1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Save/restore manager for Ghostscript interpreter */
#include "ghost.h"
#include "memory_.h"
#include "ierrors.h"
#include "gsexit.h"
#include "gsstruct.h"
#include "stream.h" /* for linking for forgetsave */
#include "iastate.h"
#include "inamedef.h"
#include "iname.h"
#include "ipacked.h"
#include "isave.h"
#include "isstate.h"
#include "gsstate.h"
#include "store.h" /* for ref_assign */
#include "ivmspace.h"
#include "igc.h"
#include "gsutil.h" /* gs_next_ids prototype */
#include "icstate.h"
/* Structure descriptor */
private_st_alloc_save();
/* Define the maximum amount of data we are willing to scan repeatedly -- */
/* see below for details. */
static const long max_repeated_scan = 100000;
/* Define the minimum space for creating an inner clump. */
/* Must be at least sizeof(clump_head_t). */
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
/*
* The logic for saving and restoring the state is complex.
* Both the changes to individual objects, and the overall state
* of the memory manager, must be saved and restored.
*/
/*
* To save the state of the memory manager:
* Save the state of the current clump in which we are allocating.
* Shrink all clumps to their inner unallocated region.
* Save and reset the free block chains.
* By doing this, we guarantee that no object older than the save
* can be freed.
*
* To restore the state of the memory manager:
* Free all clumps newer than the save, and the descriptors for
* the inner clumps created by the save.
* Make current the clump that was current at the time of the save.
* Restore the state of the current clump.
*
* In addition to save ("start transaction") and restore ("abort transaction"),
* we support forgetting a save ("commit transation"). To forget a save:
* Reassign to the next outer save all clumps newer than the save.
* Free the descriptors for the inners clump, updating their outer
* clumps to reflect additional allocations in the inner clumps.
* Concatenate the free block chains with those of the outer save.
*/
/*
* For saving changes to individual objects, we add an "attribute" bit
* (l_new) that logically belongs to the slot where the ref is stored,
* not to the ref itself. The bit means "the contents of this slot
* have been changed, or the slot was allocated, since the last save."
* To keep track of changes since the save, we associate a chain of
* <slot, old_contents> pairs that remembers the old contents of slots.
*
* When creating an object, if the save level is non-zero:
* Set l_new in all slots.
*
* When storing into a slot, if the save level is non-zero:
* If l_new isn't set, save the address and contents of the slot
* on the current contents chain.
* Set l_new after storing the new value.
*
* To do a save:
* If the save level is non-zero:
* Reset l_new in all slots on the contents chain, and in all
* objects created since the previous save.
* Push the head of the contents chain, and reset the chain to empty.
*
* To do a restore:
* Check all the stacks to make sure they don't contain references
* to objects created since the save.
* Restore all the slots on the contents chain.
* Pop the contents chain head.
* If the save level is now non-zero:
* Scan the newly restored contents chain, and set l_new in all
* the slots it references.
* Scan all objects created since the previous save, and set
* l_new in all the slots of each object.
*
* To forget a save:
* If the save level is greater than 1:
* Set l_new as for a restore, per the next outer save.
* Concatenate the next outer contents chain to the end of
* the current one.
* If the save level is 1:
* Reset l_new as for a save.
* Free the contents chain.
*/
/*
* A consequence of the foregoing algorithms is that the cost of a save is
* proportional to the total amount of data allocated since the previous
* save. If a PostScript program reads in a large amount of setup code and
* then uses save/restore heavily, each save/restore will be expensive. To
* mitigate this, we check to see how much data we have scanned at this save
* level: if it is large, we do a second, invisible save. This greatly
* reduces the cost of inner saves, at the expense of possibly saving some
* changes twice that otherwise would only have to be saved once.
*/
/*
* The presence of global and local VM complicates the situation further.
* There is a separate save chain and contents chain for each VM space.
* When multiple contexts are fully implemented, save and restore will have
* the following effects, according to the privacy status of the current
* context's global and local VM:
* Private global, private local:
* The outermost save saves both global and local VM;
* otherwise, save only saves local VM.
* Shared global, private local:
* Save only saves local VM.
* Shared global, shared local:
* Save only saves local VM, and suspends all other contexts
* sharing the same local VM until the matching restore.
* Since we do not currently implement multiple contexts, only the first
* case is relevant.
*
* Note that when saving the contents of a slot, the choice of chain
* is determined by the VM space in which the slot is allocated,
* not by the current allocation mode.
