1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Path copying and flattening */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxfarith.h"
#include "gxgstate.h" /* for access to line params */
#include "gzpath.h"
/* Forward declarations */
static void adjust_point_to_tangent(segment *, const segment *,
const gs_fixed_point *);
static inline int
break_line_if_long(gx_path *ppath, const segment *pseg)
{
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
fixed x, y;
if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
x = (pseg->pt.x >> 1) + (x0 >> 1);
else
x = (pseg->pt.x + x0) >> 1;
if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
y = (pseg->pt.y >> 1) + (y0 >> 1);
else
y = (pseg->pt.y + y0) >> 1;
return gx_path_add_line_notes(ppath, x, y, pseg->notes);
/* WARNING: Stringly speaking, the next half segment must get
the sn_not_first flag. We don't bother, because that flag
has no important meaning with colinear segments.
*/
}
return 0;
}
static inline int
break_gap_if_long(gx_path *ppath, const segment *pseg)
{
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
fixed x, y;
if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
x = (pseg->pt.x >> 1) + (x0 >> 1);
else
x = (pseg->pt.x + x0) >> 1;
if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
y = (pseg->pt.y >> 1) + (y0 >> 1);
else
y = (pseg->pt.y + y0) >> 1;
return gx_path_add_gap_notes(ppath, x, y, pseg->notes);
/* WARNING: Stringly speaking, the next half segment must get
the sn_not_first flag. We don't bother, because that flag
has no important meaning with colinear segments.
*/
}
return 0;
}
/* Copy a path, optionally flattening or monotonizing it. */
/* If the copy fails, free the new path. */
int
gx_path_copy_reducing(const gx_path *ppath_old, gx_path *ppath,
fixed fixed_flatness, const gs_gstate *pgs,
gx_path_copy_options options)
{
const segment *pseg;
fixed flat = fixed_flatness;
gs_fixed_point expansion;
/*
* Since we're going to be adding to the path, unshare it
* before we start.
*/
int code = gx_path_unshare(ppath);
if (code < 0)
return code;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reducing");
#endif
if (options & pco_for_stroke) {
/* Precompute the maximum expansion of the bounding box. */
double width = pgs->line_params.half_width;
expansion.x =
float2fixed((fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx)) * width) * 2;
expansion.y =
float2fixed((fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy)) * width) * 2;
} else
expansion.x = expansion.y = 0; /* Quiet gcc warning. */
pseg = (const segment *)(ppath_old->first_subpath);
while (pseg) {
switch (pseg->type) {
case s_start:
code = gx_path_add_point(ppath,
pseg->pt.x, pseg->pt.y);
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
if (fixed_flatness == max_fixed) { /* don't flatten */
if (options & pco_monotonize)
code = gx_curve_monotonize(ppath, pc);
else
code = gx_path_add_curve_notes(ppath,
pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y, pseg->notes);
} else {
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
segment_notes notes = pseg->notes;
curve_segment cseg;
int k;
if (options & pco_for_stroke) {
/*
* When flattening for stroking, the flatness
* must apply to the outside of the resulting
* stroked region. We approximate this by
* dividing the flatness by the ratio of the
* expanded bounding box to the original
* bounding box. This is crude, but pretty
* simple to calculate, and produces reasonably
* good results.
*/
fixed min01, max01, min23, max23;
fixed ex, ey, flat_x, flat_y;
#define SET_EXTENT(r, c0, c1, c2, c3)\
BEGIN\
if (c0 < c1) min01 = c0, max01 = c1;\
else min01 = c1, max01 = c0;\
if (c2 < c3) min23 = c2, max23 = c3;\
else min23 = c3, max23 = c2;\
r = max(max01, max23) - min(min01, min23);\
END
SET_EXTENT(ex, x0, pc->p1.x, pc->p2.x, pc->pt.x);
SET_EXTENT(ey, y0, pc->p1.y, pc->p2.y, pc->pt.y);
#undef SET_EXTENT
/*
* We check for the degenerate case specially
* to avoid a division by zero.
