1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Path tracing procedures for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gspath.h" /* for gs_path_enum_alloc prototype */
#include "gsstruct.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gzpath.h"
/* Define the enumeration structure. */
public_st_path_enum();
/* Check whether current path has valid point */
bool
gx_path_position_valid(const gx_path *ppath)
{
return path_position_valid(ppath);
}
/* Read the current point of a path. */
int
gx_path_current_point(const gx_path * ppath, gs_fixed_point * ppt)
{
if (!path_position_valid(ppath))
return_error(gs_error_nocurrentpoint);
/* Copying the coordinates individually */
/* is much faster on a PC, and almost as fast on other machines.... */
ppt->x = ppath->position.x, ppt->y = ppath->position.y;
return 0;
}
/* Read the start point of the current subpath. */
int
gx_path_subpath_start_point(const gx_path * ppath, gs_fixed_point * ppt)
{
const subpath *psub = ppath->current_subpath;
if (!psub)
return_error(gs_error_nocurrentpoint);
*ppt = psub->pt;
return 0;
}
/* Read the bounding box of a path. */
/* Note that if the last element of the path is a moveto, */
/* the bounding box does not include this point, */
/* unless this is the only element of the path. */
int
gx_path_bbox(gx_path * ppath, gs_fixed_rect * pbox)
{
if (ppath == NULL) {
return_error(gs_error_unknownerror) ;
}
if (ppath->bbox_accurate) {
/* The bounding box was set by setbbox. */
*pbox = ppath->bbox;
return 0;
}
if (ppath->first_subpath == 0) {
/* The path is empty, use the current point if any. */
int code = gx_path_current_point(ppath, &pbox->p);
if (code < 0) {
/*
* Don't return garbage, in case the caller doesn't
* check the return code.
*/
pbox->p.x = pbox->p.y = 0;
}
pbox->q = pbox->p;
return code;
}
/* The stored bounding box may not be up to date. */
/* Correct it now if necessary. */
if (ppath->box_last == ppath->current_subpath->last) {
/* Box is up to date */
*pbox = ppath->bbox;
} else {
fixed px, py, qx, qy;
const segment *pseg = ppath->box_last;
if (pseg == 0) { /* box is uninitialized */
pseg = (const segment *)ppath->first_subpath;
px = qx = pseg->pt.x;
py = qy = pseg->pt.y;
} else {
px = ppath->bbox.p.x, py = ppath->bbox.p.y;
qx = ppath->bbox.q.x, qy = ppath->bbox.q.y;
}
/* Macro for adjusting the bounding box when adding a point */
#define ADJUST_BBOX(pt)\
if ((pt).x < px) px = (pt).x;\
else if ((pt).x > qx) qx = (pt).x;\
if ((pt).y < py) py = (pt).y;\
else if ((pt).y > qy) qy = (pt).y
while ((pseg = pseg->next) != 0) {
switch (pseg->type) {
case s_curve:
ADJUST_BBOX(((const curve_segment *)pseg)->p1);
ADJUST_BBOX(((const curve_segment *)pseg)->p2);
/* falls through */
default:
ADJUST_BBOX(pseg->pt);
}
}
#undef ADJUST_BBOX
#define STORE_BBOX(b)\
(b).p.x = px, (b).p.y = py, (b).q.x = qx, (b).q.y = qy;
STORE_BBOX(*pbox);
STORE_BBOX(ppath->bbox);
#undef STORE_BBOX
ppath->box_last = ppath->current_subpath->last;
}
return 0;
}
/* A variation of gs_path_bbox, to be used by the patbbox operator */
int
gx_path_bbox_set(gx_path * ppath, gs_fixed_rect * pbox)
{
if (ppath->bbox_set) {
/* The bounding box was set by setbbox. */
*pbox = ppath->bbox;
return 0;
} else
return gx_path_bbox(ppath, pbox);
}
/* Test if a path has any curves. */
#undef gx_path_has_curves
bool
gx_path_has_curves(const gx_path * ppath)
{
return gx_path_has_curves_inline(ppath);
}
#define gx_path_has_curves(ppath)\
gx_path_has_curves_inline(ppath)
/* Test if a path has no segments. */
#undef gx_path_is_void
bool
gx_path_is_void(const gx_path * ppath)
{
return gx_path_is_void_inline(ppath);
}
#define gx_path_is_void(ppath)\
gx_path_is_void_inline(ppath)
/* Test if a path has no elements at all. */
bool
gx_path_is_null(const gx_path * ppath)
{
return gx_path_is_null_inline(ppath);
}
/*
* Test if a subpath is a rectangle; if so, return its bounding box
* and the start of the next subpath.
