1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Generic "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gsdevice.h"
#include "gserrors.h"
#include "gsrect.h"
#include "gsstruct.h"
#include "gxarith.h"
#include "gxdevice.h"
#include "gxgetbit.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
#include "gstrans.h"
/* Structure descriptor */
public_st_device_memory();
/* GC procedures */
static
ENUM_PTRS_WITH(device_memory_enum_ptrs, gx_device_memory *mptr)
{
return ENUM_USING(st_device_forward, vptr, sizeof(gx_device_forward), index - 3);
}
case 0: ENUM_RETURN((mptr->foreign_bits ? NULL : (void *)mptr->base));
case 1: ENUM_RETURN((mptr->foreign_line_pointers ? NULL : (void *)mptr->line_ptrs));
ENUM_STRING_PTR(2, gx_device_memory, palette);
ENUM_PTRS_END
static
RELOC_PTRS_WITH(device_memory_reloc_ptrs, gx_device_memory *mptr)
{
if (!mptr->foreign_bits) {
byte *base_old = mptr->base;
long reloc;
int y;
int h = mptr->height;
if (mptr->is_planar)
h *= mptr->color_info.num_components;
RELOC_PTR(gx_device_memory, base);
reloc = base_old - mptr->base;
for (y = 0; y < h; y++)
mptr->line_ptrs[y] -= reloc;
/* Relocate line_ptrs, which also points into the data area. */
mptr->line_ptrs = (byte **) ((byte *) mptr->line_ptrs - reloc);
} else if (!mptr->foreign_line_pointers) {
RELOC_PTR(gx_device_memory, line_ptrs);
}
RELOC_CONST_STRING_PTR(gx_device_memory, palette);
RELOC_USING(st_device_forward, vptr, sizeof(gx_device_forward));
}
RELOC_PTRS_END
/* Define the palettes for monobit devices. */
static const byte b_w_palette_string[6] = {
0xff, 0xff, 0xff, 0, 0, 0
};
const gs_const_string mem_mono_b_w_palette = {
b_w_palette_string, 6
};
static const byte w_b_palette_string[6] = {
0, 0, 0, 0xff, 0xff, 0xff
};
const gs_const_string mem_mono_w_b_palette = {
w_b_palette_string, 6
};
/* ------ Generic code ------ */
/* Return the appropriate memory device for a given */
/* number of bits per pixel (0 if none suitable).
Greater than 64 occurs for the planar case
which we will then return a mem_x_device */
static const gx_device_memory *const mem_devices[65] = {
0, &mem_mono_device, &mem_mapped2_device, 0, &mem_mapped4_device,
0, 0, 0, &mem_mapped8_device,
0, 0, 0, 0, 0, 0, 0, &mem_true16_device,
0, 0, 0, 0, 0, 0, 0, &mem_true24_device,
0, 0, 0, 0, 0, 0, 0, &mem_true32_device,
0, 0, 0, 0, 0, 0, 0, &mem_true40_device,
0, 0, 0, 0, 0, 0, 0, &mem_true48_device,
0, 0, 0, 0, 0, 0, 0, &mem_true56_device,
0, 0, 0, 0, 0, 0, 0, &mem_true64_device
};
const gx_device_memory *
gdev_mem_device_for_bits(int bits_per_pixel)
{
return ((uint)bits_per_pixel > 64 ? &mem_x_device :
mem_devices[bits_per_pixel]);
}
/* Do the same for a word-oriented device. */
static const gx_device_memory *const mem_word_devices[65] = {
0, &mem_mono_device, &mem_mapped2_word_device, 0, &mem_mapped4_word_device,
0, 0, 0, &mem_mapped8_word_device,
0, 0, 0, 0, 0, 0, 0, 0 /*no 16-bit word device*/,
0, 0, 0, 0, 0, 0, 0, &mem_true24_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true32_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true40_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true48_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true56_word_device,
0, 0, 0, 0, 0, 0, 0, &mem_true64_word_device
};
const gx_device_memory *
gdev_mem_word_device_for_bits(int bits_per_pixel)
{
return ((uint)bits_per_pixel > 64 ? (const gx_device_memory *)0 :
mem_word_devices[bits_per_pixel]);
}
static const gdev_mem_functions *mem_fns[65] = {
NULL, &gdev_mem_fns_1, &gdev_mem_fns_2, NULL,
&gdev_mem_fns_4, NULL, NULL, NULL,