*/
if (ex == 0 || ey == 0)
if (ex != 0) {
flat = fixed_mult_quo(fixed_flatness, ex,
ex + expansion.x);
k = gx_curve_log2_samples(x0,y0,pc,flat);
} else if (ey != 0) {
flat = fixed_mult_quo(fixed_flatness, ey,
ey + expansion.y);
k = gx_curve_log2_samples(x0,y0,pc,flat);
} else
k = 0;
else {
flat_x =
fixed_mult_quo(fixed_flatness, ex,
ex + expansion.x);
flat_y =
fixed_mult_quo(fixed_flatness, ey,
ey + expansion.y);
flat = min(flat_x, flat_y);
k = gx_curve_log2_samples(x0, y0, pc, flat);
}
} else
k = gx_curve_log2_samples(x0, y0, pc, flat);
if (options & pco_accurate) {
segment *start;
segment *end;
/*
* Add an extra line, which will become
* the tangent segment.
*/
code = gx_path_add_line_notes(ppath, x0, y0,
notes);
if (code < 0)
break;
start = ppath->current_subpath->last;
notes |= sn_not_first;
cseg = *pc;
code = gx_subdivide_curve(ppath, k, &cseg, notes);
if (code < 0)
break;
/*
* Adjust the first and last segments so that
* they line up with the tangents.
*/
end = ppath->current_subpath->last;
if ((code = gx_path_add_line_notes(ppath,
ppath->position.x,
ppath->position.y,
pseg->notes | sn_not_first)) < 0)
break;
if (start->next->pt.x != pc->p1.x || start->next->pt.y != pc->p1.y)
adjust_point_to_tangent(start, start->next, &pc->p1);
else if (start->next->pt.x != pc->p2.x || start->next->pt.y != pc->p2.y)
adjust_point_to_tangent(start, start->next, &pc->p2);
else
adjust_point_to_tangent(start, start->next, &end->prev->pt);
if (end->prev->pt.x != pc->p2.x || end->prev->pt.y != pc->p2.y)
adjust_point_to_tangent(end, end->prev, &pc->p2);
else if (end->prev->pt.x != pc->p1.x || end->prev->pt.y != pc->p1.y)
adjust_point_to_tangent(end, end->prev, &pc->p1);
else
adjust_point_to_tangent(end, end->prev, &start->pt);
} else {
cseg = *pc;
code = gx_subdivide_curve(ppath, k, &cseg, notes);
}
}
break;
}
case s_line:
code = break_line_if_long(ppath, pseg);
if (code < 0)
break;
code = gx_path_add_line_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_gap:
code = break_gap_if_long(ppath, pseg);
if (code < 0)
break;
code = gx_path_add_gap_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_dash:
{
const dash_segment *pd = (const dash_segment *)pseg;
code = gx_path_add_dash_notes(ppath,
pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
break;
}
case s_line_close:
code = break_line_if_long(ppath, pseg);
if (code < 0)
break;
code = gx_path_close_subpath(ppath);
break;
default: /* can't happen */
code = gs_note_error(gs_error_unregistered);
}
if (code < 0) {
gx_path_new(ppath);
return code;
}
pseg = pseg->next;
}
if (path_last_is_moveto(ppath_old)) {
code = gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (code < 0) {
gx_path_new(ppath);
return code;
}
}
if (ppath_old->bbox_set) {
if (ppath->bbox_set) {
ppath->bbox.p.x = min(ppath_old->bbox.p.x, ppath->bbox.p.x);
ppath->bbox.p.y = min(ppath_old->bbox.p.y, ppath->bbox.p.y);
ppath->bbox.q.x = max(ppath_old->bbox.q.x, ppath->bbox.q.x);
ppath->bbox.q.y = max(ppath_old->bbox.q.y, ppath->bbox.q.y);
} else {
ppath->bbox_set = true;
ppath->bbox = ppath_old->bbox;
}
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reducing");
#endif
return 0;
}
/*
* Adjust one end of a line (the first or last line of a flattened curve)
* so it falls on the curve tangent. The closest point on the line from
* (0,0) to (C,D) to a point (U,V) -- i.e., the point on the line at which
* a perpendicular line from the point intersects it -- is given by
* T = (C*U + D*V) / (C^2 + D^2)
* (X,Y) = (C*T,D*T)
* However, any smaller value of T will also work: the one we actually
* use is 0.25 * the value we just derived. We must check that
* numerical instabilities don't lead to a negative value of T.