* Note that this must recognize:
* ordinary closed rectangles (M, L, L, L, C);
* open rectangles (M, L, L, L);
* rectangles closed with lineto (Mo, L, L, L, Lo);
* rectangles closed with *both* lineto and closepath (bad PostScript,
* but unfortunately not rare) (Mo, L, L, L, Lo, C).
*/
gx_path_rectangular_type
gx_subpath_is_rectangular(const subpath * pseg0, gs_fixed_rect * pbox,
const subpath ** ppnext)
{
const segment *pseg1, *pseg2, *pseg3, *pseg4;
gx_path_rectangular_type type = prt_none;
fixed x0 = pseg0->pt.x, y0 = pseg0->pt.y;
fixed x1, y1, x2, y2, x3, y3;
pseg1 = (const segment *)pseg0;
do {
pseg1 = pseg1->next;
if (pseg1 == NULL)
return prt_none;
x1 = pseg1->pt.x;
y1 = pseg1->pt.y;
if (pseg1->type == s_curve) {
if (gx_curve_is_really_point(x0, y0, pseg1))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x0, y0, pseg1))
break; /* That'll do! */
return prt_none;
} else if (pseg1->type != s_line && pseg1->type != s_gap)
return prt_none;
} while (x1 == x0 && y1 == y0);
pseg2 = pseg1;
do {
pseg2 = pseg2->next;
if (pseg2 == NULL)
return prt_none;
x2 = pseg2->pt.x;
y2 = pseg2->pt.y;
if (pseg2->type == s_curve) {
if (gx_curve_is_really_point(x1, y1, pseg2))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x1, y1, pseg2))
break; /* That'll do! */
return prt_none;
} else if (pseg2->type != s_line && pseg2->type != s_gap)
return prt_none;
} while (x2 == x1 && y2 == y1);
pseg3 = pseg2;
do {
pseg3 = pseg3->next;
if (pseg3 == NULL)
return prt_none;
x3 = pseg3->pt.x;
y3 = pseg3->pt.y;
if (pseg3->type == s_curve) {
if (gx_curve_is_really_point(x2, y2, pseg3))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x2, y2, pseg3))
break; /* That'll do! */
return prt_none;
} else if (pseg3->type != s_line && pseg3->type != s_gap)
return prt_none;
} while (x3 == x2 && y3 == y2);
pseg4 = pseg3;
do {
pseg4 = pseg4->next;
if (pseg4 == NULL || pseg4->type == s_start) {
type = prt_open; /* M, L, L, L */
goto type_known;
}
if (pseg4->type == s_curve) {
if (gx_curve_is_really_point(x3, y3, pseg4))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x3, y3, pseg4))
break; /* That'll do! */
return prt_none;
} else if (pseg4->type == s_line_close) {
type = prt_closed; /* M, L, L, L, C */
goto type_known;
}
} while (pseg4->pt.x == x3 && pseg4->pt.y == y3);
if (pseg4->pt.x != pseg0->pt.x || pseg4->pt.y != pseg0->pt.y)
return prt_none;
else if (pseg4->next == NULL || pseg4->next->type == s_start)
type = prt_fake_closed; /* Mo, L, L, L, L, Mo */
else
return prt_none;
type_known:
if ((x0 == x1 && y1 == y2 && x2 == x3 && y3 == y0) ||
(x0 == x3 && y3 == y2 && x2 == x1 && y1 == y0)) {
/* Path is a rectangle. Return the bounding box. */
if (x0 < x2)
pbox->p.x = x0, pbox->q.x = x2;
else
pbox->p.x = x2, pbox->q.x = x0;
if (y0 < y2)
pbox->p.y = y0, pbox->q.y = y2;
else
pbox->p.y = y2, pbox->q.y = y0;
while (pseg4 != 0 && pseg4->type != s_start)
pseg4 = pseg4->next;
*ppnext = (const subpath *)pseg4;
return type;
}
return prt_none;
}
/* Test if an entire path to be filled is a rectangle. */
gx_path_rectangular_type
gx_path_is_rectangular(const gx_path * ppath, gs_fixed_rect * pbox)
{
const subpath *pnext;
return
(gx_path_subpath_count(ppath) == 1 ?