&gdev_mem_fns_8, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_16, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_24, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_32, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_40, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_48, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_56, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_64
};
const gdev_mem_functions *
gdev_mem_functions_for_bits(int bits_per_pixel)
{
return ((uint)bits_per_pixel > 64 ? NULL : mem_fns[bits_per_pixel]);
}
static const gdev_mem_functions *mem_word_fns[65] = {
NULL, &gdev_mem_fns_1, &gdev_mem_fns_2w, NULL,
&gdev_mem_fns_4w, NULL, NULL, NULL,
&gdev_mem_fns_8w, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_24w, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_32w, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_40w, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_48w, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_56w, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
&gdev_mem_fns_64w
};
const gdev_mem_functions *
gdev_mem_word_functions_for_bits(int bits_per_pixel)
{
return ((uint)bits_per_pixel > 64 ? NULL : mem_word_fns[bits_per_pixel]);
}
/* Test whether a device is a memory device */
bool
gs_device_is_memory(const gx_device * dev)
{
/*
* We use the draw_thin_line procedure to mark memory devices.
* See gdevmem.h.
*/
return (dev_proc(dev, draw_thin_line) == mem_draw_thin_line);
}
/* Make a memory device. */
/* Note that the default for monobit devices is white = 0, black = 1. */
void
gs_make_mem_device(gx_device_memory * dev, const gx_device_memory * mdproto,
gs_memory_t * mem, int page_device, gx_device * target)
{
/* Can never fail */
(void)gx_device_init((gx_device *) dev, (const gx_device *)mdproto,
mem, true);
dev->stype = &st_device_memory;
switch (page_device) {
case -1:
set_dev_proc(dev, get_page_device, gx_default_get_page_device);
break;
case 1:
set_dev_proc(dev, get_page_device, gx_page_device_get_page_device);
break;
}
/* Preload the black and white cache. */
if (target == NULL) {
if (dev->color_info.depth == 1) {
/* The default for black-and-white devices is inverted. */
dev->cached_colors.black = 1;
dev->cached_colors.white = 0;
} else {
dev->cached_colors.black = 0;
dev->cached_colors.white = (1 << dev->color_info.depth) - 1;
}
dev->graphics_type_tag = GS_UNKNOWN_TAG;
} else {
gx_device_set_target((gx_device_forward *)dev, target);
/* Forward the color mapping operations to the target. */
gx_device_forward_color_procs((gx_device_forward *) dev);
gx_device_copy_color_procs((gx_device *)dev, target);
dev->color_info.separable_and_linear = target->color_info.separable_and_linear;
dev->cached_colors = target->cached_colors;
dev->graphics_type_tag = target->graphics_type_tag; /* initialize to same as target */
set_dev_proc(dev, put_image, gx_forward_put_image);
set_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
}
if (dev->color_info.depth == 1) {
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
uchar k;
if (target != 0) {
for (k = 0; k < target->color_info.num_components; k++) {
cv[k] = 0;
}
}
gdev_mem_mono_set_inverted(dev, (target == NULL ||
(*dev_proc(dev, encode_color))((gx_device *)dev, cv) != 0));
}
check_device_separable((gx_device *)dev);
gx_device_fill_in_procs((gx_device *)dev);
dev->band_y = 0;
}
/* Make a memory device using copydevice, this should replace gs_make_mem_device. */
/* Note that the default for monobit devices is white = 0, black = 1. */
int
gs_make_mem_device_with_copydevice(gx_device_memory ** ppdev,
const gx_device_memory * mdproto,
gs_memory_t * mem,
int page_device,
gx_device * target)
{
int code;
gx_device_memory *pdev;
