1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
|
/* Copyright (C) 2001-2022 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Path stroking procedures for Ghostscript library */
#include "math_.h"
#include <stdlib.h> /* abs() */
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gsdcolor.h"
#include "gsptype1.h"
#include "gsptype2.h"
#include "gxfixed.h"
#include "gxfarith.h"
#include "gxmatrix.h"
#include "gscoord.h"
#include "gsdevice.h"
#include "gxdevice.h"
#include "gxhttile.h"
#include "gxgstate.h"
#include "gzline.h"
#include "gzpath.h"
#include "gzcpath.h"
#include "gxpaint.h"
#include "gsstate.h" /* for gs_currentcpsimode */
#include "gzacpath.h"
/* RJW: There appears to be a difference in the xps and postscript models
* (at least in as far as Microsofts implementation of xps and Acrobats of
* postscript). Acrobat (and ghostscript) are happy to join a line segment
* around a corner, even when the next segment is a dash gap. Microsofts
* implementation of XPS does not.
*
* A test file that shows this up is tests_private/comparefiles/298-05.ps
*
* Enabling the following define would emulate xps behaviour here.
*/
#undef AVOID_JOINING_TO_DASH_GAPS
/*
* We don't really know whether it's a good idea to take fill adjustment
* into account for stroking. Disregarding it means that strokes
* come out thinner than fills; observing it produces heavy-looking
* strokes at low resolutions. But in any case, we must disregard it
* when stroking zero-width lines.
*/
#define USE_FILL_ADJUSTMENT
#ifdef USE_FILL_ADJUSTMENT
# define STROKE_ADJUSTMENT(thin, pgs, xy)\
(thin ? fixed_0 : (pgs)->fill_adjust.xy)
#else
# define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
#endif
/*
* For some reason, we commented out the optimization for portrait,
* landscape, and uniform (non-scaled) transformations. We have no record
* of why we did this, and we don't know what bugs re-enabling it may
* introduce.
*/
#define OPTIMIZE_ORIENTATION
/*
* Compute the amount by which to expand a stroked bounding box to account
* for line width, caps and joins. Return 0 if the result is exact, 1 if
* it may be conservative, or gs_error_limitcheck if the result is too
* large to fit in a gs_fixed_point.
*
* Because of square caps and miter and triangular joins, the maximum
* expansion on each side (in user space) is
* K * line_width/2
* where K is determined as follows:
* For round or butt caps, E = 1
* For square caps, E = sqrt(2)
* If the path is only a single line segment, K = E;
* if triangular joins, K = 2;
* if miter joins, K = max(miter_limit, E);
* otherwise, K = E.
*
* If the following conditions apply, K = E yields an exact result:
* - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
* - Square or round caps are used, or all subpaths are closed.
* - All segments (including the implicit segment created by
* closepath) are vertical or horizontal lines.
*
* Note that these conditions are sufficient, but not necessary, to get an
* exact result. We choose this set of conditions because it is easy to
* check and covers many common cases. Clients that care always have the
* option of using strokepath to get an exact result.
*/
static float join_expansion_factor(const gs_gstate *, gs_line_join);
int
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
gs_fixed_point * ppt)
{
const subpath *psub;
const segment *pseg;
double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
double expand = pgs->line_params.half_width;
int result = 1;
if (ppath == NULL) {
ppt->x = ppt->y = 0;
return 0; /* no expansion */
}
psub = ppath->first_subpath;
/* Adjust the expansion (E) for square caps, if needed */
if (pgs->line_params.start_cap == gs_cap_square ||
pgs->line_params.end_cap == gs_cap_square)
expand *= 1.414213562;
/* Check for whether an exact result can be computed easily. */
if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
) {
bool must_be_closed =
!(pgs->line_params.start_cap == gs_cap_square ||
pgs->line_params.start_cap == gs_cap_round ||
pgs->line_params.end_cap == gs_cap_square ||
pgs->line_params.end_cap == gs_cap_round ||
pgs->line_params.dash_cap == gs_cap_square ||
pgs->line_params.dash_cap == gs_cap_round);
gs_fixed_point prev;
prev.x = prev.y = 0; /* Quiet gcc warning. */
for (pseg = (const segment *)psub; pseg;
prev = pseg->pt, pseg = pseg->next
)
switch (pseg->type) {
case s_start:
if (((const subpath *)pseg)->curve_count ||
(must_be_closed && !((const subpath *)pseg)->is_closed)
)
goto not_exact;
break;
case s_line:
case s_dash:
case s_line_close:
if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
goto not_exact;
break;
case s_gap:
default: /* other/unknown segment type */
goto not_exact;
}
result = 0; /* exact result */
}
not_exact:
if (result) {
if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
(psub == 0 || (pseg = psub->next) == 0 ||
(pseg = pseg->next) == 0 || pseg->type == s_line_close))
DO_NOTHING;
else {
float factor = join_expansion_factor(pgs, pgs->line_params.join);
if (pgs->line_params.curve_join >= 0)
factor = max(factor, join_expansion_factor(pgs,
(gs_line_join)pgs->line_params.curve_join));
expand *= factor;
}
}
/* Short-cut gs_bbox_transform. */
{
float exx = expand * cx;
float exy = expand * cy;
int code = set_float2fixed_vars(ppt->x, exx);
if (code < 0)
return code;
code = set_float2fixed_vars(ppt->y, exy);
if (code < 0)
return code;
}
return result;
}
static float
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
{
switch (join) {
case gs_join_miter: return pgs->line_params.miter_limit;
case gs_join_triangle: return 2.0;
default: return 1.0;
}
}
/*
* Structure for a partial line (passed to the drawing routine).
* Two of these are required to do joins right.
* Each endpoint includes the two ends of the cap as well,
* and the deltas for square, round, and triangular cap computation.
*
* The two base values for computing the caps of a partial line are the
* width and the end cap delta. The width value is one-half the line
* width (suitably transformed) at 90 degrees counter-clockwise
* (in device space, but with "90 degrees" interpreted in *user*
* coordinates) at the end (as opposed to the origin) of the line.
* The cdelta value is one-half the transformed line width in the same
* direction as the line. From these, we compute two other values at each
* end of the line: co and ce, which are the ends of the cap.
* Note that the cdelta values at o are the negatives of the values at e,
* as are the offsets from p to co and ce.
*
* Initially, only o.p, e.p, e.cdelta, width, and thin are set.
* compute_caps fills in the rest.
*/
typedef gs_fixed_point *p_ptr;
typedef struct endpoint_s {
gs_fixed_point p; /* the end of the line */
gs_fixed_point co, ce; /* ends of the cap, p +/- width */
gs_fixed_point cdelta; /* +/- cap length */
} endpoint;
typedef endpoint *ep_ptr;
typedef const endpoint *const_ep_ptr;
typedef struct partial_line_s {
endpoint o; /* starting coordinate */
endpoint e; /* ending coordinate */
gs_fixed_point width; /* one-half line width, see above */
gs_fixed_point vector; /* The line segment direction */
bool thin; /* true if minimum-width line */
} partial_line;
typedef partial_line *pl_ptr;
/* As we stroke a path, we run through the line segments that make it up.
* We gather each line segment together with any degenerate line segments
* that follow it (call this set "prev"), and then 'join them' to the next
* line segment (and any degenerate line segments that follow it) (if there
* is one) (call this "current").
*
* In order to get the joins right we need to keep flags about both
* prev and current, and whether they originally came from arcs.
*/
typedef enum note_flags {
/* If set, all the line segments that make up current come from arcs. */
nf_all_from_arc = 1,
/* If set, at least one of the line segments that make up current, come
* from arcs. */
nf_some_from_arc = 2,
/* If set then this segment should have a dash cap on the start rather
* than a start cap. */
nf_dash_head = 4,
/* If set then this segment should have a dash cap on the end rather
* than an end cap. */
nf_dash_tail = 8,
/* If set, all the line segments that make up prev come from arcs. */
nf_prev_all_from_arc = 16,
/* If set, at least one of the line segment that make up prev, come from
* arcs. */
nf_prev_some_from_arc = 32,
/* If set then prev should have a dash cap on the start rather
* than a start cap. */
nf_prev_dash_head = 64,
/* If set then prev should have a dash cap on the end rather
* than an end cap. */
nf_prev_dash_tail = 128
} note_flags;
/* Macro to combine the prev and current arc_flags. After applying this
* macro, the bits in the result have the following meanings:
* nf_all_from_arc set if all the components of current and prev
* come from an Arc.
* nf_some_from_arc set if any of the components of current and
* prev come from an Arc.
* nf_dash_head set if prev should have a dash cap rather than
* a start cap.
* nf_dash_tail set if prev should have a dash cap rather than
* an end cap.