gx_subpath_is_rectangular(ppath->first_subpath, pbox, &pnext) :
prt_none);
}
/* Translate an already-constructed path (in device space). */
/* Don't bother to update the cbox. */
int
gx_path_translate(gx_path * ppath, fixed dx, fixed dy)
{
segment *pseg;
#define update_xy(pt)\
pt.x += dx, pt.y += dy
if (ppath->box_last != 0) {
update_xy(ppath->bbox.p);
update_xy(ppath->bbox.q);
}
if (path_position_valid(ppath))
update_xy(ppath->position);
for (pseg = (segment *) (ppath->first_subpath); pseg != 0;
pseg = pseg->next
)
switch (pseg->type) {
case s_curve:
#define pcseg ((curve_segment *)pseg)
update_xy(pcseg->p1);
update_xy(pcseg->p2);
#undef pcseg
/* fall through */
default:
update_xy(pseg->pt);
}
#undef update_xy
return 0;
}
/* Scale an existing path by a power of 2 (positive or negative).
* Currently the path drawing routines can't handle values
* close to the edge of the representable space.
* Also see clamp_point() in gspath.c .
*/
void
gx_point_scale_exp2(gs_fixed_point * pt, int sx, int sy)
{
int v;
if (sx > 0) {
v = (max_int - int2fixed(1000)) >> sx; /* arbitrary */
if (pt->x > v)
pt->x = v;
else if (pt->x < -v)
pt->x = -v;
pt->x <<= sx;
} else
pt->x >>= -sx;
if (sy > 0) {
v = (max_int - int2fixed(1000)) >> sy;
if (pt->y > v)
pt->y = v;
else if (pt->y < -v)
pt->y = -v;
pt->y <<= sy;
} else
pt->y >>= -sy;
}
void
gx_rect_scale_exp2(gs_fixed_rect * pr, int sx, int sy)
{
gx_point_scale_exp2(&pr->p, sx, sy);
gx_point_scale_exp2(&pr->q, sx, sy);
}
int
gx_path_scale_exp2_shared(gx_path * ppath, int log2_scale_x, int log2_scale_y,
bool segments_shared)
{
segment *pseg;
gx_rect_scale_exp2(&ppath->bbox, log2_scale_x, log2_scale_y);
#define SCALE_XY(pt) gx_point_scale_exp2(&pt, log2_scale_x, log2_scale_y)
SCALE_XY(ppath->position);
if (!segments_shared) {
for (pseg = (segment *) (ppath->first_subpath); pseg != 0;
pseg = pseg->next
)
switch (pseg->type) {
case s_curve:
SCALE_XY(((curve_segment *)pseg)->p1);
SCALE_XY(((curve_segment *)pseg)->p2);
/* fall through */
default:
SCALE_XY(pseg->pt);
}
}
#undef SCALE_XY
return 0;
}
/*
* Reverse a path. We know ppath != ppath_old.
* NOTE: in releases 5.01 and earlier, the implicit line added by closepath
* became the first segment of the reversed path. Starting in release
* 5.02, the code follows the Adobe implementation (and LanguageLevel 3
* specification), in which this line becomes the *last* segment of the
* reversed path. This can produce some quite unintuitive results.