if (mem == NULL)
return -1;
code = gs_copydevice((gx_device **)&pdev,
(const gx_device *)mdproto,
mem);
if (code < 0)
return code;
switch (page_device) {
case -1:
set_dev_proc(pdev, get_page_device, gx_default_get_page_device);
break;
case 1:
set_dev_proc(pdev, get_page_device, gx_page_device_get_page_device);
break;
}
/* Preload the black and white cache. */
if (target == NULL) {
if (pdev->color_info.depth == 1) {
/* The default for black-and-white devices is inverted. */
pdev->cached_colors.black = 1;
pdev->cached_colors.white = 0;
} else {
pdev->cached_colors.black = 0;
pdev->cached_colors.white = (1 << pdev->color_info.depth) - 1;
}
pdev->graphics_type_tag = GS_UNKNOWN_TAG;
} else {
gx_device_set_target((gx_device_forward *)pdev, target);
/* Forward the color mapping operations to the target. */
gx_device_forward_color_procs((gx_device_forward *) pdev);
gx_device_copy_color_procs((gx_device *)pdev, target);
pdev->cached_colors = target->cached_colors;
pdev->graphics_type_tag = target->graphics_type_tag; /* initialize to same as target */
}
if (pdev->color_info.depth == 1) {
gx_color_value cv[3];
cv[0] = cv[1] = cv[2] = 0;
gdev_mem_mono_set_inverted(pdev, (target == NULL ||
(*dev_proc(pdev, encode_color))((gx_device *)pdev, cv) != 0));
}
check_device_separable((gx_device *)pdev);
gx_device_fill_in_procs((gx_device *)pdev);
pdev->band_y = 0;
*ppdev = pdev;
return 0;
}
/* Make a monobit memory device using copydevice */
int
gs_make_mem_mono_device_with_copydevice(gx_device_memory ** ppdev, gs_memory_t * mem,
gx_device * target)
{
int code;
gx_device_memory *pdev;
if (mem == NULL)
return -1;
code = gs_copydevice((gx_device **)&pdev,
(const gx_device *)&mem_mono_device,
mem);
if (code < 0)
return code;
set_dev_proc(pdev, get_page_device, gx_default_get_page_device);
gx_device_set_target((gx_device_forward *)pdev, target);
/* Should this be forwarding, monochrome profile, or not set? MJV. */
set_dev_proc(pdev, get_profile, gx_forward_get_profile);
gdev_mem_mono_set_inverted(pdev, true);
check_device_separable((gx_device *)pdev);
gx_device_fill_in_procs((gx_device *)pdev);
*ppdev = pdev;
return 0;
}
/* Make a monobit memory device. This is never a page device. */
/* Note that white=0, black=1. */
void
gs_make_mem_mono_device(gx_device_memory * dev, gs_memory_t * mem,
gx_device * target)
{
/* Can never fail */
(void)gx_device_init((gx_device *)dev,
(const gx_device *)&mem_mono_device,
mem, true);
set_dev_proc(dev, get_page_device, gx_default_get_page_device);
gx_device_set_target((gx_device_forward *)dev, target);
dev->raster = gx_device_raster((gx_device *)dev, 1);
gdev_mem_mono_set_inverted(dev, true);
check_device_separable((gx_device *)dev);
gx_device_fill_in_procs((gx_device *)dev);
/* Should this be forwarding, monochrome profile, or not set? MJV */
set_dev_proc(dev, get_profile, gx_forward_get_profile);
set_dev_proc(dev, set_graphics_type_tag, gx_forward_set_graphics_type_tag);
set_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
/* initialize to same tag as target */
dev->graphics_type_tag = target ? target->graphics_type_tag : GS_UNKNOWN_TAG;
}
/* Define whether a monobit memory device is inverted (black=1). */
void
gdev_mem_mono_set_inverted(gx_device_memory * dev, bool black_is_1)
{
if (black_is_1)
dev->palette = mem_mono_b_w_palette;
else
dev->palette = mem_mono_w_b_palette;
}
/*
* Compute the size of the bitmap storage, including the space for the scan
* line pointer table. Note that scan lines are padded to a multiple of
* align_bitmap_mod bytes, and additional padding may be needed if the
* pointer table must be aligned to an even larger modulus.