*/
/* Tracing printout */
static void
print_save(const char *str, uint spacen, const alloc_save_t *sav)
{
if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
}
/* A link to igcref.c . */
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
static
CLEAR_MARKS_PROC(change_clear_marks)
{
alloc_change_t *const ptr = (alloc_change_t *)vptr;
if (r_is_packed(&ptr->contents))
r_clear_pmark((ref_packed *) & ptr->contents);
else
r_clear_attrs(&ptr->contents, l_mark);
}
static
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
ENUM_PTR(0, alloc_change_t, next);
case 1:
if (ptr->offset >= 0)
ENUM_RETURN((byte *) ptr->where - ptr->offset);
else
if (ptr->offset != AC_OFFSET_ALLOCATED)
ENUM_RETURN_REF(ptr->where);
else {
/* Don't enumerate ptr->where, because it
needs a special processing with
alloc_save__filter_changes. */
ENUM_RETURN(0);
}
case 2:
ENUM_RETURN_REF(&ptr->contents);
ENUM_PTRS_END
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
{
RELOC_VAR(ptr->next);
switch (ptr->offset) {
case AC_OFFSET_STATIC:
break;
case AC_OFFSET_REF:
RELOC_REF_PTR_VAR(ptr->where);
break;
case AC_OFFSET_ALLOCATED:
/* We know that ptr->where may point to an unmarked object
because change_enum_ptrs skipped it,
and we know it always points to same space
because we took a special care when calling alloc_save_change_alloc.
Therefore we must skip the check for the mark,
which would happen if we call the regular relocation function
igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
Calling igc_reloc_ref_ptr_nocheck instead. */
{ /* A sanity check. */
obj_header_t *pre = (obj_header_t *)ptr->where - 1;
if (pre->o_type != &st_refs)
gs_abort(gcst->heap);
}
if (ptr->where != 0 && !gcst->relocating_untraced)
ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
break;
default:
{
byte *obj = (byte *) ptr->where - ptr->offset;
RELOC_VAR(obj);
ptr->where = (ref_packed *) (obj + ptr->offset);
}
break;
}
if (r_is_packed(&ptr->contents))
r_clear_pmark((ref_packed *) & ptr->contents);
else {
RELOC_REF_VAR(ptr->contents);
r_clear_attrs(&ptr->contents, l_mark);
}
}
RELOC_PTRS_END
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
/* Debugging printout */
#ifdef DEBUG
static void
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
{
dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
if (r_is_packed(&cp->contents)) {
if (print_current)
dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
*cp->where);
else
dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
} else {
if (print_current)
dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
r_type_attrs(&cp->contents), r_size(&cp->contents),
(ulong) cp->contents.value.intval,
r_type_attrs((ref *) cp->where),
r_size((ref *) cp->where),
(ulong) ((ref *) cp->where)->value.intval);
else
dmprintf3(mem, "%x %x %lx\n",
r_type_attrs(&cp->contents), r_size(&cp->contents),
(ulong) cp->contents.value.intval);
}
}
#endif
/* Forward references */
static int restore_resources(alloc_save_t *, gs_ref_memory_t *);
static void restore_free(gs_ref_memory_t *);
static int save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
static int save_set_new_changes(gs_ref_memory_t *, bool, bool);
static bool check_l_mark(void *obj);
/* Initialize the save/restore machinery. */
void
alloc_save_init(gs_dual_memory_t * dmem)
{
alloc_set_not_in_save(dmem);
}
/* Record that we are in a save. */
static void
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
{
int i;
gs_ref_memory_t *mem;
dmem->new_mask = new_mask;
dmem->test_mask = test_mask;
for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
mem->new_mask = new_mask, mem->test_mask = test_mask;
if (mem->stable_memory != (gs_memory_t *)mem) {
mem = (gs_ref_memory_t *)mem->stable_memory;
mem->new_mask = new_mask, mem->test_mask = test_mask;
}
}
}
void
alloc_set_in_save(gs_dual_memory_t *dmem)
{
alloc_set_masks(dmem, l_new, l_new);
}
/* Record that we are not in a save. */
void
alloc_set_not_in_save(gs_dual_memory_t *dmem)
{
alloc_set_masks(dmem, 0, ~0);
}
/* Save the state. */
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
gs_dual_memory_t *dmem,
ulong sid);
static void
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
{
gs_ref_memory_t save_mem;
save_mem = mem->saved->state;
gs_free_object((gs_memory_t *)mem, save, scn);
/* Free any inner clump structures. This is the easiest way to do it. */
restore_free(mem);
/* Restore the 'saved' state - this pulls our object off the linked
* list of states. Without this we hit a SEGV in the gc later. */
*mem = save_mem;
}
int
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
{
gs_ref_memory_t *lmem = dmem->space_local;
gs_ref_memory_t *gmem = dmem->space_global;
ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
bool global =
lmem->save_level == 0 && gmem != lmem &&
gmem->num_contexts == 1;
alloc_save_t *gsave =
(global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
if (lsave == 0 || (global && gsave == 0)) {
/* Only 1 of lsave or gsave will have been allocated, but
* nevertheless (in case things change in future), we free
* lsave, then gsave, so they 'pop' correctly when restoring
* the mem->saved states. */
if (lsave != 0)
alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
if (gsave != 0)
alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
return_error(gs_error_VMerror);
}
if (gsave != 0) {
gsave->client_data = 0;
print_save("save", gmem->space, gsave);
/* Restore names when we do the local restore. */
lsave->restore_names = gsave->restore_names;
gsave->restore_names = false;
}
lsave->id = sid;
lsave->client_data = cdata;
print_save("save", lmem->space, lsave);
/* Reset the l_new attribute in all slots. The only slots that */
/* can have the attribute set are the ones on the changes chain, */
/* and ones in objects allocated since the last save. */
if (lmem->save_level > 1) {
ulong scanned;
int code = save_set_new(&lsave->state, false, true, &scanned);
if (code < 0)
return code;
#if 0 /* Disable invisible save levels. */
if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
/* Do a second, invisible save. */
alloc_save_t *rsave;
rsave = alloc_save_space(lmem, dmem, 0L);
if (rsave != 0) {
rsave->client_data = cdata;
#if 0 /* Bug 688153 */
rsave->id = lsave->id;
print_save("save", lmem->space, rsave);
lsave->id = 0; /* mark as invisible */
rsave->state.save_level--; /* ditto */
lsave->client_data = 0;
#else
rsave->id = 0; /* mark as invisible */
print_save("save", lmem->space, rsave);
rsave->state.save_level--; /* ditto */
rsave->client_data = 0;
#endif
/* Inherit the allocated space count -- */
/* we need this for triggering a GC. */
print_save("save", lmem->space, lsave);
}
}
#endif
}
alloc_set_in_save(dmem);
*psid = sid;
return 0;
}
/* Save the state of one space (global or local). */
static alloc_save_t *
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
{
gs_ref_memory_t save_mem;
alloc_save_t *save;
clump_t *cp;
clump_t *new_cc = NULL;
clump_splay_walker sw;
save_mem = *mem;
alloc_close_clump(mem);
mem->cc = NULL;
gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
ialloc_reset(mem);
/* Create inner clumps wherever it's worthwhile. */
for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
if (cp->ctop - cp->cbot > min_inner_clump_space) {
/* Create an inner clump to cover only the unallocated part. */
clump_t *inner =
gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
"alloc_save_space(inner)");
if (inner == 0)
break; /* maybe should fail */
alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
alloc_link_clump(inner, mem);
if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
(intptr_t) inner->cbot, (intptr_t) inner->ctop);
if (cp == save_mem.cc)
new_cc = inner;
}
}
mem->cc = new_cc;
alloc_open_clump(mem);
save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
&st_alloc_save, "alloc_save_space(save)");
if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
mem->space, (intptr_t) save);
if (save == 0) {
/* Free the inner clump structures. This is the easiest way. */
restore_free(mem);
*mem = save_mem;
return 0;
}
save->client_data = NULL;
save->state = save_mem;
save->spaces = dmem->spaces;
save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
save->is_current = (dmem->current == mem);
save->id = sid;
mem->saved = save;
if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
mem->space, (intptr_t) mem->streams);
mem->streams = 0;
mem->total_scanned = 0;
mem->total_scanned_after_compacting = 0;
if (sid)
mem->save_level++;
return save;
}
/* Record a state change that must be undone for restore, */
/* and mark it as having been saved. */
int
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
ref_packed * where, client_name_t cname)
{
register alloc_change_t *cp;
if (mem->new_mask == 0)
return 0; /* no saving */
cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
&st_alloc_change, "alloc_save_change");
if (cp == 0)
return -1;
cp->next = mem->changes;
cp->where = where;
if (pcont == NULL)
cp->offset = AC_OFFSET_STATIC;
else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
cp->offset = AC_OFFSET_REF;
else if (r_is_struct(pcont))
cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
else {
if_debug3('u', "Bad type %u for save! pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
r_type(pcont), (intptr_t) pcont, (intptr_t) where);
gs_abort((const gs_memory_t *)mem);
}
if (r_is_packed(where))
*(ref_packed *)&cp->contents = *where;
else {
ref_assign_inline(&cp->contents, (ref *) where);
r_set_attrs((ref *) where, l_new);
}
mem->changes = cp;
#ifdef DEBUG
if (gs_debug_c('U')) {
dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
alloc_save_print((const gs_memory_t *)mem, cp, false);
}
#endif
return 0;
}
int
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
ref_packed * where, client_name_t cname)
{
gs_ref_memory_t *mem =
(pcont == NULL ? dmem->space_local :
dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
return alloc_save_change_in(mem, pcont, where, cname);
}
/* Allocate a structure for recording an allocation event. */
int
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
{
register alloc_change_t *cp;
if (mem->new_mask == 0)
return 0; /* no saving */
cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
&st_alloc_change, "alloc_save_change");
if (cp == 0)
return_error(gs_error_VMerror);