*/
static void
adjust_point_to_tangent(segment * pseg, const segment * next,
const gs_fixed_point * p1)
{
const fixed x0 = pseg->pt.x, y0 = pseg->pt.y;
const fixed fC = p1->x - x0, fD = p1->y - y0;
/*
* By far the commonest case is that the end of the curve is
* horizontal or vertical. Check for this specially, because
* we can handle it with far less work (and no floating point).
*/
if (fC == 0) {
/* Vertical tangent. */
const fixed DT = arith_rshift(next->pt.y - y0, 2);
if (fD == 0)
return; /* anomalous case */
if_debug1('2', "[2]adjusting vertical: DT = %g\n",
fixed2float(DT));
if ((DT ^ fD) > 0) /* lgtm [cpp/bitwise-sign-check] */
pseg->pt.y = DT + y0;
} else if (fD == 0) {
/* Horizontal tangent. */
const fixed CT = arith_rshift(next->pt.x - x0, 2);
if_debug1('2', "[2]adjusting horizontal: CT = %g\n",
fixed2float(CT));
if ((CT ^ fC) > 0) /* lgtm [cpp/bitwise-sign-check] */
pseg->pt.x = CT + x0;
} else {
/* General case. */
const double C = fC, D = fD;
double T = (C * (next->pt.x - x0) + D * (next->pt.y - y0)) /
(C * C + D * D);
if_debug3('2', "[2]adjusting: C = %g, D = %g, T = %g\n",
C, D, T);
if (T > 0) {
if (T > 1) {
/* Don't go outside the curve bounding box. */
T = 1;
}
pseg->pt.x = arith_rshift((fixed) (C * T), 2) + x0;
pseg->pt.y = arith_rshift((fixed) (D * T), 2) + y0;
}
}
}
/* ---------------- Monotonic curves ---------------- */
/* Test whether a path is free of non-monotonic curves. */
bool
gx_path__check_curves(const gx_path * ppath, gx_path_copy_options options, fixed fixed_flat)
{
const segment *pseg = (const segment *)(ppath->first_subpath);
gs_fixed_point pt0;
pt0.x = pt0.y = 0; /* Quiet gcc warning. */
while (pseg) {
switch (pseg->type) {
case s_start:
{
const subpath *psub = (const subpath *)pseg;
/* Skip subpaths without curves. */
if (!psub->curve_count)
pseg = psub->last;
}
break;
case s_line:
case s_gap:
if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
return false;
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
if (options & pco_monotonize) {
double t[2];
int nz = gx_curve_monotonic_points(pt0.y,
pc->p1.y, pc->p2.y, pc->pt.y, t);
if (nz != 0)
return false;
nz = gx_curve_monotonic_points(pt0.x,
pc->p1.x, pc->p2.x, pc->pt.x, t);
if (nz != 0)
return false;
}
if (options & pco_small_curves) {
fixed ax, bx, cx, ay, by, cy;
int k = gx_curve_log2_samples(pt0.x, pt0.y, pc, fixed_flat);
if(!curve_coeffs_ranged(pt0.x, pc->p1.x, pc->p2.x, pc->pt.x,
pt0.y, pc->p1.y, pc->p2.y, pc->pt.y,
&ax, &bx, &cx, &ay, &by, &cy, k))
return false;
if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
return false;
}
}
break;
default:
;
}
pt0 = pseg->pt;
pseg = pseg->next;
}
return true;
}
/* Test whether a path is free of long segments. */
/* WARNING : This function checks the distance between
* the starting point and the ending point of a segment.
* When they are not too far, a curve nevertheless may be too long.
* Don't worry about it here, because we assume
* this function is never called with paths which have curves.