*/
#define COMBINE_FLAGS(F) \
(((F>>4) | ((F) & nf_some_from_arc)) & \
(((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
/* Assign a point. Some compilers would do this with very slow code */
/* if we simply implemented it as an assignment. */
#define ASSIGN_POINT(pp, p)\
((pp)->x = (p).x, (pp)->y = (p).y)
/* Other forward declarations */
static bool width_is_thin(pl_ptr);
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
static int line_join_points(const gx_line_params * pgs_lp,
pl_ptr plp, pl_ptr nplp,
gs_fixed_point * join_points,
const gs_matrix * pmat, gs_line_join join,
bool reflected);
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
pl_ptr plp, pl_ptr nplp,
gs_fixed_point * rjoin_points,
const gs_matrix * pmat,
gs_line_join join);
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
pl_ptr plp, pl_ptr nplp,
gs_fixed_point * join_points,
const gs_matrix * pmat,
gs_line_join join);
static void compute_caps(pl_ptr);
static int add_points(gx_path *, const gs_fixed_point *,
int, bool);
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
static int add_round_cap(gx_path *, const_ep_ptr);
static int add_pie_cap(gx_path *, const_ep_ptr);
static int cap_points(gs_line_cap, const_ep_ptr,
gs_fixed_point * /*[3] */ );
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
int
gx_default_stroke_path_shading_or_pattern(gx_device * pdev,
const gs_gstate * pgs_orig,
gx_path * ppath,
const gx_stroke_params * params,
const gx_drawing_color * pdevc,
const gx_clip_path * pcpath)
{
gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
gx_device_cpath_accum adev;
gx_device_color devc;
gx_clip_path stroke_as_clip_path;
int code;
/* We want to make a image of the stroke as a clip path, so
* create an empty structure on the stack. */
code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
if (code < 0)
return code;
/* Now we make an accumulator device that will fill that out. */
gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
gs_set_logical_op_inline(pgs, lop_default);
/* Stroke the path to the accumulator. */
code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
&devc, pcpath);
/* Now extract the accumulated path into stroke_as_clip_path. */
if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
gx_cpath_accum_discard(&adev);
gs_set_logical_op_inline(pgs, save_lop);
if (code >= 0)
{
/* Now, fill a rectangle with the original color through that
* clip path. */
gs_fixed_rect clip_box, shading_box;
gs_int_rect cb;
gx_device_clip cdev;
gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
/* This is horrid. If the pdevc is a shading color, then the
* fill_rectangle routine requires us to have intersected it
* with the shading rectangle first. If we don't do this,
* ps3fts/470-01.ps goes wrong. */
if (gx_dc_is_pattern2_color(pdevc) &&
gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
{
rect_intersect(clip_box, shading_box);
}
cb.p.x = fixed2int_pixround(clip_box.p.x);
cb.p.y = fixed2int_pixround(clip_box.p.y);
cb.q.x = fixed2int_pixround(clip_box.q.x);
cb.q.y = fixed2int_pixround(clip_box.q.y);
gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
code = pdevc->type->fill_rectangle(pdevc,
cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
(gx_device *)&cdev, pgs->log_op, NULL);
}
gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
return code;
}
/* Define the default implementation of the device stroke_path procedure. */
int
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
gx_path * ppath, const gx_stroke_params * params,
const gx_drawing_color * pdevc,
const gx_clip_path * pcpath)
{
if (gx_dc_is_pattern2_color(pdevc) ||
pdevc->type == &gx_dc_type_data_ht_colored ||
(gx_dc_is_pattern1_color(pdevc) &&
gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
pdevc, pcpath);
else
return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
pdevc, pcpath);
}
/* Fill a partial stroked path. Free variables: */
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
/* code, ppath, exit(label). */
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
(final || lop_is_idempotent(pgs->log_op))) {\
fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
if (to_path_reverse != NULL) {\
code = gx_join_path_and_reverse(to_path, to_path_reverse);\
if(code < 0) goto exit;\
}\
code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
gx_path_free(&stroke_path_body, "fill_stroke_path");\
if ( code < 0 ) goto exit;\
gx_path_init_local(&stroke_path_body, ppath->memory);\
}
/*
* Define the internal procedures that stroke a partial_line
* (the first pl_ptr argument). If both partial_lines are non-null,
* the procedure creates an appropriate join; otherwise, the procedure
* creates an end cap. If the first int is 0, the procedure also starts
* with an appropriate cap.
*/
#define stroke_line_proc(proc)\
int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
const gx_device_color *, gx_device *, const gs_gstate *,\
const gx_stroke_params *, const gs_fixed_rect *, int,\
gs_line_join, bool, note_flags)
typedef stroke_line_proc((*stroke_line_proc_t));
static stroke_line_proc(stroke_add);
static stroke_line_proc(stroke_add_compat);
static stroke_line_proc(stroke_add_fast);
static stroke_line_proc(stroke_fill);
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
const gx_device_color * pdevc, gx_device * dev,
const gs_gstate * pgs);
/* Define the orientations we handle specially. */
typedef enum {
orient_other = 0,
orient_portrait, /* [xx 0 0 yy tx ty] */
orient_landscape /* [0 xy yx 0 tx ty] */
} orientation;
/*
* Internal function used to merge the 2 sides of a stroked path.
* path contains the 'forward' side, rpath contains the 'reversed' side.
* Reverse rpath, then append it to path.
*
* If path is closed, then rpath should be too. If path is open, then the
* starting and ending points of both paths should be the same, so as to
* guarantee a closed path.
*/
static int
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
{
int code;
if (gx_path_is_void(rpath))
return 0;
code = gx_path_append_reversed(rpath, path);
if (code < 0)
return code;
gx_path_free(rpath, "gx_join_path_and_reverse");
gx_path_init_local(rpath, path->memory);
return gx_path_close_subpath(path);
}
/*
* Stroke a path. If to_path != 0, append the stroke outline to it;
* if to_path == 0, draw the strokes on pdev.
*
* Note that gx_stroke_path_only with to_path != NULL may clip the path to
* the clipping path, as for to_path == NULL. This is almost never
* what is wanted.
*/
static int
gx_stroke_path_only_aux(gx_path *ppath, /* lgtm[cpp/use-of-goto] */
gx_path *to_path,
gx_device *pdev,
const gs_gstate *pgs,
const gx_stroke_params *params,
const gx_device_color *pdevc,
const gx_clip_path *pcpath)
{
bool CPSI_mode = gs_currentcpsimode(pgs->memory);
bool traditional = CPSI_mode | params->traditional;
stroke_line_proc_t line_proc =
((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
(traditional ? stroke_add_compat : stroke_add_fast));
gs_fixed_rect ibox, cbox;
gx_device_clip cdev;
gx_device *dev = pdev;
int code = 0;
gx_fill_params fill_params;
const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
int dash_count = pgs_lp->dash.pattern_size;
gx_path fpath, dpath;
gx_path stroke_path_body;
gx_path stroke_path_reverse;
gx_path *to_path_reverse = NULL;
const gx_path *spath;
float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
/*
* We are dealing with a reflected coordinate system
* if transform(1,0) is counter-clockwise from transform(0,1).
* See the note in stroke_add for the algorithm.
*/
int uniform;
bool reflected;
orientation orient =
(
#ifdef OPTIMIZE_ORIENTATION
is_fzero2(xy, yx) ?
(uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
orient_portrait) :
is_fzero2(xx, yy) ?
(uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
orient_landscape) :
/* We should optimize uniform rotated coordinate systems */
/* here as well, but we don't. */
#endif
(uniform = 0,
reflected = xy * yx > xx * yy,
orient_other));
const segment_notes not_first = sn_not_first;
gs_line_join curve_join =
(pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
gs_join_bevel : pgs_lp->join);
float line_width = pgs_lp->half_width; /* (*half* the line width) */
bool always_thin;
double line_width_and_scale;
double device_line_width_scale = 0; /* Quiet compiler. */
double device_dot_length = pgs_lp->dot_length * fixed_1;
const subpath *psub;
gs_matrix initial_matrix;
bool initial_matrix_reflected, flattened_path = false;
note_flags flags;
(*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
initial_matrix.xx * initial_matrix.yy;
#ifdef DEBUG
if (gs_debug_c('o')) {
int i;
dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
pgs_lp->half_width, (int)pgs_lp->start_cap,
(int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
dmlprintf3(ppath->memory, " join=%d, miter_limit=%f, miter_check=%f,\n",
(int)pgs_lp->join, pgs_lp->miter_limit,
pgs_lp->miter_check);
dmlprintf1(ppath->memory, " dash pattern=%d", dash_count);
for (i = 0; i < dash_count; i++)
dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
dmputs(ppath->memory, ",\n");
dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
}
#endif
gx_path_bbox(ppath, &ibox);
/* Expand the path bounding box by the scaled line width. */
{
gs_fixed_point expansion;
if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
/* The expansion is so large it caused a limitcheck. */
ibox.p.x = ibox.p.y = min_fixed;
ibox.q.x = ibox.q.y = max_fixed;
} else {
expansion.x += pgs->fill_adjust.x;
expansion.y += pgs->fill_adjust.y;
/*
* It's theoretically possible for the following computations to
* overflow, so we need to check for this.
*/
ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
ibox.p.x - expansion.x);
ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
ibox.p.y - expansion.y);
ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
ibox.q.x + expansion.x);
ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
ibox.q.y + expansion.y);
}
}
/* Check the expanded bounding box against the clipping regions. */
if (pcpath)
gx_cpath_inner_box(pcpath, &cbox);
else if (pdevc)
(*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
else {
/* This is strokepath, not stroke. Don't clip. */
cbox = ibox;
}
if (!rect_within(ibox, cbox)) {
/* Intersect the path box and the clip bounding box. */
/* If the intersection is empty, this call is a no-op. */
gs_fixed_rect bbox;
if (pcpath) {
gx_cpath_outer_box(pcpath, &bbox);
if_debug4m('f', ppath->memory, " outer_box=(%g,%g),(%g,%g)\n",
fixed2float(bbox.p.x), fixed2float(bbox.p.y),
fixed2float(bbox.q.x), fixed2float(bbox.q.y));
rect_intersect(ibox, bbox);
} else
rect_intersect(ibox, cbox);
if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
/* Intersection of boxes is empty! */
return 0;
}
/*
* The path is neither entirely inside the inner clip box
* nor entirely outside the outer clip box.
* If we had to flatten the path, this is where we would
* recompute its bbox and make the tests again,
* but we don't bother right now.
*/
/*
* If there is a clipping path, set up a clipping device.
* for stroke_fill because, because the latter uses low level methods
* which don't accept a clipping path.
* Note that in some cases stroke_fill appends the path to stroke_path_body
* instead a real painting, and it is painted with FILL_STROKE_PATH.
*
* Contrary to that, FILL_STROKE_PATH paints a path with
* the fill_path method, which handles a clipping path,
* so we don't pass the clipper device to FILL_STROKE_PATH
* to prevent an appearence of superposing clippers.
*/
if (pcpath && line_proc == stroke_fill) {
gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
cdev.max_fill_band = pdev->max_fill_band;
dev = (gx_device *)&cdev;
}
}
fill_params.rule = gx_rule_winding_number;
fill_params.flatness = pgs->flatness;
if (line_width < 0)
line_width = -line_width;
line_width_and_scale = line_width * (double)int2fixed(1);
if (is_fzero(line_width))
always_thin = true;
else {
float xa, ya;
switch (orient) {
case orient_portrait:
xa = xx, ya = yy;
goto sat;
case orient_landscape:
xa = xy, ya = yx;
sat:
if (xa < 0)
xa = -xa;
if (ya < 0)
ya = -ya;
always_thin = (max(xa, ya) * line_width < 0.5);
if (!always_thin && uniform) { /* Precompute a value we'll need later. */
device_line_width_scale = line_width_and_scale * xa;
}
break;
default:
{
/* The check is more complicated, but it's worth it. */
/* Compute radii of the transformed round brush. */
/* Let x = [a, sqrt(1-a^2)]'
radius^2 is an extremum of :
rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
With solving D(rr(a),a)==0, got :
max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
r = sqrt(max_rr);
Well we could use eigenvalues of the quadratic form,
but it gives same result with a bigger calculus.