cp->next = mem->changes;
cp->where = 0;
cp->offset = AC_OFFSET_ALLOCATED;
make_null(&cp->contents);
*pcp = cp;
return 1;
}
/* Remove an AC_OFFSET_ALLOCATED element. */
void
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
{
alloc_change_t **cpp = &mem->changes;
for (; *cpp != NULL;) {
alloc_change_t *cp = *cpp;
if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
if (mem->scan_limit == cp)
mem->scan_limit = cp->next;
*cpp = cp->next;
gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
} else
cpp = &(*cpp)->next;
}
}
/* Filter save change lists. */
static inline void
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
{
/* This is a special function, which is called
from the garbager after setting marks and before collecting
unused space. Therefore it just resets marks for
elements being released instead releasing them really. */
alloc_change_t **cpp = &mem->changes;
for (; *cpp != NULL; ) {
alloc_change_t *cp = *cpp;
if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
obj_header_t *pre = (obj_header_t *)cp - 1;
*cpp = cp->next;
cp->where = 0;
if (mem->scan_limit == cp)
mem->scan_limit = cp->next;
o_set_unmarked(pre);
} else
cpp = &(*cpp)->next;
}
}
/* Filter save change lists. */
void
alloc_save__filter_changes(gs_ref_memory_t *memory)
{
gs_ref_memory_t *mem = memory;
for (; mem; mem = &mem->saved->state)
alloc_save__filter_changes_in_space(mem);
}
/* Return (the id of) the innermost externally visible save object, */
/* i.e., the innermost save with a non-zero ID. */
ulong
alloc_save_current_id(const gs_dual_memory_t * dmem)
{
const alloc_save_t *save = dmem->space_local->saved;
while (save != 0 && save->id == 0)
save = save->state.saved;
if (save)
return save->id;
/* This should never happen, if it does, return a totally
* impossible value.
*/
return (ulong)-1;
}
alloc_save_t *
alloc_save_current(const gs_dual_memory_t * dmem)
{
return alloc_find_save(dmem, alloc_save_current_id(dmem));
}
/* Test whether a reference would be invalidated by a restore. */
bool
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
{
/* A reference postdates a save iff it is in a clump allocated */
/* since the save (including any carried-over inner clumps). */
const char *const ptr = (const char *)vptr;
register gs_ref_memory_t *mem = save->space_local;
if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
(intptr_t) ptr, (intptr_t) save);
if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
/* alloc_restore_all. */
return true;
}
/* Check against clumps allocated since the save. */
/* (There may have been intermediate saves as well.) */
for (;; mem = &mem->saved->state) {
if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
if (ptr_is_within_mem_clumps(ptr, mem)) {
if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
return true;
}
if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
if (mem->saved == save) { /* We've checked all the more recent saves, */
/* must be OK. */
break;
}
}
/*
* If we're about to do a global restore (a restore to the level 0),
* and there is only one context using this global VM
* (the normal case, in which global VM is saved by the
* outermost save), we also have to check the global save.
* Global saves can't be nested, which makes things easy.
*/
if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
(mem = save->space_global) != save->space_local &&
save->space_global->num_contexts == 1
) {
if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
if (ptr_is_within_mem_clumps(ptr, mem)) {
if_debug0m('U', (gs_memory_t *)mem, "[U+] found\n");
return true;
}
}
return false;
#undef ptr
}
/* Test whether a name would be invalidated by a restore. */
bool
alloc_name_is_since_save(const gs_memory_t *mem,
const ref * pnref, const alloc_save_t * save)
{
const name_string_t *pnstr;
if (!save->restore_names)
return false;
pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
if (pnstr->foreign_string)
return false;
return alloc_is_since_save(pnstr->string_bytes, save);
}
bool
alloc_name_index_is_since_save(const gs_memory_t *mem,
uint nidx, const alloc_save_t *save)
{
const name_string_t *pnstr;
if (!save->restore_names)
return false;
pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
if (pnstr->foreign_string)
return false;
return alloc_is_since_save(pnstr->string_bytes, save);
}
/* Check whether any names have been created since a given save */
/* that might be released by the restore. */
bool
alloc_any_names_since_save(const alloc_save_t * save)
{
return save->restore_names;
}
/* Get the saved state with a given ID. */
alloc_save_t *
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
{
alloc_save_t *sprev = dmem->space_local->saved;
if (sid == 0)
return 0; /* invalid id */
while (sprev != 0) {
if (sprev->id == sid)
return sprev;
sprev = sprev->state.saved;
}
return 0;
}
/* Get the client data from a saved state. */
void *
alloc_save_client_data(const alloc_save_t * save)
{
return save->client_data;
}
/*
* Do one step of restoring the state. The client is responsible for
* calling alloc_find_save to get the save object, and for ensuring that
* there are no surviving pointers for which alloc_is_since_save is true.