*/
bool
gx_path_has_long_segments(const gx_path * ppath)
{
const segment *pseg = (const segment *)(ppath->first_subpath);
gs_fixed_point pt0;
pt0.x = pt0.y = 0; /* Quiet gcc warning. */
while (pseg) {
switch (pseg->type) {
case s_start:
break;
default:
if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
return true;
break;
}
pt0 = pseg->pt;
pseg = pseg->next;
}
return false;
}
/* Monotonize a curve, by splitting it if necessary. */
/* In the worst case, this could split the curve into 9 pieces. */
int
gx_curve_monotonize(gx_path * ppath, const curve_segment * pc)
{
fixed x0 = ppath->position.x, y0 = ppath->position.y;
segment_notes notes = pc->notes;
double t[5], tt = 1, tp;
int c[5];
int n0, n1, n, i, j, k = 0;
fixed ax, bx, cx, ay, by, cy, v01, v12;
fixed px, py, qx, qy, rx, ry, sx, sy;
const double delta = 0.0000001;
/* Roots of the derivative : */
n0 = gx_curve_monotonic_points(x0, pc->p1.x, pc->p2.x, pc->pt.x, t);
n1 = gx_curve_monotonic_points(y0, pc->p1.y, pc->p2.y, pc->pt.y, t + n0);
n = n0 + n1;
if (n == 0)
return gx_path_add_curve_notes(ppath, pc->p1.x, pc->p1.y,
pc->p2.x, pc->p2.y, pc->pt.x, pc->pt.y, notes);
if (n0 > 0)
c[0] = 1;
if (n0 > 1)
c[1] = 1;
if (n1 > 0)
c[n0] = 2;
if (n1 > 1)
c[n0 + 1] = 2;
/* Order roots : */
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
if (t[i] > t[j]) {
int w;
double v = t[i]; t[i] = t[j]; t[j] = v;
w = c[i]; c[i] = c[j]; c[j] = w;
}
/* Drop roots near zero : */
for (k = 0; k < n; k++)
if (t[k] >= delta)
break;
/* Merge close roots, and drop roots at 1 : */
if (t[n - 1] > 1 - delta)
n--;
for (i = k + 1, j = k; i < n && t[k] < 1 - delta; i++)
if (any_abs(t[i] - t[j]) < delta) {
t[j] = (t[j] + t[i]) / 2; /* Unlikely 3 roots are close. */
c[j] |= c[i];
} else {
j++;
t[j] = t[i];
c[j] = c[i];
}
n = j + 1;
/* Do split : */
curve_points_to_coefficients(x0, pc->p1.x, pc->p2.x, pc->pt.x, ax, bx, cx, v01, v12);
curve_points_to_coefficients(y0, pc->p1.y, pc->p2.y, pc->pt.y, ay, by, cy, v01, v12);
ax *= 3, bx *= 2; /* Coefficients of the derivative. */
ay *= 3, by *= 2;
px = x0;
py = y0;
qx = (fixed)((pc->p1.x - px) * t[0] + 0.5);
qy = (fixed)((pc->p1.y - py) * t[0] + 0.5);
tp = 0;
for (i = k; i < n; i++) {
double ti = t[i];
double t2 = ti * ti, t3 = t2 * ti;
double omt = 1 - ti, omt2 = omt * omt, omt3 = omt2 * omt;
double x = x0 * omt3 + 3 * pc->p1.x * omt2 * ti + 3 * pc->p2.x * omt * t2 + pc->pt.x * t3;
double y = y0 * omt3 + 3 * pc->p1.y * omt2 * ti + 3 * pc->p2.y * omt * t2 + pc->pt.y * t3;
double ddx = (c[i] & 1 ? 0 : ax * t2 + bx * ti + cx); /* Suppress noise. */
double ddy = (c[i] & 2 ? 0 : ay * t2 + by * ti + cy);
fixed dx = (fixed)(ddx + 0.5);
fixed dy = (fixed)(ddy + 0.5);
int code;
tt = (i + 1 < n ? t[i + 1] : 1) - ti;
rx = (fixed)(dx * (t[i] - tp) / 3 + 0.5);
ry = (fixed)(dy * (t[i] - tp) / 3 + 0.5);
sx = (fixed)(x + 0.5);
sy = (fixed)(y + 0.5);
/* Suppress the derivative sign noise near a peak : */
if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
qx = -qx, qy = -qy;
if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
rx = -rx, ry = -qy;
/* Do add : */
code = gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
if (code < 0)
return code;
notes |= sn_not_first;
px = sx;
py = sy;
qx = (fixed)(dx * tt / 3 + 0.5);
qy = (fixed)(dy * tt / 3 + 0.5);
tp = t[i];
}
sx = pc->pt.x;
sy = pc->pt.y;
rx = (fixed)((pc->pt.x - pc->p2.x) * tt + 0.5);
ry = (fixed)((pc->pt.y - pc->p2.y) * tt + 0.5);
/* Suppress the derivative sign noise near peaks : */
if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
qx = -qx, qy = -qy;
if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
rx = -rx, ry = -qy;
return gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
}
/*
* Split a curve if necessary into pieces that are monotonic in X or Y as a
* function of the curve parameter t. This allows us to rasterize curves
* directly without pre-flattening. This takes a fair amount of analysis....