*/
double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
)
)/2;
always_thin = max_rr * line_width * line_width < 0.25;
}
}
}
if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
if (device_dot_length != 0) {
/*
* Compute the dot length in device space. We can't do this
* quite right for non-uniform coordinate systems; too bad.
*/
gs_matrix mat;
const gs_matrix *pmat;
if (pgs_lp->dot_length_absolute) {
gs_deviceinitialmatrix(pdev, &mat);
pmat = &mat;
} else
pmat = (const gs_matrix *)&pgs->ctm;
device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
}
/* Start by flattening the path. We should do this on-the-fly.... */
if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
/* don't need to flatten */
if (!ppath->first_subpath)
return 0;
spath = ppath;
} else {
gx_path_init_local(&fpath, ppath->memory);
if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
params->flatness, pgs)) < 0
)
return code;
spath = &fpath;
flattened_path = true;
}
if (dash_count) {
float max_dash_len = 0;
float expand_squared;
int i;
float adjust = (float)pgs->fill_adjust.x;
if (adjust > (float)pgs->fill_adjust.y)
adjust = (float)pgs->fill_adjust.y;
for (i = 0; i < dash_count; i++) {
if (max_dash_len < pgs_lp->dash.pattern[i])
max_dash_len = pgs_lp->dash.pattern[i];
}
expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
if (expand_squared < 0)
expand_squared = -expand_squared;
expand_squared *= max_dash_len * max_dash_len;
/* Wide lines in curves can show dashes up, so fudge to allow for
* this. */
if (pgs->line_params.half_width > 1)
adjust /= pgs->line_params.half_width;
if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
gx_path_init_local(&dpath, ppath->memory);
code = gx_path_add_dash_expansion(spath, &dpath, pgs);
if (code < 0)
goto exf;
spath = &dpath;
} else {
dash_count = 0;
}
}
if (to_path == 0) {
/* We might try to defer this if it's expensive.... */
to_path = &stroke_path_body;
gx_path_init_local(&stroke_path_body, ppath->memory);
}
if (line_proc == stroke_add_fast) {
to_path_reverse = &stroke_path_reverse;
gx_path_init_local(&stroke_path_reverse, ppath->memory);
}
for (psub = spath->first_subpath; psub != 0;) {
int index = 0;
const segment *pseg = (const segment *)psub;
fixed x = pseg->pt.x;
fixed y = pseg->pt.y;
bool is_closed = ((const subpath *)pseg)->is_closed;
partial_line pl, pl_prev, pl_first;
bool zero_length = true;
int pseg_notes = pseg->notes;
flags = nf_all_from_arc;
/* Run through each segment in the current path, drawing each segment
* delayed by 1 - that is, when we're looking at segment n, we draw
* (or not) segment n-1. This delay allows us to always know whether
* to join or cap the line. */
while ((pseg = pseg->next) != 0 &&
pseg->type != s_start
) {
/* Compute the width parameters in device space. */
/* We work with unscaled values, for speed. */
fixed sx, udx, sy, udy;
bool is_dash_segment;
pseg_notes = pseg->notes;
d2:is_dash_segment = false;
d1:if (pseg->type == s_dash) {
dash_segment *pd = (dash_segment *)pseg;
sx = pd->pt.x;
sy = pd->pt.y;
udx = pd->tangent.x;
udy = pd->tangent.y;
is_dash_segment = true;
} else if (pseg->type == s_gap) {
sx = pseg->pt.x;
sy = pseg->pt.y;
udx = sx - x;
udy = sy - y;
is_dash_segment = true;
} else {
sx = pseg->pt.x;
sy = pseg->pt.y;
udx = sx - x;
udy = sy - y;
}
zero_length &= ((udx | udy) == 0);
pl.o.p.x = x, pl.o.p.y = y;
d:flags = (((pseg_notes & sn_not_first) ?
((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
((pseg_notes & sn_dash_head) ? nf_dash_head : 0) |
((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0) |
(flags & ~nf_all_from_arc));
pl.e.p.x = sx, pl.e.p.y = sy;
if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
/*
* If this is the first segment of the subpath,
* check the entire subpath for degeneracy.
* Otherwise, ignore the degenerate segment.
*/
if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
{
if (pseg->next == NULL || pseg->next->type == s_start)
continue;
pseg = pseg->next;
/* We're skipping a degenerate path segment; if it was
* labelled as being the first from a curve, then make
* sure the one we're skipping to is also labelled as
* being the first from a curve, otherwise we can get
* improper joins being used. See Bug 696466. */
pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
(pseg->notes & ~sn_not_first) :
pseg->notes);
goto d2;
}
/* Check for a degenerate subpath. */
while ((pseg = pseg->next) != 0 &&
pseg->type != s_start
) {
if (is_dash_segment)
break;
if (pseg->type == s_dash || pseg->type == s_gap)
goto d1;
sx = pseg->pt.x, udx = sx - x;
sy = pseg->pt.y, udy = sy - y;
if (udx | udy) {
zero_length = false;
goto d;
}
}
if (pgs_lp->dot_length == 0 &&
pgs_lp->start_cap != gs_cap_round &&
pgs_lp->end_cap != gs_cap_round &&
!is_dash_segment) {
/* From PLRM, stroke operator :
If a subpath is degenerate (consists of a single-point closed path
or of two or more points at the same coordinates),
stroke paints it only if round line caps have been specified */
break;
}
/*
* If the subpath is a dash, take the orientation from the dash segment.
* Otherwise orient the dot according to the previous segment if
* any, or else the next segment if any, or else
* according to the specified dot orientation.
*/
{
/* When passing here, either pseg == NULL or it points to the
start of the next subpaph. So we can't use pseg
for determining the segment direction.
In same time, psub->last may help, so use it. */
const segment *end = psub->last;
if (is_dash_segment) {
/* Nothing. */
} else if (end != 0 && (end->pt.x != x || end->pt.y != y))
sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
}
/*
* Compute the properly oriented dot length, and then
* draw the dot like a very short line.
*/
if ((udx | udy) == 0) {
if (is_fzero(pgs_lp->dot_orientation.xy)) {
/* Portrait orientation, dot length = X */
udx = fixed_1;
} else {
/* Landscape orientation, dot length = Y */
udy = fixed_1;
}
}
if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
double scale = device_dot_length /
hypot((double)udx, (double)udy);
fixed udx1, udy1;
/*
* If we're using butt caps, make sure the "line" is
* long enough to show up.
* Don't apply this with always_thin, becase
* draw thin line always rounds the length up.
*/
if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
pgs_lp->end_cap == gs_cap_butt ||
pgs_lp->dash_cap == gs_cap_butt)) {
fixed dmax = max(any_abs(udx), any_abs(udy));
if (dmax * scale < fixed_1)
scale = (float)fixed_1 / dmax;
}
udx1 = (fixed) (udx * scale);
udy1 = (fixed) (udy * scale);
sx = x + udx1;
sy = y + udy1;
}
/*
* Back up 1 segment to keep the bookkeeping straight.
*/
pseg = (pseg != 0 ? pseg->prev : psub->last);
if (!is_dash_segment)
goto d;
pl.e.p.x = sx;
pl.e.p.y = sy;
}
pl.vector.x = udx;
pl.vector.y = udy;
if (always_thin) {
pl.e.cdelta.x = pl.e.cdelta.y = 0;
pl.width.x = pl.width.y = 0;
pl.thin = true;
} else {
if (uniform != 0) {
/* We can save a lot of work in this case. */
/* We know orient != orient_other. */
double dpx = udx, dpy = udy;
double wl = device_line_width_scale /
hypot(dpx, dpy);
pl.e.cdelta.x = (fixed) (dpx * wl);
pl.e.cdelta.y = (fixed) (dpy * wl);
/* The width is the cap delta rotated by */
/* 90 degrees. */
if (initial_matrix_reflected)
pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
else
pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
pl.thin = false; /* if not always_thin, */
/* then never thin. */
} else {
gs_point dpt; /* unscaled */
float wl;
code = gs_gstate_idtransform(pgs,
(float)udx, (float)udy,
&dpt);
if (code < 0) {
dpt.x = 0; dpt.y = 0;
/* Swallow the error */
code = 0;
} else {
wl = line_width_and_scale /
hypot(dpt.x, dpt.y);
/* Construct the width vector in */
/* user space, still unscaled. */
dpt.x *= wl;
dpt.y *= wl;
}
/*
* We now compute both perpendicular
* and (optionally) parallel half-widths,
* as deltas in device space. We use
* a fixed-point, unscaled version of
* gs_dtransform. The second computation
* folds in a 90-degree rotation (in user
* space, before transforming) in the
* direction that corresponds to counter-
* clockwise in device space.