* Return true if the argument was the innermost save, in which case
* this is the last (or only) step.
* Note that "one step" may involve multiple internal steps,
* if this is the outermost restore (which requires restoring both local
* and global VM) or if we created extra save levels to reduce scanning.
*/
static void restore_finalize(gs_ref_memory_t *);
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
int
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
{
/* Get save->space_* now, because the save object will be freed. */
gs_ref_memory_t *lmem = save->space_local;
gs_ref_memory_t *gmem = save->space_global;
gs_ref_memory_t *mem = lmem;
alloc_save_t *sprev;
int code;
/* Finalize all objects before releasing resources or undoing changes. */
do {
ulong sid;
sprev = mem->saved;
sid = sprev->id;
restore_finalize(mem); /* finalize objects */
mem = &sprev->state;
if (sid != 0)
break;
}
while (sprev != save);
if (mem->save_level == 0) {
/* This is the outermost save, which might also */
/* need to restore global VM. */
mem = gmem;
if (mem != lmem && mem->saved != 0) {
restore_finalize(mem);
}
}
/* Do one (externally visible) step of restoring the state. */
mem = lmem;
do {
ulong sid;
sprev = mem->saved;
sid = sprev->id;
code = restore_resources(sprev, mem); /* release other resources */
if (code < 0)
return code;
restore_space(mem, dmem); /* release memory */
if (sid != 0)
break;
}
while (sprev != save);
if (mem->save_level == 0) {
/* This is the outermost save, which might also */
/* need to restore global VM. */
mem = gmem;
if (mem != lmem && mem->saved != 0) {
code = restore_resources(mem->saved, mem);
if (code < 0)
return code;
restore_space(mem, dmem);
}
alloc_set_not_in_save(dmem);
} else { /* Set the l_new attribute in all slots that are now new. */
ulong scanned;
code = save_set_new(mem, true, false, &scanned);
if (code < 0)
return code;
}
return sprev == save;
}
/* Restore the memory of one space, by undoing changes and freeing */
/* memory allocated since the save. */
static void
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
{
alloc_save_t *save = mem->saved;
alloc_save_t saved;
print_save("restore", mem->space, save);
/* Undo changes since the save. */
{
register alloc_change_t *cp = mem->changes;
while (cp) {
#ifdef DEBUG
if (gs_debug_c('U')) {
dmlputs((const gs_memory_t *)mem, "[U]restore");
alloc_save_print((const gs_memory_t *)mem, cp, true);
}
#endif
if (cp->offset == AC_OFFSET_ALLOCATED)
DO_NOTHING;
else
if (r_is_packed(&cp->contents))
*cp->where = *(ref_packed *) & cp->contents;
else
ref_assign_inline((ref *) cp->where, &cp->contents);
cp = cp->next;
}
}
/* Free memory allocated since the save. */
/* Note that this frees all clumps except the inner ones */
/* belonging to this level. */
saved = *save;
restore_free(mem);
/* Restore the allocator state. */
{
int num_contexts = mem->num_contexts; /* don't restore */
*mem = saved.state;
mem->num_contexts = num_contexts;
}
alloc_open_clump(mem);
/* Make the allocator current if it was current before the save. */
if (saved.is_current) {
dmem->current = mem;
dmem->current_space = mem->space;
}
}
/* Restore to the initial state, releasing all resources. */
/* The allocator is no longer usable after calling this routine! */
int
alloc_restore_all(i_ctx_t *i_ctx_p)
{
/*
* Save the memory pointers, since freeing space_local will also
* free dmem itself.