* Store the values of t of the split points in pst[0] and pst[1]. Return
* the number of split points (0, 1, or 2).
*/
int
gx_curve_monotonic_points(fixed v0, fixed v1, fixed v2, fixed v3,
double pst[2])
{
/*
Let
v(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
Then
dv(t) = 3*a*t^2 + 2*b*t + c.
v(t) has a local minimum or maximum (or inflection point)
precisely where dv(t) = 0. Now the roots of dv(t) = 0 (i.e.,
the zeros of dv(t)) are at
t = ( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
= ( -b +/- sqrt(b^2 - 3*a*c) ) / 3*a
(Note that real roots exist iff b^2 >= 3*a*c.)
We want to know if these lie in the range (0..1).
(The endpoints don't count.) Call such a root a "valid zero."
Since computing the roots is expensive, we would like to have
some cheap tests to filter out cases where they don't exist
(i.e., where the curve is already monotonic).
*/
fixed v01, v12, a, b, c, b2, a3;
fixed dv_end, b2abs, a3abs;
curve_points_to_coefficients(v0, v1, v2, v3, a, b, c, v01, v12);
b2 = b << 1;
a3 = (a << 1) + a;
/*
If a = 0, the only possible zero is t = -c / 2*b.
This zero is valid iff sign(c) != sign(b) and 0 < |c| < 2*|b|.
*/
if (a == 0) {
if ((b ^ c) < 0 && any_abs(c) < any_abs(b2) && c != 0) {
*pst = (double)(-c) / b2;
return 1;
} else
return 0;
}
/*
Iff a curve is horizontal at t = 0, c = 0. In this case,
there can be at most one other zero, at -2*b / 3*a.
This zero is valid iff sign(a) != sign(b) and 0 < 2*|b| < 3*|a|.
*/
if (c == 0) {
if ((a ^ b) < 0 && any_abs(b2) < any_abs(a3) && b != 0) {
*pst = (double)(-b2) / a3;
return 1;
} else
return 0;
}
/*
Similarly, iff a curve is horizontal at t = 1, 3*a + 2*b + c = 0.
In this case, there can be at most one other zero,
at -1 - 2*b / 3*a, iff sign(a) != sign(b) and 1 < -2*b / 3*a < 2,
i.e., 3*|a| < 2*|b| < 6*|a|.
*/
else if ((dv_end = a3 + b2 + c) == 0) {
if ((a ^ b) < 0 &&
(b2abs = any_abs(b2)) > (a3abs = any_abs(a3)) &&
b2abs < a3abs << 1
) {
*pst = (double)(-b2 - a3) / a3;
return 1;
} else
return 0;
}
/*
If sign(dv_end) != sign(c), at least one valid zero exists,
since dv(0) and dv(1) have opposite signs and hence
dv(t) must be zero somewhere in the interval [0..1].
*/
else if ((dv_end ^ c) < 0);
/*
If sign(a) = sign(b), no valid zero exists,
since dv is monotonic on [0..1] and has the same sign
at both endpoints.
