] */ = real_decode[1];
if (decode_type) {
pmap->decoding = sd_none;
pmap->inverted = map_decode[0] != 0;
}
else if (bps <= 4) {
int step = 15 / ((1 << bps) - 1);
int i;
pmap->decoding = sd_lookup;
for (i = 15 - step; i > 0; i -= step)
pmap->decode_lookup[i] = pmap->decode_base +
i * (255.0 / 15) * pmap->decode_factor;
}
else
pmap->decoding = sd_compute;
}
}
/* We only provide 8 or 16 bit output with the application of the mapping */
void applymap8(sample_map map[], const void *psrc_in, int spp, void *pdes,
void *bufend)
{
byte* psrc = (byte*)psrc_in;
byte *curr_pos = (byte*) pdes;
int k;
float temp;
while (curr_pos < (byte*) bufend) {
for (k = 0; k < spp; k++) {
switch (map[k].decoding) {
case sd_none:
*curr_pos = *psrc;
break;
case sd_lookup:
temp = map[k].decode_lookup[(*psrc) >> 4] * 255;
if (temp > 255) temp = 255;
if (temp < 0) temp = 0;
*curr_pos = (byte)temp;
break;
case sd_compute:
temp = map[k].decode_base +
*(psrc) * map[k].decode_factor;
temp *= 255;
if (temp > 255) temp = 255;
if (temp < 0) temp = 0;
*curr_pos = (byte)temp;
default:
break;
}
curr_pos++;
psrc++;
}
}
}
void applymap16(sample_map map[], const void *psrc_in, int spp, void *pdes,
void *bufend)
{
unsigned short *curr_pos = (unsigned short*)pdes;
unsigned short *psrc = (unsigned short*)psrc_in;
int k;
float temp;
while (curr_pos < (unsigned short*) bufend) {
for (k = 0; k < spp; k++) {
switch (map[k].decoding) {
case sd_none:
*curr_pos = *psrc;
break;
case sd_lookup:
temp = map[k].decode_lookup[*(psrc) >> 4] * 65535.0;
if (temp > 65535) temp = 65535;
if (temp < 0) temp = 0;
*curr_pos = (unsigned short)temp;
break;
case sd_compute:
temp = map[k].decode_base +
*psrc * map[k].decode_factor;
temp *= 65535;
if (temp > 65535) temp = 65535;
if (temp < 0) temp = 0;
*curr_pos = (unsigned short)temp;
default:
break;
}
curr_pos++;
psrc++;
}
}
}
|