*
* The computation for planar devices is a little messier. Each plane
* must pad its scan lines, and then we must pad again for the pointer
* tables (one table per plane).
*
* Return VMerror if the size exceeds max ulong
*/
int
gdev_mem_bits_size(const gx_device_memory * dev, int width, int height, ulong *psize)
{
int num_planes;
gx_render_plane_t plane1;
const gx_render_plane_t *planes;
ulong size;
int pi;
if (dev->is_planar) {
num_planes = dev->color_info.num_components;
planes = dev->planes;
} else
planes = &plane1, plane1.depth = dev->color_info.depth, num_planes = 1;
for (size = 0, pi = 0; pi < num_planes; ++pi)
size += bitmap_raster_pad_align(width * planes[pi].depth, dev->pad, dev->log2_align_mod);
if (height != 0)
if (size > (max_ulong - ARCH_ALIGN_PTR_MOD) / (ulong)height)
return_error(gs_error_VMerror);
size = ROUND_UP(size * height, ARCH_ALIGN_PTR_MOD);
if (dev->log2_align_mod > log2_align_bitmap_mod)
size += 1<<dev->log2_align_mod;
*psize = size;
return 0;
}
ulong
gdev_mem_line_ptrs_size(const gx_device_memory * dev, int width, int height)
{
int num_planes = 1;
if (dev->is_planar)
num_planes = dev->color_info.num_components;
return (ulong)height * sizeof(byte *) * num_planes;
}
int
gdev_mem_data_size(const gx_device_memory * dev, int width, int height, ulong *psize)
{
ulong bits_size;
ulong line_ptrs_size = gdev_mem_line_ptrs_size(dev, width, height);
if (gdev_mem_bits_size(dev, width, height, &bits_size) < 0 ||
bits_size > max_ulong - line_ptrs_size)
return_error(gs_error_VMerror);
*psize = bits_size + line_ptrs_size;
return 0;
}
/*
* Do the inverse computation: given a width (in pixels) and a buffer size,
* compute the maximum height.
*/
int
gdev_mem_max_height(const gx_device_memory * dev, int width, ulong size,
bool page_uses_transparency)
{
int height;
ulong max_height;
ulong data_size;
bool deep = device_is_deep((const gx_device *)dev);
if (page_uses_transparency) {
/*
* If the device is using PDF 1.4 transparency then we will need to
* also allocate image buffers for doing the blending operations.
* We can only estimate the space requirements. However since it
* is only an estimate, we may exceed our desired buffer space while
* processing the file.
*/
max_height = size / (bitmap_raster_pad_align(width
* dev->color_info.depth + ESTIMATED_PDF14_ROW_SPACE(width, dev->color_info.num_components, deep ? 16 : 8),
dev->pad, dev->log2_align_mod) + sizeof(byte *) * (dev->is_planar ? dev->color_info.num_components : 1));
height = (int)min(max_height, max_int);
} else {
/* For non PDF 1.4 transparency, we can do an exact calculation */
max_height = size /
(bitmap_raster_pad_align(width * dev->color_info.depth, dev->pad, dev->log2_align_mod) +
sizeof(byte *) * (dev->is_planar ? dev->color_info.num_components : 1));
height = (int)min(max_height, max_int);
/*
* Because of alignment rounding, the just-computed height might
* be too large by a small amount. Adjust it the easy way.