*/
else if ((a ^ b) >= 0)
return 0;
/*
Otherwise, dv(t) may be non-monotonic on [0..1]; it has valid zeros
iff its sign anywhere in this interval is different from its sign
at the endpoints, which occurs iff it has an extremum in this
interval and the extremum is of the opposite sign from c.
To find this out, we look for the local extremum of dv(t)
by observing
d2v(t) = 6*a*t + 2*b
which has a zero only at
t1 = -b / 3*a
Now if t1 <= 0 or t1 >= 1, no valid zero exists.
Note that we just determined that sign(a) != sign(b), so we know t1 > 0.
*/
else if (any_abs(b) >= any_abs(a3))
return 0;
/*
Otherwise, we just go ahead with the computation of the roots,
and test them for being in the correct range. Note that a valid
zero is an inflection point of v(t) iff d2v(t) = 0; we don't
bother to check for this case, since it's rare.
*/
{
double nbf = (double)(-b);
double a3f = (double)a3;
double radicand = nbf * nbf - a3f * c;
if (radicand < 0) {
if_debug1('2', "[2]negative radicand = %g\n", radicand);
return 0;
} {
double root = sqrt(radicand);
int nzeros = 0;
double z = (nbf - root) / a3f;
/*
* We need to return the zeros in the correct order.
* We know that root is non-negative, but a3f may be either
* positive or negative, so we need to check the ordering
* explicitly.
*/
if_debug2('2', "[2]zeros at %g, %g\n", z, (nbf + root) / a3f);
if (z > 0 && z < 1)
*pst = z, nzeros = 1;
if (root != 0) {
z = (nbf + root) / a3f;
if (z > 0 && z < 1) {
if (nzeros && a3f < 0) /* order is reversed */
pst[1] = *pst, *pst = z;
else
pst[nzeros] = z;
nzeros++;
}
}
return nzeros;
}
}
}
/* ---------------- Path optimization for the filling algorithm. ---------------- */
static bool
find_contacting_segments(const subpath *sp0, segment *sp0last,
const subpath *sp1, segment *sp1last,
segment **sc0, segment **sc1)
{
segment *s0, *s1;
const segment *s0s, *s1s;
int count0, count1, search_limit = 50;
int min_length = fixed_1 * 1;
/* This is a simplified algorithm, which only checks for quazi-colinear vertical lines.
"Quazi-vertical" means dx <= 1 && dy >= min_length . */
/* To avoid a big unuseful expence of the processor time,
we search the first subpath from the end
(assuming that it was recently merged near the end),
and restrict the search with search_limit segments
against a quadratic scanning of two long subpaths.
Thus algorithm is not necessary finds anything contacting.
Instead it either quickly finds something, or maybe not. */
for (s0 = sp0last, count0 = 0; count0 < search_limit && s0 != (segment *)sp0; s0 = s0->prev, count0++) {
s0s = s0->prev;
if ((s0->type == s_line || s0->type == s_gap) &&
(s0s->pt.x == s0->pt.x ||
(any_abs(s0s->pt.x - s0->pt.x) == 1 &&
any_abs(s0s->pt.y - s0->pt.y) > min_length))) {
for (s1 = sp1last, count1 = 0; count1 < search_limit && s1 != (segment *)sp1; s1 = s1->prev, count1++) {
s1s = s1->prev;
if ((s1->type == s_line || s1->type == s_gap) &&
(s1s->pt.x == s1->pt.x ||
(any_abs(s1s->pt.x - s1->pt.x) == 1 && any_abs(s1s->pt.y - s1->pt.y) > min_length))) {
if (s0s->pt.x == s1s->pt.x || s0->pt.x == s1->pt.x || s0->pt.x == s1s->pt.x || s0s->pt.x == s1->pt.x) {
if (s0s->pt.y < s0->pt.y && s1s->pt.y > s1->pt.y) {
fixed y0 = max(s0s->pt.y, s1->pt.y);
fixed y1 = min(s0->pt.y, s1s->pt.y);
if (y0 <= y1) {
*sc0 = s0;
*sc1 = s1;
return true;
}
}
if (s0s->pt.y > s0->pt.y && s1s->pt.y < s1->pt.y) {
fixed y0 = max(s0->pt.y, s1s->pt.y);
fixed y1 = min(s0s->pt.y, s1->pt.y);
if (y0 <= y1) {
*sc0 = s0;
*sc1 = s1;