*/
pl.e.cdelta.x = (fixed) (dpt.x * xx);
pl.e.cdelta.y = (fixed) (dpt.y * yy);
if (orient != orient_portrait)
pl.e.cdelta.x += (fixed) (dpt.y * yx),
pl.e.cdelta.y += (fixed) (dpt.x * xy);
if (!reflected ^ initial_matrix_reflected)
dpt.x = -dpt.x, dpt.y = -dpt.y;
pl.width.x = (fixed) (dpt.y * xx),
pl.width.y = -(fixed) (dpt.x * yy);
if (orient != orient_portrait)
pl.width.x -= (fixed) (dpt.x * yx),
pl.width.y += (fixed) (dpt.y * xy);
pl.thin = width_is_thin(&pl);
}
if (!pl.thin) {
if (index)
dev->sgr.stroke_stored = false;
adjust_stroke(dev, &pl, pgs, false,
(pseg->prev == 0 || pseg->prev->type == s_start) &&
(pseg->next == 0 || pseg->next->type == s_start) &&
(zero_length || !is_closed),
COMBINE_FLAGS(flags));
compute_caps(&pl);
}
}
if (index++) {
gs_line_join join =
(pseg_notes & not_first ? curve_join : pgs_lp->join);
int first;
pl_ptr lptr;
bool ensure_closed;
if (join == gs_join_none) {
/* Fake the end of a subpath so we get */
/* caps instead of joins. */
first = 0;
lptr = 0;
index = 1;
} else {
first = (is_closed ? 1 : index - 2);
lptr = &pl;
}
#ifdef AVOID_JOINING_TO_DASH_GAPS
if (is_dash_segment) /* Never join to a dash segment */
lptr = NULL;
#endif
if (pseg->type == s_gap)
{
lptr = NULL;
/* We are always drawing one line segment behind, so make
* sure we don't draw the next one. */
index = 0;
}
ensure_closed = ((to_path == &stroke_path_body &&
lop_is_idempotent(pgs->log_op)) ||
(lptr == NULL ? true : lptr->thin));
/* Draw the PREVIOUS line segment, joining it to lptr (or
* capping if lptr == NULL. */
code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
first, &pl_prev, lptr,
pdevc, dev, pgs, params, &cbox,
uniform, join, initial_matrix_reflected,
COMBINE_FLAGS(flags));
if (code < 0)
goto exit;
FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
} else if (pseg->type == s_gap) {
/* If this segment is a gap, then we don't want to draw it
* next time! */
index = 0;
} else
pl_first = pl;
pl_prev = pl;
x = sx, y = sy;
flags = (flags<<4) | nf_all_from_arc;
}
if (index) {
/* If closed, join back to start, else cap. */
segment_notes notes = (pseg == 0 ?
(const segment *)spath->first_subpath :
pseg)->notes;
gs_line_join join = (notes & not_first ? curve_join :
pgs_lp->join);
gs_line_cap cap;
/* For some reason, the Borland compiler requires the cast */
/* in the following statement. */
pl_ptr lptr =
(!is_closed || join == gs_join_none || zero_length ?
(pl_ptr) 0 : (pl_ptr) & pl_first);
#ifdef AVOID_JOINING_TO_DASH_GAPS
if (lptr && psub->type == s_dash)
lptr = NULL;
#endif
/* If the subpath starts with a gap, then cap, don't join! */
if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
lptr = NULL;
flags = (((notes & sn_not_first) ?
((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
((notes & sn_dash_head) ? nf_dash_head : 0) |
((notes & sn_dash_tail) ? nf_dash_tail : 0) |
(flags & ~nf_all_from_arc));
code = (*line_proc) (to_path, to_path_reverse, true,
index - 1, &pl_prev, lptr, pdevc,
dev, pgs, params, &cbox, uniform, join,
initial_matrix_reflected,
COMBINE_FLAGS(flags));
if (code < 0)
goto exit;
FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
cap = ((flags & nf_prev_dash_head) ?
pgs_lp->start_cap : pgs_lp->dash_cap);
if (traditional && lptr == 0 && cap != gs_cap_butt) {
/* Create the initial cap at last. */
code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
if (code < 0)
goto exit;
FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
}
}
psub = (const subpath *)pseg;
}
if (to_path_reverse != NULL)
code = gx_join_path_and_reverse(to_path, to_path_reverse);
FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
exit:
if (dev == (gx_device *)&cdev)
cdev.target->sgr = cdev.sgr;
if (to_path == &stroke_path_body)
gx_path_free(&stroke_path_body, "gx_stroke_path_only error"); /* (only needed if error) */
if (to_path_reverse == &stroke_path_reverse)
gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
exf:
if (dash_count)
gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
/* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
if(flattened_path)
gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
return code;
}
int
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
const gs_gstate * pgs, const gx_stroke_params * params,
const gx_device_color * pdevc, const gx_clip_path * pcpath)
{
return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
}
/* ------ Internal routines ------ */
/*
* Test whether a line is thin, i.e., whether the half-width, measured
* perpendicular to the line in device space, is less than 0.5 pixel.
* Unfortunately, the width values we computed are perpendicular to the
* line in *user* space, so we may have to do some extra work.
*/
static bool
width_is_thin(pl_ptr plp)
{
fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
/* If the line is horizontal or vertical, things are easy. */
if ((dy = plp->vector.y) == 0)
return any_abs(wy) < fixed_half;
if ((dx = plp->vector.x) == 0)
return any_abs(wx) < fixed_half;
/* For the longest time, we used to have a test here that
* attempted to trivially accept diagonal lines as being
* thin based on the components of the perpendicular
* width vector in device space as both being less than 0.5.
* Bug 702196 showed some examples where this was clearly
* wrong.
*
* The cause for this bug was that the 0.5 figure was wrong.
* For the point to be less than 1/2 a pixel perpendicular
* distant from the line, we'd need x^2 + y^2 < .5^2.
* For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
* or x < sqr(1/8). 45 degree line is the "worst case", so
* if both horizontal and vertical widths are less than
* sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
* So, we should be using sqr(1/8) rather than 0.5.
*
* Fixing this did indeed produce many many progressions,
* but left just the odd file still showing problems.
*
* Further investigations show that those cases were due to
* the use of "non-uniform" scaling matrices, for example
* (83 0 0 51 0 0). With such matrices, it's possible for
* nearly horizontal lines to be thin, but nearly vertical
* ones to be thick (or vice versa). Having the style of
* line "pop" between thick and thin in a single stroke
* looks very noticeable.
*
* We could change the trivial optimisation below to only
* apply in the 'uniform' case, but that would never actually
* trigger (as tested on the cluster), because all such
* cases are caught by the "always_thin" condition in the
* caller.
*
* Just removing the trivial test and leaving the 'complicated'
* test below us would leave us vulnerable to "popping",
* so we disable both. In practice this makes no difference
* to the number of tests showing diffs in the cluster.
*/
#if 0 /* DISABLED TEST, see above */
{
/* thin_threshold = fixed sqr(1/8) - see above. */
const fixed thin_threshold = float2fixed(0.35355339059f);
if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
return true;
}
/*
* We have to do this the hard way, by actually computing the
* perpendicular distance. The distance from the point (U,V)
* from a line from (0,0) to (C,D) is
* abs(C*V - D*U) / sqrt(C^2 + D^2)
* In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
*/
{
double C = dx, D = dy;
double num = C * wy - D * wx;
double denom = hypot(C, D);
/* both num and denom are scaled by fixed_scale^2, */
/* so we don't need to do any de-scaling for the test. */
return fabs(num) < denom * 0.5;
}
#else
return false;
#endif
}
/* Adjust the endpoints and width of a stroke segment along a specified axis */
static void
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
{
fixed *pw;
fixed *pov;
fixed *pev;
fixed w, w2;
fixed adj2;
if (horiz) {
/* More horizontal stroke */
pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
} else {
/* More vertical stroke */
pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
}
/* Round the larger component of the width up or down, */
/* whichever way produces a result closer to the correct width. */
/* Note that just rounding the larger component */
/* may not produce the correct result. */
w = *pw;
if (w > 0)
w2 = fixed_rounded(w << 1); /* full line width */
else
w2 = -fixed_rounded(-w << 1); /* full line width */
if (w2 == 0 && *pw != 0) {
/* Make sure thin lines don't disappear. */
w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
*pw = arith_rshift_1(w2);
}
/* Only adjust the endpoints if the line is horizontal or vertical. */
if (*pov == *pev) {
/* We're going to round the endpoint coordinates, so */
/* take the fill adjustment into account now. */
if (w >= 0)
w2 += adj2;
else
w2 = adj2 - w2;
if (w2 & fixed_1) /* odd width, move to half-pixel */
*pov = *pev = fixed_floor(*pov) + fixed_half;
else /* even width, move to pixel */
*pov = *pev = fixed_rounded(*pov);
}
}
static void
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
bool thin, bool horiz,
gs_line_cap start_cap, gs_line_cap end_cap)
{
fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
/* Only adjust the endpoints if the line is horizontal or vertical.
Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
if (*pow == *pew) {
fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
fixed length = any_abs(*pov - *pev);
fixed length_r, length_r_2;
fixed mv = (*pov + *pev) / 2, mv_r;
fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
: STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
/* fixme :
The best value for adjust_longitude is whether
the dash is isolated and doesn't cover entire segment.
The current data structure can't pass this info.
Therefore we restrict adjust_stroke_longitude with 1 pixel length.
*/
if (length > fixed_1) /* comparefiles/file2.pdf */
return;
if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
length_r = fixed_rounded(length);
if (length_r < fixed_1)
length_r = fixed_1;
length_r_2 = length_r / 2;
} else {
/* Account width for proper placing cap centers. */
fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
length_r = fixed_rounded(length + width * 2 + adj2);
length_r_2 = fixed_rounded(length) / 2;
}
if (length_r & fixed_1)
mv_r = fixed_floor(mv) + fixed_half;
else
mv_r = fixed_floor(mv);
if (*pov < *pev) {
*pov = mv_r - length_r_2;
*pev = mv_r + length_r_2;
} else {
*pov = mv_r + length_r_2;
*pev = mv_r - length_r_2;
}
}
}
/* Adjust the endpoints and width of a stroke segment */
/* to achieve more uniform rendering. */
/* Only o.p, e.p, e.cdelta, and width have been set. */
static void
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
bool thin, bool adjust_longitude, note_flags flags)
{
bool horiz, adjust = true;
gs_line_cap start_cap = (flags & nf_dash_head ?
pgs->line_params.dash_cap :
pgs->line_params.start_cap);
gs_line_cap end_cap = (flags & nf_dash_tail ?
pgs->line_params.dash_cap :
pgs->line_params.end_cap);
/* If stroke_adjustment is disabled, or this isn't a horizontal or
* vertical line, then bale. */
if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
dev->sgr.stroke_stored = false;
return; /* don't adjust */
}
/* Recognizing gradients, which some obsolete software
represent as a set of parallel strokes.
Such strokes must not be adjusted - bug 687974. */
if (dev->sgr.stroke_stored &&
(start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
/* Parallel. */
if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
(int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
(int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
(int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
/* Transversal shift. */
if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
/* The strokes were contacting or overlapping. */
if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
/* The strokes were not much overlapping. */
if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
/* they became not contacting.