*/
gs_ref_memory_t *lmem = idmemory->space_local;
gs_ref_memory_t *gmem = idmemory->space_global;
gs_ref_memory_t *smem = idmemory->space_system;
gs_ref_memory_t *mem;
int code;
/* Restore to a state outside any saves. */
while (lmem->save_level != 0) {
vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
if (vmsave->gsave) {
gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
}
vmsave->gsave = 0;
code = alloc_restore_step_in(idmemory, lmem->saved);
if (code < 0)
return code;
}
/* Finalize memory. */
restore_finalize(lmem);
if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
restore_finalize(mem);
if (gmem != lmem && gmem->num_contexts == 1) {
restore_finalize(gmem);
if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
restore_finalize(mem);
}
restore_finalize(smem);
/* Release resources other than memory, using fake */
/* save and memory objects. */
{
alloc_save_t empty_save;
empty_save.spaces = idmemory->spaces;
empty_save.restore_names = false; /* don't bother to release */
code = restore_resources(&empty_save, NULL);
if (code < 0)
return code;
}
/* Finally, release memory. */
restore_free(lmem);
if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
restore_free(mem);
if (gmem != lmem) {
if (!--(gmem->num_contexts)) {
restore_free(gmem);
if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
restore_free(mem);
}
}
restore_free(smem);
return 0;
}
/*
* Finalize objects that will be freed by a restore.
* Note that we must temporarily disable the freeing operations
* of the allocator while doing this.
*/
static void
restore_finalize(gs_ref_memory_t * mem)
{
clump_t *cp;
clump_splay_walker sw;
alloc_close_clump(mem);
gs_enable_free((gs_memory_t *) mem, false);
for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
SCAN_CLUMP_OBJECTS(cp)
DO_ALL
struct_proc_finalize((*finalize)) =
pre->o_type->finalize;
if (finalize != 0) {
if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
struct_type_name_string(pre->o_type),
(intptr_t) (pre + 1));
(*finalize) ((gs_memory_t *) mem, pre + 1);
}
END_OBJECTS_SCAN
}
gs_enable_free((gs_memory_t *) mem, true);
}
/* Release resources for a restore */
static int
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
{
int code;
#ifdef DEBUG
if (mem) {
/* Note restoring of the file list. */
if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
mem->space, (intptr_t)mem->streams,
(intptr_t)sprev->state.streams, (intptr_t)sprev);
}
#endif
/* Remove entries from font and character caches. */
code = font_restore(sprev);
if (code < 0)
return code;
/* Adjust the name table. */
if (sprev->restore_names)
names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
return 0;
}
/* Release memory for a restore. */
static void
restore_free(gs_ref_memory_t * mem)
{
/* Free clumps allocated since the save. */
gs_free_all((gs_memory_t *) mem);
}
/* Forget a save, by merging this level with the next outer one. */
static void file_forget_save(gs_ref_memory_t *);
static void combine_space(gs_ref_memory_t *);
static void forget_changes(gs_ref_memory_t *);
int
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
{
gs_ref_memory_t *mem = save->space_local;
alloc_save_t *sprev;
ulong scanned;
int code;
print_save("forget_save", mem->space, save);
/* Iteratively combine the current level with the previous one. */
do {
sprev = mem->saved;
if (sprev->id != 0)
mem->save_level--;
if (mem->save_level != 0) {
alloc_change_t *chp = mem->changes;
code = save_set_new(&sprev->state, true, false, &scanned);
if (code < 0)
return code;
/* Concatenate the changes chains. */
if (chp == 0)
mem->changes = sprev->state.changes;
else {
while (chp->next != 0)
chp = chp->next;
chp->next = sprev->state.changes;
}
file_forget_save(mem);
combine_space(mem); /* combine memory */
} else {
forget_changes(mem);
code = save_set_new(mem, false, false, &scanned);
if (code < 0)
return code;
file_forget_save(mem);
combine_space(mem); /* combine memory */
/* This is the outermost save, which might also */
/* need to combine global VM. */
mem = save->space_global;
if (mem != save->space_local && mem->saved != 0) {
forget_changes(mem);
code = save_set_new(mem, false, false, &scanned);
if (code < 0)
return code;
file_forget_save(mem);
combine_space(mem);
}
alloc_set_not_in_save(dmem);
break; /* must be outermost */
}
}
while (sprev != save);
return 0;
}
/* Combine the clumps of the next outer level with those of the current one, */
/* and free the bookkeeping structures. */