return true;
}
}
}
}
}
}
}
return false;
}
int
gx_path_merge_contacting_contours(gx_path *ppath)
{
/* Now this is a simplified algorithm,
which merge only contours by a common quazi-vertical line. */
/* Note the merged contour is not equivalent to sum of original contours,
because we ignore small coordinate differences within fixed_epsilon. */
int window = 5/* max spot holes */ * 6/* segments per subpath */;
subpath *sp0 = ppath->segments->contents.subpath_first;
for (; sp0 != NULL; sp0 = (subpath *)sp0->last->next) {
segment *sp0last = sp0->last;
subpath *sp1 = (subpath *)sp0last->next, *spnext;
subpath *sp1p = sp0;
int count;
for (count = 0; sp1 != NULL && count < window; sp1 = spnext, count++) {
segment *sp1last = sp1->last;
segment *sc0, *sc1, *old_first;
spnext = (subpath *)sp1last->next;
if (find_contacting_segments(sp0, sp0last, sp1, sp1last, &sc0, &sc1)) {
/* Detach the subpath 1 from the path: */
sp1->prev->next = sp1last->next;
if (sp1last->next != NULL)
sp1last->next->prev = sp1->prev;
sp1->prev = 0;
sp1last->next = 0;
old_first = sp1->next;
/* sp1 is not longer in use. Move subpath_current from it for safe removing : */
if (ppath->segments->contents.subpath_current == sp1) {
ppath->segments->contents.subpath_current = sp1p;
}
if (sp1last->type == s_line_close) {
/* Change 'closepath' of the subpath 1 to a line (maybe degenerate) : */
sp1last->type = s_line;
/* sp1 is not longer in use. Free it : */
gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
} else if (sp1last->pt.x == sp1->pt.x && sp1last->pt.y == sp1->pt.y) {
/* Implicit closepath with zero length. Don't need a new segment. */
/* sp1 is not longer in use. Free it : */
gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
} else {
/* Insert the closing line segment. */
/* sp1 is not longer in use. Convert it to the line segment : */
sp1->type = s_line;
sp1last->next = (segment *)sp1;
sp1->next = NULL;
sp1->prev = sp1last;
sp1->last = NULL; /* Safety for garbager. */
sp1last = (segment *)sp1;
}
sp1 = 0; /* Safety. */
/* Rotate the subpath 1 to sc1 : */
{ /* Detach s_start and make a loop : */
sp1last->next = old_first;
old_first->prev = sp1last;
/* Unlink before sc1 : */
sp1last = sc1->prev;
sc1->prev->next = 0;
sc1->prev = 0; /* Safety. */
/* sp1 is not longer in use. Free it : */
if (ppath->segments->contents.subpath_current == sp1) {
ppath->segments->contents.subpath_current = sp1p;
}
gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
sp1 = 0; /* Safety. */
}
/* Insert the subpath 1 into the subpath 0 before sc0 :*/
sc0->prev->next = sc1;
sc1->prev = sc0->prev;
sp1last->next = sc0;
sc0->prev = sp1last;
/* Remove degenearte "bridge" segments : (fixme: Not done due to low importance). */
/* Edit the subpath count : */
ppath->subpath_count--;
} else
sp1p = sp1;
}
}
return 0;
}
static int
is_colinear(gs_fixed_rect *rect, fixed x, fixed y)
{
fixed x0 = rect->p.x;
fixed y0 = rect->p.y;
fixed x1 = rect->q.x;
fixed y1 = rect->q.y;
if (x0 == x1) {
if (y0 == y1) {
/* Initial case */
/* Still counts as colinear */
} else if (x == x0) {
/* OK! */
} else {
return 0; /* Not colinear */
}
} else if (rect->p.y == rect->q.y) {
if (y == rect->p.y) {
/* OK */
} else {
return 0; /* Not colinear */
}
} else {
/* Need to do hairy maths */
/* The distance of a point (x,y) from the line passing through
* (x0,y0) and (x1,y1) is:
* d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2)
*
* We want d <= epsilon to count as colinear.