We should not have adjusted the last stroke. Since if we did,
lets change the current one to restore the contact,
so that we don't leave gaps when rasterising. See bug 687974.
*/
fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
if (plp->o.p.x < dev->sgr.orig[0].x ||
(plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
/* Left contact, adjust to keep the contact. */
if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
plp->width.x += (shift_o_x - delta_w_x) / 2;
plp->width.y += (shift_o_y - delta_w_y) / 2;
plp->o.p.x += (shift_o_x - delta_w_x) / 2;
plp->o.p.y += (shift_o_y - delta_w_y) / 2;
plp->e.p.x += (shift_e_x - delta_w_x) / 2;
plp->e.p.y += (shift_e_y - delta_w_y) / 2;
adjust = false;
} else {
/* Right contact, adjust to keep the contact. */
if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
plp->width.x -= (shift_o_x + delta_w_x) / 2;
plp->width.y -= (shift_o_y + delta_w_y) / 2;
plp->o.p.x += (shift_o_x + delta_w_x) / 2;
plp->o.p.y += (shift_o_y + delta_w_y) / 2;
plp->e.p.x += (shift_e_x + delta_w_x) / 2;
plp->e.p.y += (shift_e_y + delta_w_y) / 2;
adjust = false;
}
}
}
}
}
}
if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
dev->sgr.stroke_stored = true;
dev->sgr.orig[0] = plp->o.p;
dev->sgr.orig[1] = plp->e.p;
dev->sgr.orig[2] = plp->width;
dev->sgr.orig[3] = plp->vector;
} else
dev->sgr.stroke_stored = false;
if (adjust) {
horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
adjust_stroke_transversal(plp, pgs, thin, horiz);
if (adjust_longitude)
adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
}
if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
dev->sgr.adjusted[0] = plp->o.p;
dev->sgr.adjusted[1] = plp->e.p;
dev->sgr.adjusted[2] = plp->width;
dev->sgr.adjusted[3] = plp->vector;
}
}
/* Compute the intersection of two lines. This is a messy algorithm */
/* that somehow ought to be useful in more places than just here.... */
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
static int
line_intersect(
p_ptr pp1, /* point on 1st line */
p_ptr pd1, /* slope of 1st line (dx,dy) */
p_ptr pp2, /* point on 2nd line */
p_ptr pd2, /* slope of 2nd line */
p_ptr pi)
{ /* return intersection here */
/* We don't have to do any scaling, the factors all work out right. */
double u1 = pd1->x, v1 = pd1->y;
double u2 = pd2->x, v2 = pd2->y;
double denom = u1 * v2 - u2 * v1;
double xdiff = pp2->x - pp1->x;
double ydiff = pp2->y - pp1->y;
double f1;
double max_result = any_abs(denom) * (double)max_fixed;
#ifdef DEBUG
if (gs_debug_c('O')) {
dlprintf4("[o]Intersect %f,%f(%f/%f)",
fixed2float(pp1->x), fixed2float(pp1->y),
fixed2float(pd1->x), fixed2float(pd1->y));
dlprintf4(" & %f,%f(%f/%f),\n",
fixed2float(pp2->x), fixed2float(pp2->y),
fixed2float(pd2->x), fixed2float(pd2->y));
dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
xdiff, ydiff, denom);
}
#endif
/* Check for degenerate result. */
if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
/* The lines are nearly parallel, */
/* or one of them has zero length. Punt. */
if_debug0('O', "\tdegenerate!\n");
return -1;
}
f1 = (v2 * xdiff - u2 * ydiff) / denom;
pi->x = pp1->x + (fixed) (f1 * u1);
pi->y = pp1->y + (fixed) (f1 * v1);
if_debug2('O', "\t%f,%f\n",
fixed2float(pi->x), fixed2float(pi->y));
return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
}
/* Set up the width and delta parameters for a thin line. */
/* We only approximate the width and height. */
static void
set_thin_widths(register pl_ptr plp)
{
fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
if (any_abs(dx) > any_abs(dy)) {
plp->width.x = plp->e.cdelta.y = 0;
plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
} else {
plp->width.y = plp->e.cdelta.x = 0;
plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
}
#undef TRSIGN
}
/* Draw a line on the device. */
/* Treat no join the same as a bevel join. */
/* rpath should always be NULL, hence ensure_closed can be ignored */
static int
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
gx_device * dev, const gs_gstate * pgs,
const gx_stroke_params * params, const gs_fixed_rect * pbbox,
int uniform, gs_line_join join, bool reflected,
note_flags flags)
{
const fixed lix = plp->o.p.x;
const fixed liy = plp->o.p.y;
const fixed litox = plp->e.p.x;
const fixed litoy = plp->e.p.y;
/* assert(lop_is_idempotent(pgs->log_op)); */
if (plp->thin) {
/* Minimum-width line, don't have to be careful with caps/joins. */
return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
pdevc, pgs->log_op,
pgs->fill_adjust.x,
pgs->fill_adjust.y);
}
/* Check for being able to fill directly. */
{
const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
gs_line_cap start_cap = (flags & nf_dash_head ?
pgs_lp->dash_cap : pgs_lp->start_cap);
gs_line_cap end_cap = (flags & nf_dash_tail ?
pgs_lp->dash_cap : pgs_lp->end_cap);
if (first != 0)
start_cap = gs_cap_butt;
if (nplp != 0)
end_cap = gs_cap_butt;
if (!plp->thin && (nplp == 0 || !nplp->thin)
&& (start_cap == gs_cap_butt || start_cap == gs_cap_square)
&& (end_cap == gs_cap_butt || end_cap == gs_cap_square)
&& (join == gs_join_bevel || join == gs_join_miter ||
join == gs_join_none)
&& (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
) {
gs_fixed_point points[6];
int npoints, code;
fixed ax, ay, bx, by;
npoints = cap_points(start_cap, &plp->o, points);
if (nplp == 0)
code = cap_points(end_cap, &plp->e, points + npoints);
else
code = line_join_points(pgs_lp, plp, nplp, points + npoints,
(uniform ? (gs_matrix *) 0 :
&ctm_only(pgs)), join, reflected);
if (code < 0)
goto general;
/* Make sure the parallelogram fill won't overflow. */
#define SUB_OVERFLOWS(r, u, v)\
(((r = u - v) ^ u) < 0 && (u ^ v) < 0)
if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
SUB_OVERFLOWS(by, points[2].y, points[1].y)
)
goto general;
#undef SUB_OVERFLOWS
if (nplp != 0) {
if (join == gs_join_miter) {
/* Make sure we have a bevel and not a miter. */
if (!(points[2].x == plp->e.co.x &&
points[2].y == plp->e.co.y &&
points[5].x == plp->e.ce.x &&
points[5].y == plp->e.ce.y)
)
goto fill;
} {
const gs_fixed_point *bevel = points + 2;
/* Identify which 3 points define the bevel triangle. */
if (points[3].x == nplp->o.p.x &&
points[3].y == nplp->o.p.y
)
++bevel;
/* Fill the bevel. */
code = (*dev_proc(dev, fill_triangle)) (dev,
bevel->x, bevel->y,
bevel[1].x - bevel->x, bevel[1].y - bevel->y,
bevel[2].x - bevel->x, bevel[2].y - bevel->y,
pdevc, pgs->log_op);
if (code < 0)
return code;
}
}
/* Fill the body of the stroke. */
return (*dev_proc(dev, fill_parallelogram)) (dev,
points[1].x, points[1].y,
ax, ay, bx, by,
pdevc, pgs->log_op);
fill:
code = add_points(ppath, points, npoints + code, true);
if (code < 0)
return code;
return gx_path_close_subpath(ppath);
}
}
/* General case: construct a path for the fill algorithm. */
general:
return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
dev, pgs, params, pbbox, uniform, join, reflected,
flags);
}
/* Add a segment to the path. This handles all the complex cases. */
static int
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
gx_device * dev, const gs_gstate * pgs,
const gx_stroke_params * params,
const gs_fixed_rect * ignore_pbbox, int uniform,
gs_line_join join, bool reflected, note_flags flags)
{
const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
gs_fixed_point points[8];
int npoints;
int code;
bool moveto_first = true;
gs_line_cap start_cap = (flags & nf_dash_head ?
pgs_lp->dash_cap : pgs_lp->start_cap);
gs_line_cap end_cap = (flags & nf_dash_tail ?
pgs_lp->dash_cap : pgs_lp->end_cap);
if (plp->thin) {
/* We didn't set up the endpoint parameters before, */
/* because the line was thin. Do it now. */
set_thin_widths(plp);
adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
compute_caps(plp);
}
/* Create an initial cap if desired. */
if (first == 0 && start_cap == gs_cap_round) {
if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
(code = add_pie_cap(ppath, &plp->o)) < 0)
return code;
npoints = 0;
moveto_first = false;
} else {
if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
&plp->o, points)) < 0)
return npoints;
}
if (nplp == 0) {
/* Add a final cap. */
if (end_cap == gs_cap_round) {
ASSIGN_POINT(&points[npoints], plp->e.co);
++npoints;
if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
return code;
code = add_pie_cap(ppath, &plp->e);
goto done;
}
code = cap_points(end_cap, &plp->e, points + npoints);
} else if (nplp->thin) /* no join */
code = cap_points(gs_cap_butt, &plp->e, points + npoints);
else if (join == gs_join_round) {
ASSIGN_POINT(&points[npoints], plp->e.co);
++npoints;
if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
return code;
code = add_pie_join(ppath, plp, nplp, reflected, true);
goto done;
} else if (flags & nf_all_from_arc) {
/* If all the segments in 'prev' and 'current' are from a curve
* then the join should actually be a round one, because it would
* have been round if we had flattened it enough. */
ASSIGN_POINT(&points[npoints], plp->e.co);
++npoints;
if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
return code;
code = add_pie_join(ppath, plp, nplp, reflected, false);
goto done;
} else /* non-round join */
code = line_join_points(pgs_lp, plp, nplp, points + npoints,
(uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
join, reflected);
if (code < 0)
return code;
code = add_points(ppath, points, npoints + code, moveto_first);
done:
if (code < 0)
return code;
if ((flags & nf_some_from_arc) && (!plp->thin) &&
(nplp != NULL) && (!nplp->thin))
code = join_under_pie(ppath, plp, nplp, reflected);
return gx_path_close_subpath(ppath);
}
/* When painting the 'underjoin' (the 'inside' of a join), we
* need to take special care if the curve is particularly wide as
* the leading edge of the underside of the first stroked segment
* may be beyond the leading edge of the underside of the second
* stroked segment. Similarly, the trailing edge of the second
* stroked segment may be behing the trailing edge of the first
* stroked segment. We detect those cases here.