static void
combine_space(gs_ref_memory_t * mem)
{
alloc_save_t *saved = mem->saved;
gs_ref_memory_t *omem = &saved->state;
clump_t *cp;
clump_splay_walker sw;
alloc_close_clump(mem);
for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
if (cp->outer == 0)
alloc_link_clump(cp, omem);
else {
clump_t *outer = cp->outer;
outer->inner_count--;
if (mem->cc == cp)
mem->cc = outer;
if (mem->cfreed.cp == cp)
mem->cfreed.cp = outer;
/* "Free" the header of the inner clump, */
/* and any immediately preceding gap left by */
/* the GC having compacted the outer clump. */
{
obj_header_t *hp = (obj_header_t *) outer->cbot;
hp->o_pad = 0;
hp->o_alone = 0;
hp->o_size = (char *)(cp->chead + 1)
- (char *)(hp + 1);
hp->o_type = &st_bytes;
/* The following call is probably not safe. */
#if 0 /* **************** */
gs_free_object((gs_memory_t *) mem,
hp + 1, "combine_space(header)");
#endif /* **************** */
}
/* Update the outer clump's allocation pointers. */
outer->cbot = cp->cbot;
outer->rcur = cp->rcur;
outer->rtop = cp->rtop;
outer->ctop = cp->ctop;
outer->has_refs |= cp->has_refs;
gs_free_object(mem->non_gc_memory, cp,
"combine_space(inner)");
}
}
/* Update relevant parts of allocator state. */
mem->root = omem->root;
mem->allocated += omem->allocated;
mem->gc_allocated += omem->allocated;
mem->lost.objects += omem->lost.objects;
mem->lost.refs += omem->lost.refs;
mem->lost.strings += omem->lost.strings;
mem->saved = omem->saved;
mem->previous_status = omem->previous_status;
{ /* Concatenate free lists. */
int i;
for (i = 0; i < num_freelists; i++) {
obj_header_t *olist = omem->freelists[i];
obj_header_t *list = mem->freelists[i];
if (olist == 0);
else if (list == 0)
mem->freelists[i] = olist;
else {
while (*(obj_header_t **) list != 0)
list = *(obj_header_t **) list;
*(obj_header_t **) list = olist;
}
}
if (omem->largest_free_size > mem->largest_free_size)
mem->largest_free_size = omem->largest_free_size;
}
gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
alloc_open_clump(mem);
}
/* Free the changes chain for a level 0 .forgetsave, */
/* resetting the l_new flag in the changed refs. */
static void
forget_changes(gs_ref_memory_t * mem)
{
register alloc_change_t *chp = mem->changes;
alloc_change_t *next;
for (; chp; chp = next) {
ref_packed *prp = chp->where;
if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
if (chp->offset == AC_OFFSET_ALLOCATED)
DO_NOTHING;
else
if (!r_is_packed(prp))
r_clear_attrs((ref *) prp, l_new);
next = chp->next;
gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
}
mem->changes = 0;
}
/* Update the streams list when forgetting a save. */
static void
file_forget_save(gs_ref_memory_t * mem)
{
const alloc_save_t *save = mem->saved;
stream *streams = mem->streams;
stream *saved_streams = save->state.streams;
if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
mem->space, (intptr_t) streams, (intptr_t) saved_streams,
(intptr_t) save);
if (streams == 0)
mem->streams = saved_streams;
else if (saved_streams != 0) {
while (streams->next != 0)
streams = streams->next;
streams->next = saved_streams;
saved_streams->prev = streams;
}
}
static inline int
mark_allocated(void *obj, bool to_new, uint *psize)
{
obj_header_t *pre = (obj_header_t *)obj - 1;
uint size = pre_obj_contents_size(pre);
ref_packed *prp = (ref_packed *) (pre + 1);
ref_packed *next = (ref_packed *) ((char *)prp + size);
#ifdef ALIGNMENT_ALIASING_BUG
ref *rpref;
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
#else
# define RP_REF(rp) ((ref *)rp)
#endif
if (pre->o_type != &st_refs) {
/* Must not happen. */
if_debug0('u', "Wrong object type when expected a ref.\n");
return_error(gs_error_Fatal);
}
/* We know that every block of refs ends with */
/* a full-size ref, so we only need the end check */
/* when we encounter one of those. */
if (to_new)
while (1) {
if (r_is_packed(prp))
prp++;
else {
RP_REF(prp)->tas.type_attrs |= l_new;
prp += packed_per_ref;
if (prp >= next)
break;
}
} else
while (1) {
if (r_is_packed(prp))
prp++;
else {
RP_REF(prp)->tas.type_attrs &= ~l_new;
prp += packed_per_ref;
if (prp >= next)
break;
}
}
#undef RP_REF
*psize = size;
return 0;
}
/* Check if a block contains refs marked by garbager. */
static bool
check_l_mark(void *obj)
{
obj_header_t *pre = (obj_header_t *)obj - 1;
uint size = pre_obj_contents_size(pre);
ref_packed *prp = (ref_packed *) (pre + 1);
ref_packed *next = (ref_packed *) ((char *)prp + size);