*
* d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2) <= epsilon
*
* |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| <= epsilon * SQR((y1-y0)^2 + (x1-x0)^2)
*
* ((y1-y0)x - (x1-x0)y + x1y0 - y1x0)^2 <= epsilon^2 * ((y1-y0)^2 + (x1-x0)^2)
*/
int64_t ix1 = ((int64_t)x1);
int64_t iy1 = ((int64_t)y1);
int64_t dx = ix1 - x0;
int64_t dy = iy1 - y0;
int64_t num = dy*x - dx*y + ix1*y0 - iy1*x0;
int64_t den = dx*dx + dy*dy;
int epsilon_squared = 2;
if (num < 0)
num = -num;
while (num > (1<<30)) {
num >>= 2;
den >>= 1;
if (den == 0)
return 0; /* Not colinear */
}
num *= num;
if (num > epsilon_squared * den)
return 0;
}
/* rect is not really a rect. It's just a pair of points. We guarantee that x0 <= x1. */
if (x == x0) {
if (y < y0)
rect->p.y = y;
else if (y > y1)
rect->q.y = y;
} else if (x < x0) {
rect->p.x = x;
rect->p.y = y;
} else {
rect->q.x = x;
rect->q.y = y;
}
return 1;
}
static int
gx_path_copy_eliding_1d(const gx_path *ppath_old, gx_path *ppath)
{
const segment *pseg;
/*
* Since we're going to be adding to the path, unshare it
* before we start.
*/
int code = gx_path_unshare(ppath);
if (code < 0)
return code;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before eliding_1d");
#endif
pseg = (const segment *)(ppath_old->first_subpath);
while (pseg != NULL) {
const segment *look = pseg;
gs_fixed_rect rect;
rect.p.x = rect.q.x = look->pt.x;
rect.p.y = rect.q.y = look->pt.y;
if (look->type != s_start) {
dlprintf("Unlikely?");
}
look = look->next;
while (look != NULL && look->type != s_start) {
if (look->type == s_curve) {
const curve_segment *pc = (const curve_segment *)look;
if (!is_colinear(&rect, pc->p1.x, pc->p1.y) ||
!is_colinear(&rect, pc->p2.x, pc->p2.y) ||
!is_colinear(&rect, pc->pt.x, pc->pt.y))
goto not_colinear;
} else if (!is_colinear(&rect, look->pt.x, look->pt.y)) {
goto not_colinear;
}
look = look->next;
}
pseg = look;
if (0)
{
not_colinear:
/* Not colinear. We want to keep this section. */
while (look != NULL && look->type != s_start)
look = look->next;
while (pseg != look && code >= 0) {
/* Copy */
switch (pseg->type) {
case s_start:
code = gx_path_add_point(ppath,
pseg->pt.x, pseg->pt.y);
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
code = gx_path_add_curve_notes(ppath,
pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y, pseg->notes);
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_gap:
code = gx_path_add_gap_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_dash:
{
const dash_segment *pd = (const dash_segment *)pseg;
code = gx_path_add_dash_notes(ppath,
pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
break;
}
case s_line_close:
code = gx_path_close_subpath(ppath);
break;
default: /* can't happen */
code = gs_note_error(gs_error_unregistered);
}
pseg = pseg->next;
}
if (code < 0) {
gx_path_new(ppath);
return code;
}
}
}
ppath->bbox_set = false;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after eliding_1d");
#endif
return 0;
}
int
gx_path_elide_1d(gx_path *ppath)
{
int code;
gx_path path;
gx_path_init_local(&path, ppath->memory);
code = gx_path_copy_eliding_1d(ppath, &path);
if (code < 0)
return code;
gx_path_assign_free(ppath, &path);
gx_path_free(&path, "gx_path_elide_1d");
return 0;
}
|