*
* We detect the first case by projecting plp.width onto nplp.vector.
* If the projected vector is longer then nplp.vector, we have a
* problem.
*
* len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
* len_vector = sqr(len_vector_squared)
* len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
* len_projection = len_projection_unnormalised / len_vector
*
* len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
* === len_projection_unnormalised > len_vector_squared
*/
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
static bool
wide_underjoin(pl_ptr plp, pl_ptr nplp)
{
double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
if (dot < 0)
dot = -dot;
if (dot > h_squared)
return 1;
h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
if (dot < 0)
dot = -dot;
if (dot > h_squared)
return 1;
return 0;
}
#endif
static int
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
bool ccw0)
{
/*
* Check whether a miter join is appropriate.
* Let a, b be the angles of the two lines.
* We check tan(a-b) against the miter_check
* by using the following formula:
* If tan(a)=u1/v1 and tan(b)=u2/v2, then
* tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
*
* We can do all the computations unscaled,
* because we're only concerned with ratios.
* However, if we have a non-uniform coordinate
* system (indicated by pmat != 0), we must do the
* computations in user space.
*/
float check;
double u1, v1, u2, v2;
double num, denom;
int code;
/*
* Don't bother with the miter check if the two
* points to be joined are very close together,
* namely, in the same square half-pixel.
*/
if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
fixed2long(outp->y << 1) == fixed2long(np->y << 1))
return 1;
check = pgs_lp->miter_check;
u1 = plp->vector.y, v1 = plp->vector.x;
u2 = -nplp->vector.y, v2 = -nplp->vector.x;
if (pmat) {
gs_point pt;
code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
if (code < 0)
return code;
v1 = pt.x, u1 = pt.y;
code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
if (code < 0)
return code;
v2 = pt.x, u2 = pt.y;
/*
* We need to recompute ccw according to the
* relative positions of the lines in user space.
* We repeat the computation described above,
* using the cdelta values instead of the widths.
* Because the definition of ccw above is inverted
* from the intuitive one (for historical reasons),
* we actually have to do the test backwards.
*/
ccw0 = v1 * u2 < v2 * u1;
#ifdef DEBUG
{
double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
if (dif < 0)
dif += 2 * M_PI;
else if (dif >= 2 * M_PI)
dif -= 2 * M_PI;
if (dif != 0 && (dif < M_PI) != ccw0)
lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
a1, u1, v1, a2, u2, v2, dif, ccw0);
}
#endif
}
num = u1 * v2 - u2 * v1;
denom = u1 * u2 + v1 * v2;
/*
* We will want either tan(a-b) or tan(b-a)
* depending on the orientations of the lines.
* Fortunately we know the relative orientations already.
*/
if (!ccw0) /* have plp - nplp, want vice versa */
num = -num;
#ifdef DEBUG
if (gs_debug_c('O')) {
dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
u1, v1, u2, v2);
dlprintf3(" num=%f, denom=%f, check=%f\n",
num, denom, check);
}
#endif
/*
* If we define T = num / denom, then we want to use
* a miter join iff arctan(T) >= arctan(check).
* We know that both of these angles are in the 1st
* or 2nd quadrant, and since arctan is monotonic
* within each quadrant, we can do the comparisons
* on T and check directly, taking signs into account
* as follows:
* sign(T) sign(check) atan(T) >= atan(check)
* ------- ----------- ----------------------
* + + T >= check
* - + true
* + - false
* - - T >= check
*/
if (num == 0 && denom == 0)
return_error(gs_error_unregistered); /* Must not happen. */
if (denom < 0)
num = -num, denom = -denom;
/* Now denom >= 0, so sign(num) = sign(T). */
if (check > 0 ?
(num < 0 || num >= denom * check) :
(num < 0 && num >= denom * check)
) {
/* OK to use a miter join. */
gs_fixed_point dirn1, dirn2;
dirn1.x = plp->e.cdelta.x;
dirn1.y = plp->e.cdelta.y;
/* If this direction is small enough that we might have
* underflowed and the vector record is suitable for us
* to use to calculate a better one, then do so. */
if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
((plp->vector.x != 0) || (plp->vector.y != 0)))
{
float scale = 65536.0;
if (abs(plp->vector.x) > abs(plp->vector.y))
scale /= abs(plp->vector.x);
else
scale /= abs(plp->vector.y);
dirn1.x = (fixed)(plp->vector.x*scale);
dirn1.y = (fixed)(plp->vector.y*scale);
}
dirn2.x = nplp->o.cdelta.x;
dirn2.y = nplp->o.cdelta.y;
/* If this direction is small enough that we might have
* underflowed and the vector record is suitable for us
* to use to calculate a better one, then do so. */
if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
((nplp->vector.x != 0) || (nplp->vector.y != 0)))
{
float scale = 65536.0;
if (abs(nplp->vector.x) > abs(nplp->vector.y))
scale /= abs(nplp->vector.x);
else
scale /= abs(nplp->vector.y);
dirn2.x = (fixed)(-nplp->vector.x*scale);
dirn2.y = (fixed)(-nplp->vector.y*scale);
}
if_debug0('O', " ... passes.\n");
/* Compute the intersection of the extended edge lines. */
if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
return 0;
}
return 1;
}
/* Add a segment to the path.
* This works by crafting 2 paths, one for each edge, that will later be
* merged together. */
static int
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
gx_device * dev, const gs_gstate * pgs,
const gx_stroke_params * params,
const gs_fixed_rect * ignore_pbbox, int uniform,
gs_line_join join, bool reflected, note_flags flags)
{
const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
gs_fixed_point points[8];
gs_fixed_point rpoints[8];
int npoints = 0;
int nrpoints = 0;
int code;
bool moveto_first = false;
bool rmoveto_first = false;
gs_line_cap start_cap, end_cap;
const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
enum {
joinsense_cap = 0,
joinsense_cw = 1,
joinsense_ccw = 2,
joinsense_over = 4,
joinsense_under = 8,
} joinsense = joinsense_cap;
if (plp->thin) {
/* We didn't set up the endpoint parameters before, */
/* because the line was thin. Do it now. */
set_thin_widths(plp);
adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
compute_caps(plp);
}
start_cap = (flags & nf_dash_head ?
pgs_lp->dash_cap : pgs_lp->start_cap);
end_cap = (flags & nf_dash_tail ?
pgs_lp->dash_cap : pgs_lp->end_cap);
/* If we're starting a new rpath here, we need to fake a new cap.
* Don't interfere if we would have been doing a cap anyway. */
if (gx_path_is_void(rpath) && (first != 0)) {
first = 0;
start_cap = gs_cap_butt;
end_cap = gs_cap_butt;
moveto_first = true;
rmoveto_first = true;
}
if (first == 0) {
/* Create an initial cap. */
if (start_cap == gs_cap_round) {
if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
(code = add_pie_cap(ppath, &plp->o)) < 0)
return code;
moveto_first = false;
} else {
if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
return npoints;
moveto_first = true;
}
rmoveto_first = true;
ASSIGN_POINT(&rpoints[0], plp->o.co);
nrpoints = 1;
}
/* Add points to move us along the edges of this stroke */
ASSIGN_POINT(&points [npoints ], plp->e.co);
ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
npoints++;
nrpoints++;
if (nplp != NULL && !nplp->thin) {
/* We need to do a join. What sense is it it? */
double l, r;
l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
if ((l == r) && (join == gs_join_round))
joinsense = joinsense_cap;
else if ((l > r) ^ reflected)
joinsense = joinsense_ccw | joinsense_over | joinsense_under;
else
joinsense = joinsense_cw | joinsense_over | joinsense_under;
if (joinsense != joinsense_cap && join == gs_join_miter) {
/* We need to do a miter line join. Miters are 'special'
* in that we'd like to do them by adjusting the existing
* points, rather than adding new ones. */
gs_fixed_point mpt;
if (joinsense & joinsense_ccw) {
/* Underjoin (in reverse path):
* A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
double xa = plp->o.co.x, ya = plp->o.co.y;
double xb = plp->e.ce.x, yb = plp->e.ce.y;
double xc = nplp->o.co.x, yc = nplp->o.co.y;
double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
double t_num = xac * ycd - yac * xcd;
double t_den = xab * ycd - yab * xcd;
code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
&nplp->o.ce, &mpt, true);
if (code < 0)
return code;
if (code == 0) {
points[npoints-1].x = mpt.x;
points[npoints-1].y = mpt.y;
if (ensure_closed) {
points[npoints].x = nplp->o.ce.x;
points[npoints].y = nplp->o.ce.y;
npoints++;
}
joinsense &= ~joinsense_over;
} else
join = gs_join_bevel;
if (t_den != 0 &&
((t_num >= 0 && t_num <= t_den) ||
(t_num <= 0 && t_num >= t_den))) {
double x = xa - xab * t_num / t_den;
double y = ya - yab * t_num / t_den;
rpoints[nrpoints-1].x = (fixed)x;
rpoints[nrpoints-1].y = (fixed)y;
joinsense &= ~joinsense_under;
}
} else {
/* Underjoin (in fwd path):
* A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
double xa = plp->o.ce.x, ya = plp->o.ce.y;
double xb = plp->e.co.x, yb = plp->e.co.y;
double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
double xd = nplp->e.co.x, yd = nplp->e.co.y;
double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
double t_num = xac * ycd - yac * xcd;
double t_den = xab * ycd - yab * xcd;
code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
&nplp->o.co, &mpt, false);
if (code < 0)
return code;
if (code == 0) {
rpoints[nrpoints-1].x = mpt.x;
rpoints[nrpoints-1].y = mpt.y;
if (ensure_closed) {
rpoints[nrpoints].x = nplp->o.co.x;
rpoints[nrpoints].y = nplp->o.co.y;
nrpoints++;
}
joinsense &= ~joinsense_over;
} else
join = gs_join_bevel;
if (t_den != 0 &&
((t_num >= 0 && t_num <= t_den) ||
(t_num <= 0 && t_num >= t_den))) {
double x = xa - xab * t_num / t_den;
double y = ya - yab * t_num / t_den;
points[npoints-1].x = (fixed)x;
points[npoints-1].y = (fixed)y;
joinsense &= ~joinsense_under;
}
}
}
}
if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
return code;
if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
return code;
npoints = 0;
nrpoints = 0;
if (nplp == 0) { /* Add a final cap. */
if (end_cap == gs_cap_round) {
code = add_pie_cap(ppath, &plp->e);
} else {
code = cap_points(end_cap, &plp->e, points);
npoints = code;
}
} else if (nplp->thin) { /* no join */
code = cap_points(gs_cap_butt, &plp->e, points);
npoints = code;
} else if (joinsense == joinsense_cap) {
/* Do a cap */
code = add_pie_cap(ppath, &plp->e);
if (code >= 0) {
/* If the next line is in the opposite direction as the current one
* we want to leave the point on the same side as it was
* originally. This is required for paths that come to a stop
* and then reverse themselves, but may produce more complexity
* than we'd really like at the ends of smooth beziers. */
if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
}
} else if (joinsense & joinsense_ccw) {
/* CCW rotation. Join in the forward path. "Underjoin" in the
* reverse path. */
if (joinsense & joinsense_over) {
/* RJW: Ideally we should include the "|| flags" clause in
* the following condition. This forces all joins between
* line segments generated from arcs to be round. This would
* solve some flatness issues, but makes some pathological
* cases incredibly slow. */
if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
} else { /* non-round join */
code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
points, pmat, join);
npoints = code;
}
if (code < 0)
return code;
}
if (joinsense & joinsense_under) {
/* The underjoin */
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
/* RJW: This is an approximation. We ought to draw a line
* back to nplp->o.p, and then independently fill any exposed
* region under the curve with a round join. Sadly, that's
* a) really hard to do, and b) makes certain pathological
* filling cases MUCH slower due to the greater number of
* "cross-segment" line segments this produces. Instead,
* we just skip the line to the middle, and join across the
* bottom instead. This is akin to what other graphics libs
* do (such as fitz, libart, etc). It's not perfect but in
* most cases it's close, and results in faster to fill
* paths.