*
* The order of the subpaths is unspecified in the PLRM, but the CPSI
* reverses the subpaths, and the CET (11-05 p6, test 3) tests for it.
*/
int
gx_path_copy_reversed(const gx_path * ppath_old, gx_path * ppath)
{
const subpath *psub = ppath_old->current_subpath;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reversepath");
#endif
nsp:
if (psub) {
const segment *prev = psub->last;
const segment *pseg;
segment_notes notes =
(prev == (const segment *)psub ? sn_none :
psub->next->notes);
segment_notes prev_notes;
int code;
if (!psub->is_closed) {
code = gx_path_add_point(ppath, prev->pt.x, prev->pt.y);
if (code < 0)
return code;
}
/*
* The do ... while structure of this loop is artificial,
* designed solely to keep compilers from complaining about
* 'statement not reached' or 'end-of-loop code not reached'.
* The normal exit from this loop is the goto statement in
* the s_start arm of the switch.
*/
do {
pseg = prev;
prev_notes = notes;
prev = pseg->prev;
notes = pseg->notes;
prev_notes = (prev_notes & sn_not_first) |
(notes & ~sn_not_first);
switch (pseg->type) {
case s_start:
/* Finished subpath */
if (psub->is_closed) {
code =
gx_path_close_subpath_notes(ppath, prev_notes);
if (code < 0)
return code;
}
do {
psub = (const subpath *)psub->prev;
} while (psub && psub->type != s_start);
goto nsp;
case s_curve:
{
const curve_segment *pc =
(const curve_segment *)pseg;
code = gx_path_add_curve_notes(ppath,
pc->p2.x, pc->p2.y,
pc->p1.x, pc->p1.y,
prev->pt.x, prev->pt.y, prev_notes);
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_gap:
code = gx_path_add_gap_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_line_close:
/* Skip the closing line. */
code = gx_path_add_point(ppath, prev->pt.x,
prev->pt.y);
break;
default: /* not possible */
return_error(gs_error_Fatal);
}
} while (code >= 0);
return code; /* only reached if code < 0 */
}
#undef sn_not_end
/*
* In the Adobe implementations, reversepath discards a trailing
* moveto unless the path consists only of a moveto. We reproduce
* this behavior here, even though we consider it a bug.
*/
if (ppath_old->first_subpath == 0 &&
path_last_is_moveto(ppath_old)
) {
int code = gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (code < 0)
return code;
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reversepath");
#endif
return 0;
}
int
gx_path_append_reversed(const gx_path * ppath_old, gx_path * ppath)
{
const subpath *psub = ppath_old->current_subpath;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reversepath");
#endif
nsp:
if (psub) {
const segment *prev = psub->last;
const segment *pseg;
segment_notes notes =
(prev == (const segment *)psub ? sn_none :
psub->next->notes);
segment_notes prev_notes;
int code;
if (!psub->is_closed) {
code = gx_path_add_line(ppath, prev->pt.x, prev->pt.y);
if (code < 0)
return code;
}
/*
* The do ... while structure of this loop is artificial,
* designed solely to keep compilers from complaining about
* 'statement not reached' or 'end-of-loop code not reached'.
* The normal exit from this loop is the goto statement in
* the s_start arm of the switch.
*/
do {
pseg = prev;
prev_notes = notes;
prev = pseg->prev;
notes = pseg->notes;
prev_notes = (prev_notes & sn_not_first) |
(notes & ~sn_not_first);
switch (pseg->type) {
case s_start:
/* Finished subpath */
if (psub->is_closed) {
code =
gx_path_close_subpath_notes(ppath, prev_notes);
if (code < 0)
return code;
}
do {
psub = (const subpath *)psub->prev;
} while (psub && psub->type != s_start);
goto nsp;
case s_curve:
{
const curve_segment *pc =
(const curve_segment *)pseg;
code = gx_path_add_curve_notes(ppath,
pc->p2.x, pc->p2.y,
pc->p1.x, pc->p1.y,
prev->pt.x, prev->pt.y, prev_notes);
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_gap:
code = gx_path_add_gap_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_line_close:
/* Skip the closing line. */
code = gx_path_add_point(ppath, prev->pt.x,
prev->pt.y);
break;
default: /* not possible */
return_error(gs_error_Fatal);
}
} while (code >= 0);
return code; /* only reached if code < 0 */
}
#undef sn_not_end
/*
* In the Adobe implementations, reversepath discards a trailing
* moveto unless the path consists only of a moveto. We reproduce
* this behavior here, even though we consider it a bug.