#ifdef ALIGNMENT_ALIASING_BUG
ref *rpref;
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
#else
# define RP_REF(rp) ((ref *)rp)
#endif
/* We know that every block of refs ends with */
/* a full-size ref, so we only need the end check */
/* when we encounter one of those. */
while (1) {
if (r_is_packed(prp)) {
if (r_has_pmark(prp))
return true;
prp++;
} else {
if (r_has_attr(RP_REF(prp), l_mark))
return true;
prp += packed_per_ref;
if (prp >= next)
return false;
}
}
#undef RP_REF
}
/* Set or reset the l_new attribute in every relevant slot. */
/* This includes every slot on the current change chain, */
/* and every (ref) slot allocated at this save level. */
/* Return the number of bytes of data scanned. */
static int
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
{
ulong scanned = 0;
int code;
/* Handle the change chain. */
code = save_set_new_changes(mem, to_new, set_limit);
if (code < 0)
return code;
/* Handle newly allocated ref objects. */
SCAN_MEM_CLUMPS(mem, cp) {
if (cp->has_refs) {
bool has_refs = false;
SCAN_CLUMP_OBJECTS(cp)
DO_ALL
if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
(intptr_t) pre, size, to_new);
if (pre->o_type == &st_refs) {
/* These are refs, scan them. */
ref_packed *prp = (ref_packed *) (pre + 1);
uint size;
has_refs = true && to_new;
code = mark_allocated(prp, to_new, &size);
if (code < 0)
return code;
scanned += size;
} else
scanned += sizeof(obj_header_t);
END_OBJECTS_SCAN
cp->has_refs = has_refs;
}
}
END_CLUMPS_SCAN
if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
(to_new ? "restore" : "save"), scanned);
*pscanned = scanned;
return 0;
}
/* Drop redundant elements from the changes list and set l_new. */
static void
drop_redundant_changes(gs_ref_memory_t * mem)
{
register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
/* As we are trying to throw away redundant changes in an allocator instance
that has already been "saved", the active clump has already been "closed"
by alloc_save_space(). Using such an allocator (for example, by calling
gs_free_object() with it) can leave it in an unstable state, causing
problems for the garbage collector (specifically, the clump validator code).
So, before we might use it, open the current clump, and then close it again
when we're done.
*/
alloc_open_clump(mem);
/* First reverse the list and set all. */
for (; chp; chp = chp_forth) {
chp_forth = chp->next;
if (chp->offset != AC_OFFSET_ALLOCATED) {
ref_packed *prp = chp->where;
if (!r_is_packed(prp)) {
ref *const rp = (ref *)prp;
rp->tas.type_attrs |= l_new;
}
}
chp->next = chp_back;
chp_back = chp;
}
mem->changes = chp_back;
chp_back = NULL;
/* Then filter, reset and reverse again. */
for (chp = mem->changes; chp; chp = chp_forth) {
chp_forth = chp->next;
if (chp->offset != AC_OFFSET_ALLOCATED) {
ref_packed *prp = chp->where;
if (!r_is_packed(prp)) {
ref *const rp = (ref *)prp;
if ((rp->tas.type_attrs & l_new) == 0) {
if (mem->scan_limit == chp)
mem->scan_limit = chp_back;
if (mem->changes == chp)
mem->changes = chp_back;
gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
continue;
} else
rp->tas.type_attrs &= ~l_new;
}
}
chp->next = chp_back;
chp_back = chp;
}
mem->changes = chp_back;
alloc_close_clump(mem);
}
/* Set or reset the l_new attribute on the changes chain. */
static int
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
{
register alloc_change_t *chp;
register uint new = (to_new ? l_new : 0);
ulong scanned = 0;
if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
mem->total_scanned_after_compacting = 0;
drop_redundant_changes(mem);
}
for (chp = mem->changes; chp; chp = chp->next) {
if (chp->offset == AC_OFFSET_ALLOCATED) {
if (chp->where != 0) {
uint size;
int code = mark_allocated((void *)chp->where, to_new, &size);
if (code < 0)
return code;
scanned += size;
}
} else {
ref_packed *prp = chp->where;
if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
(intptr_t)chp, (intptr_t)prp, new);
if (!r_is_packed(prp)) {
ref *const rp = (ref *) prp;
rp->tas.type_attrs =
(rp->tas.type_attrs & ~l_new) + new;
}
}
if (mem->scan_limit == chp)
break;
}
if (set_limit) {
mem->total_scanned_after_compacting += scanned;
if (scanned + mem->total_scanned >= max_repeated_scan) {
mem->scan_limit = mem->changes;
mem->total_scanned = 0;
} else
mem->total_scanned += scanned;
}
return 0;
}
gs_memory_t *
gs_save_any_memory(const alloc_save_t *save)
{
return((gs_memory_t *)save->space_local);
}
|