*/
/* RJW: This goes wrong for some paths, as the 'underjoin' wind
* will be the wrong way. See bug 694971 */
code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
if (code < 0)
return code;
}
#else
if (wide_underjoin(plp, nplp))
{
code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
if (code < 0)
return code;
if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
if (code < 0)
return code;
code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
if (code < 0)
return code;
code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
if (code < 0)
return code;
}
}
#endif
code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
}
} else if (joinsense & joinsense) {
/* CW rotation. Join in the reverse path. "Underjoin" in the
* forward path. */
if (joinsense & joinsense_over) {
/* RJW: Ideally we should include the "|| flags" clause in
* the following condition. This forces all joins between
* line segments generated from arcs to be round. This would
* solve some flatness issues, but makes some pathological
* cases incredibly slow. */
if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
} else { /* non-round join */
code = line_join_points_fast_cw(pgs_lp, plp, nplp,
rpoints, pmat, join);
nrpoints = code;
}
if (code < 0)
return code;
}
if (joinsense & joinsense_under) {
/* The underjoin */
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
join != gs_join_miter) {
/* RJW: This is an approximation. We ought to draw a line
* back to nplp->o.p, and then independently fill any exposed
* region under the curve with a round join. Sadly, that's
* a) really hard to do, and b) makes certain pathological
* filling cases MUCH slower due to the greater number of
* "cross-segment" line segments this produces. Instead,
* we just skip the line to the middle, and join across the
* bottom instead. This is akin to what other graphics libs
* do (such as fitz, libart, etc). It's not perfect but in
* most cases it's close, and results in faster to fill
* paths.
*/
/* RJW: This goes wrong for some paths, as the 'underjoin' wind
* will be the wrong way. See bug 694971 */
code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
if (code < 0)
return code;
}
#else
if (wide_underjoin(plp, nplp))
{
code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
if (code < 0)
return code;
if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
if (code < 0)
return code;
code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
if (code < 0)
return code;
code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
if (code < 0)
return code;
}
}
#endif
code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
}
}
if (code < 0)
return code;
if (npoints > 0) {
code = add_points(ppath, points, npoints, false);
if (code < 0)
return code;
}
if (nrpoints > 0) {
code = add_points(rpath, rpoints, nrpoints, false);
if (code < 0)
return code;
}
if (ensure_closed)
return gx_join_path_and_reverse(ppath, rpath);
return 0;
}
/* Add a CPSI-compatible segment to the path. This handles all the complex
* cases.
*
* This method doesn't support start/end/dash caps, but it's only used from
* postscript, so it doesn't need to.
*/
static int
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
int first, pl_ptr plp, pl_ptr nplp,
const gx_device_color * pdevc, gx_device * dev,
const gs_gstate * pgs,
const gx_stroke_params * params,
const gs_fixed_rect * ignore_pbbox, int uniform,
gs_line_join join, bool reflected, note_flags flags)
{
/* Actually it adds 2 contours : one for the segment itself,
and another one for line join or for the ending cap.
Note CPSI creates negative contours. */
const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
gs_fixed_point points[5];
int npoints;
bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
int code;
if (plp->thin) {
/* We didn't set up the endpoint parameters before, */
/* because the line was thin. Do it now. */
set_thin_widths(plp);
adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
compute_caps(plp);
}
/* The segment itself : */
ASSIGN_POINT(&points[0], plp->o.ce);
ASSIGN_POINT(&points[1], plp->e.co);
ASSIGN_POINT(&points[2], plp->e.ce);
ASSIGN_POINT(&points[3], plp->o.co);
code = add_points(ppath, points, 4, moveto_first);
if (code < 0)
return code;
code = gx_path_close_subpath(ppath);
if (code < 0)
return code;
npoints = 0;
if (nplp == 0) {
/* Add a final cap. */
if (pgs_lp->start_cap == gs_cap_butt)
return 0;
if (pgs_lp->start_cap == gs_cap_round) {
ASSIGN_POINT(&points[npoints], plp->e.co);
++npoints;
if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
return code;
return add_round_cap(ppath, &plp->e);
}
ASSIGN_POINT(&points[0], plp->e.ce);
++npoints;
ASSIGN_POINT(&points[npoints], plp->e.co);
++npoints;
code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
if (code < 0)
return code;
npoints += code;
} else if (join == gs_join_round) {
ASSIGN_POINT(&points[npoints], plp->e.co);
++npoints;
if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
return code;
return add_round_cap(ppath, &plp->e);
} else if (nplp->thin) { /* no join */
npoints = 0;
} else { /* non-round join */
bool ccw =
(double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
(double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
if (ccw ^ reflected) {
ASSIGN_POINT(&points[0], plp->e.co);
++npoints;
code = line_join_points(pgs_lp, plp, nplp, points + npoints,
(uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
join, reflected);
if (code < 0)
return code;
code--; /* Drop the last point of the non-compatible mode. */
npoints += code;
} else {
code = line_join_points(pgs_lp, plp, nplp, points,
(uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
join, reflected);
if (code < 0)
return code;
ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
npoints = code;
}
}
code = add_points(ppath, points, npoints, moveto_first);
if (code < 0)
return code;
code = gx_path_close_subpath(ppath);
return code;
}
/* Add a CPSI-compatible segment to the path. This handles all the complex
* cases.
*
* This method doesn't support start/end/dash caps, but it's only used from
* postscript, so it doesn't need to.
*/
static int
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
const gx_device_color * pdevc, gx_device * dev,
const gs_gstate * pgs)
{
const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
gs_fixed_point points[5];
int npoints = 0;
int code;
if (pgs_lp->start_cap == gs_cap_butt)
return 0;
if (plp->thin) {
/* We didn't set up the endpoint parameters before, */
/* because the line was thin. Do it now. */
set_thin_widths(plp);
adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
compute_caps(plp);
}
/* Create an initial cap if desired. */
if (pgs_lp->start_cap == gs_cap_round) {
if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
(code = add_round_cap(ppath, &plp->o)) < 0
)
return code;
return 0;
} else {
ASSIGN_POINT(&points[0], plp->o.co);
++npoints;
if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
return npoints;
npoints += code;
ASSIGN_POINT(&points[npoints], plp->o.ce);
++npoints;
code = add_points(ppath, points, npoints, true);
if (code < 0)
return code;
return gx_path_close_subpath(ppath);
}
}
/* Add lines with a possible initial moveto. */
static int
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
bool moveto_first)
{
int code;
if (moveto_first) {
code = gx_path_add_point(ppath, points[0].x, points[0].y);
if (code < 0)
return code;
return gx_path_add_lines(ppath, points + 1, npoints - 1);
} else {
return gx_path_add_lines(ppath, points, npoints);
}
}
/* ---------------- Join computation ---------------- */
/* Compute the points for a bevel, miter, or triangle join. */
/* Treat no join the same as a bevel join. */
/* If pmat != 0, we must inverse-transform the distances for */
/* the miter check. */
static int
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
gs_fixed_point * join_points, const gs_matrix * pmat,
gs_line_join join, bool reflected)
{
#define jp1 join_points[0]
#define np1 join_points[1]
#define np2 join_points[2]
#define jp2 join_points[3]
#define jpx join_points[4]
/*
* Set np to whichever of nplp->o.co or .ce is outside
* the current line. We observe that the point (x2,y2)
* is counter-clockwise from (x1,y1), relative to the origin,
* iff
* (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
* taking the signs of xi and yi into account to determine
* the quadrants of the results. It turns out that
* even though arctan is monotonic only in the 4th/1st
* quadrants and the 2nd/3rd quadrants, case analysis on
* the signs of xi and yi demonstrates that this test
* is equivalent to the much less expensive test
* x1 * y2 > x2 * y1
* in all cases.
*
* In the present instance, x1,y1 are plp->width,
* x2,y2 are nplp->width, and the origin is
* their common point (plp->e.p, nplp->o.p).