*/
if (ppath_old->first_subpath == 0 &&
path_last_is_moveto(ppath_old)
) {
int code = gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (code < 0)
return code;
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reversepath");
#endif
return 0;
}
/* ------ Path enumeration ------ */
/* Allocate a path enumerator. */
gs_path_enum *
gs_path_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
return gs_alloc_struct(mem, gs_path_enum, &st_path_enum, cname);
}
/* Start enumerating a path. */
int
gx_path_enum_init(gs_path_enum * penum, const gx_path * ppath)
{
penum->memory = 0; /* path not copied */
penum->path = ppath;
penum->copied_path = 0; /* not copied */
penum->pseg = (const segment *)ppath->first_subpath;
penum->moveto_done = false;
penum->notes = sn_none;
return 0;
}
/* Enumerate the next element of a path. */
/* If the path is finished, return 0; */
/* otherwise, return the element type. */
int
gx_path_enum_next(gs_path_enum * penum, gs_fixed_point ppts[3])
{
const segment *pseg = penum->pseg;
if (pseg == 0) { /* We've enumerated all the segments, but there might be */
/* a trailing moveto. */
const gx_path *ppath = penum->path;
if (path_last_is_moveto(ppath) && !penum->moveto_done) { /* Handle a trailing moveto */
penum->moveto_done = true;
penum->notes = sn_none;
ppts[0] = ppath->position;
return gs_pe_moveto;
}
return 0;
}
penum->pseg = pseg->next;
penum->notes = pseg->notes;
switch (pseg->type) {
case s_start:
ppts[0] = pseg->pt;
return gs_pe_moveto;
case s_line:
ppts[0] = pseg->pt;
return gs_pe_lineto;
case s_gap:
ppts[0] = pseg->pt;
return gs_pe_gapto;
case s_line_close:
ppts[0] = pseg->pt;
return gs_pe_closepath;
case s_curve:
#define pcseg ((const curve_segment *)pseg)
ppts[0] = pcseg->p1;
ppts[1] = pcseg->p2;
ppts[2] = pseg->pt;
return gs_pe_curveto;
#undef pcseg
default:
lprintf1("bad type %x in gx_path_enum_next!\n", pseg->type);
return_error(gs_error_Fatal);
}
}
/* Return the notes from the last-enumerated segment. */
segment_notes
gx_path_enum_notes(const gs_path_enum * penum)
{
return penum->notes;
}
/* Back up 1 element in the path being enumerated. */
/* Return true if successful, false if we are at the beginning of the path. */
/* This implementation allows backing up multiple times, */
/* but no client currently relies on this. */
bool
gx_path_enum_backup(gs_path_enum * penum)
{
const segment *pseg = penum->pseg;
if (pseg != 0) {
if ((pseg = pseg->prev) == 0)
return false;
penum->pseg = pseg;
return true;
}
/* We're at the end of the path. Check to see whether */
/* we need to back up over a trailing moveto. */
{
const gx_path *ppath = penum->path;
if (path_last_is_moveto(ppath) && penum->moveto_done) { /* Back up over the trailing moveto. */
penum->moveto_done = false;
return true;
} {
const subpath *psub = ppath->current_subpath;
if (psub == 0) /* empty path */
return false;
/* Back up to the last segment of the last subpath. */
penum->pseg = psub->last;
return true;
}
}
}
|