* ccw will be true iff nplp.o.co (nplp.o.p + width) is
* counter-clockwise from plp.e.ce (plp.e.p + width),
* in which case we want tan(a-b) rather than tan(b-a).
*
* We make the test using double arithmetic only because
* the !@#&^*% C language doesn't give us access to
* the double-width-result multiplication operation
* that almost all CPUs provide!
*/
bool ccw =
(double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
(double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
bool ccw0 = ccw;
p_ptr outp, np;
int code;
gs_fixed_point mpt;
ccw ^= reflected;
/* Initialize for a bevel join. */
ASSIGN_POINT(&jp1, plp->e.co);
ASSIGN_POINT(&jp2, plp->e.ce);
/*
* Because of stroke adjustment, it is possible that
* plp->e.p != nplp->o.p. For that reason, we must use
* nplp->o.p as np1 or np2.
*/
if (!ccw) {
outp = &jp2;
ASSIGN_POINT(&np2, nplp->o.co);
ASSIGN_POINT(&np1, nplp->o.p);
np = &np2;
} else {
outp = &jp1;
ASSIGN_POINT(&np1, nplp->o.ce);
ASSIGN_POINT(&np2, nplp->o.p);
np = &np1;
}
if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
/* Handle triangular joins now. */
if (join == gs_join_triangle) {
fixed tpx = outp->x - nplp->o.p.x + np->x;
fixed tpy = outp->y - nplp->o.p.y + np->y;
ASSIGN_POINT(&jpx, jp2);
if (!ccw) {
/* Insert tp between np2 and jp2. */
jp2.x = tpx, jp2.y = tpy;
} else {
/* Insert tp between jp1 and np1. */
ASSIGN_POINT(&jp2, np2);
ASSIGN_POINT(&np2, np1);
np1.x = tpx, np1.y = tpy;
}
return 5;
}
if (join == gs_join_miter &&
(code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
if (code < 0)
return code;
ASSIGN_POINT(outp, mpt);
}
return 4;
}
static int
line_join_points_fast_cw(const gx_line_params * pgs_lp,
pl_ptr plp, pl_ptr nplp,
gs_fixed_point * rjoin_points,
const gs_matrix * pmat,
gs_line_join join)
{
/* rjoin_points will be added to a path that is currently at plp->e.ce.
*/
/* Join will be between plp->e.ce and nplp->o.co */
if (join == gs_join_triangle)
{
gs_fixed_point tp;
tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
ASSIGN_POINT(&rjoin_points[0], tp);
ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
return 2;
}
/* Set up for a Bevel join */
ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
return 1;
}
static int
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
pl_ptr plp, pl_ptr nplp,
gs_fixed_point * join_points,
const gs_matrix * pmat,
gs_line_join join)
{
/* join_points will be added to a path that is currently at plp->e.co.
*/
/* Join will be between plp->e.co and nplp->o.ce */
if (join == gs_join_triangle)
{
gs_fixed_point tp;
tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
ASSIGN_POINT(&join_points[0], tp);
ASSIGN_POINT(&join_points[1], nplp->o.ce);
return 2;
}
/* Set up for a Bevel join */
ASSIGN_POINT(&join_points[0], nplp->o.ce);
return 1;
}
/* ---------------- Cap computations ---------------- */
/* Compute the endpoints of the two caps of a segment. */
/* Only o.p, e.p, width, and cdelta have been set. */
static void
compute_caps(pl_ptr plp)
{
fixed wx2 = plp->width.x;
fixed wy2 = plp->width.y;
plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
plp->o.cdelta.x = -plp->e.cdelta.x,
plp->o.cdelta.y = -plp->e.cdelta.y;
plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
#ifdef DEBUG
if (gs_debug_c('O')) {
dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
fixed2float(wx2), fixed2float(wy2),
fixed2float(plp->e.cdelta.x),
fixed2float(plp->e.cdelta.y));
}
#endif
}
#define px endp->p.x
#define py endp->p.y
#define xo endp->co.x
#define yo endp->co.y
#define xe endp->ce.x
#define ye endp->ce.y
#define cdx endp->cdelta.x
#define cdy endp->cdelta.y
/* Add a round cap to a path. */
/* Assume the current point is the cap origin (endp->co). */
static int
add_round_cap(gx_path * ppath, const_ep_ptr endp)
{
int code;
/*
* Per the Red Book, we draw a full circle, even though a semicircle
* is sufficient for the join.
*/
if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
xo + cdx, yo + cdy,
quarter_arc_fraction)) < 0 ||
(code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
quarter_arc_fraction)) < 0 ||
(code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
xe - cdx, ye - cdy,
quarter_arc_fraction)) < 0 ||
(code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
quarter_arc_fraction)) < 0 ||
/* The final point must be (xe,ye). */
(code = gx_path_add_line(ppath, xe, ye)) < 0
)
return code;
return 0;
}
/* Add a semicircular cap to a path. */
/* Assume the current point is the cap origin (endp->co). */
static int
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
{
int code;
if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
xo + cdx, yo + cdy,
quarter_arc_fraction)) < 0 ||
(code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
quarter_arc_fraction)) < 0 ||
(code = gx_path_add_line(ppath, xe, ye)) < 0)
return code;
return 0;
}
static int
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
gs_fixed_point *width)
{
int code;
double rad_squared, dist_squared, F;
gs_fixed_point current, tangent, tangmeet;
tangent.x = current_tangent->x;
tangent.y = current_tangent->y;
current.x = current_orig->x;
current.y = current_orig->y;
/* Is the join more than 90 degrees? */
if ((double)tangent.x * (double)final_tangent->x +
(double)tangent.y * (double)final_tangent->y > 0) {
/* Yes, so do a quarter turn. */
code = gx_path_add_partial_arc(ppath,
centre->x + tangent.x,
centre->y + tangent.y,
/* Point where tangents meet */
current.x + tangent.x,
current.y + tangent.y,
quarter_arc_fraction);
if (code < 0)
return code;
current.x = centre->x + tangent.x;
current.y = centre->y + tangent.y;
if (ccw) {
int tmp = tangent.x;
tangent.x = -tangent.y;
tangent.y = tmp;
} else {
int tmp = tangent.x;
tangent.x = tangent.y;
tangent.y = -tmp;
}
}
/* Now we are guaranteed that the remaining arc is 90 degrees or
* less. Find where the tangents meet for this final section. */
if (line_intersect(¤t, &tangent,
final, final_tangent, &tangmeet) != 0) {
return gx_path_add_line(ppath, final->x, final->y);
}
current.x -= tangmeet.x;
current.y -= tangmeet.y;
dist_squared = ((double)current.x) * current.x +
((double)current.y) * current.y;
rad_squared = ((double)width->x) * width->x +
((double)width->y) * width->y;
dist_squared /= rad_squared;
F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
return gx_path_add_partial_arc(ppath, final->x, final->y,
tangmeet.x, tangmeet.y, F);
}
/* Add a pie shaped join to a path. */
/* Assume the current point is the cap origin (endp->co). */
static int
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
bool cap)
{
int code;
gs_fixed_point *current, *final, *tangent, *final_tangent;
double l, r;
bool ccw;
l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
if (l == r) {
/* Colinear. Suppress drawing a cap unless the path reverses direction. */
if (cap &&
((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
return add_pie_cap(ppath, &plp->e);
else
return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
}
ccw = (l > r);
ccw ^= reflected;
/* At this point, the current point is plp->e.co */
if (ccw) {
current = & plp->e.co;
final = &nplp->o.ce;
tangent = & plp->e.cdelta;
final_tangent = &nplp->o.cdelta;
/* Check for no join required */
if (current->x == final->x && current->y == final->y) {
return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
}
} else {
current = &nplp->o.co;
final = & plp->e.ce;
tangent = &nplp->o.cdelta;
final_tangent = & plp->e.cdelta;
code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
if (code < 0)
return code;
code = gx_path_add_line(ppath, current->x, current->y);
if (code < 0)
return code;
if (current->x == final->x && current->y == final->y)
return 0;
}
if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
final, final_tangent, !reflected, &plp->width)) < 0)
return code;
if (ccw &&
((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
(code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
return code;
return 0;
}
/* Add a pie shaped join to a path. */
static int
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
{
/* At this point, the current point is plp->e.ce */
if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
return 0;
return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
&nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
}
static int
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
{
/* At this point, the current point is plp->e.co */
/* Check for no join required */
if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
return 0;
return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
&nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
}
static int
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
{
int code;
gs_fixed_point dirn1, dirn2, tangmeet;
double l, r;
bool ccw;
l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
if (l == r)
return 0;
ccw = (l > r);
ccw ^= reflected;
if (ccw) {
dirn1.x = - plp->width.x;
dirn1.y = - plp->width.y;
dirn2.x = -nplp->width.x;
dirn2.y = -nplp->width.y;
if (line_intersect(& plp->o.co, &dirn1,
&nplp->e.ce, &dirn2, &tangmeet) != 0)
return 0;
if ((code = gx_path_close_subpath(ppath)) < 0 ||
(code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0 ||
(code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
(code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
&nplp->e.ce, &nplp->e.cdelta, !reflected,
&plp->width)))
return code;
} else {
if (line_intersect(& plp->o.ce, & plp->width,
&nplp->e.co, &nplp->width, &tangmeet) != 0)
return 0;
if ((code = gx_path_close_subpath(ppath)) < 0 ||
(code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0 ||
(code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
(code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
&plp->o.ce, &plp->o.cdelta, !reflected,
&plp->width)))
return code;
}
return 0;
}
/* Compute the points for a non-round cap. */
/* Return the number of points. */
static int
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
{
#define PUT_POINT(i, px, py)\
pts[i].x = (px), pts[i].y = (py)
switch (type) {
case gs_cap_butt:
PUT_POINT(0, xo, yo);
PUT_POINT(1, xe, ye);
return 2;
case gs_cap_square:
PUT_POINT(0, xo + cdx, yo + cdy);
PUT_POINT(1, xe + cdx, ye + cdy);
return 2;
case gs_cap_triangle: /* (not supported by PostScript) */
PUT_POINT(0, xo, yo);
PUT_POINT(1, px + cdx, py + cdy);
PUT_POINT(2, xe, ye);
return 3;
default: /* can't happen */
return_error(gs_error_unregistered);
}
#undef PUT_POINT
}
|