*/
do {
gdev_mem_data_size(dev, width, height, &data_size);
if (data_size <= size)
break;
--height;
} while (data_size > size);
}
return height;
}
/* Open a memory device, allocating the data area if appropriate, */
/* and create the scan line table. */
int
mem_open(gx_device * dev)
{
gx_device_memory *const mdev = (gx_device_memory *)dev;
/* Check that we aren't trying to open a planar device as chunky. */
if (mdev->is_planar)
return_error(gs_error_rangecheck);
return gdev_mem_open_scan_lines(mdev, dev->height);
}
int
gdev_mem_open_scan_lines(gx_device_memory *mdev, int setup_height)
{
return gdev_mem_open_scan_lines_interleaved(mdev, setup_height, 0);
}
int
gdev_mem_open_scan_lines_interleaved(gx_device_memory *mdev,
int setup_height,
int interleaved)
{
bool line_pointers_adjacent = true;
ulong size;
if (setup_height < 0 || setup_height > mdev->height)
return_error(gs_error_rangecheck);
if (mdev->bitmap_memory != NULL) {
int align;
/* Allocate the data now. */
if (gdev_mem_bitmap_size(mdev, &size) < 0)
return_error(gs_error_VMerror);
if ((uint) size != size) /* ulong may be bigger than uint */
return_error(gs_error_limitcheck);
mdev->base = gs_alloc_bytes(mdev->bitmap_memory, (uint)size,
"mem_open");
if (mdev->base == NULL)
return_error(gs_error_VMerror);
#ifdef PACIFY_VALGRIND
/* If we end up writing the bitmap to the clist, we can get valgrind errors
* because we write and read the padding at the end of each raster line.
* Easiest to set the entire block.
*/
memset(mdev->base, 0x00, size);
#endif
align = 1<<mdev->log2_align_mod;
mdev->base += (-(int)(intptr_t)mdev->base) & (align-1);
mdev->foreign_bits = false;
} else if (mdev->line_pointer_memory != NULL) {
/* Allocate the line pointers now. */
mdev->line_ptrs = (byte **)
gs_alloc_byte_array(mdev->line_pointer_memory, mdev->height,
sizeof(byte *) * (mdev->is_planar ? mdev->color_info.num_components : 1),
"gdev_mem_open_scan_lines");
if (mdev->line_ptrs == NULL)
return_error(gs_error_VMerror);
mdev->foreign_line_pointers = false;
line_pointers_adjacent = false;
}
if (line_pointers_adjacent) {
int code;
if (mdev->base == NULL)
return_error(gs_error_rangecheck);
code = gdev_mem_bits_size(mdev, mdev->width, mdev->height, &size);
if (code < 0)
return code;
mdev->line_ptrs = (byte **)(mdev->base + size);
}
mdev->raster = gx_device_raster((gx_device *)mdev, 1);
return gdev_mem_set_line_ptrs_interleaved(mdev, NULL, 0, NULL,
setup_height,
interleaved);
}
/*
* Set up the scan line pointers of a memory device.
* See gxdevmem.h for the detailed specification.
* Sets or uses line_ptrs, base, raster; uses width, color_info.depth,
* num_planes, plane_depths, plane_depth.
*/
int
gdev_mem_set_line_ptrs(gx_device_memory *mdev, byte *base, int raster,
byte **line_ptrs, int setup_height)
{
return gdev_mem_set_line_ptrs_interleaved(mdev, base, raster, line_ptrs, setup_height, 0);
}
int
gdev_mem_set_line_ptrs_interleaved(gx_device_memory * mdev, byte * base,
int raster, byte **line_ptrs,
int setup_height, int interleaved)
{
int num_planes = (mdev->is_planar ? mdev->color_info.num_components : 0);
byte **pline;
byte *data;
int pi;
int plane_raster;
/* If we are supplied with line_ptrs, then assume that we don't have
* any already, and take them on. */
if (line_ptrs)
mdev->line_ptrs = line_ptrs;
pline = mdev->line_ptrs;
/* If we are supplied a base, then we are supplied a raster. Assume that
* we don't have any buffer already, and take these on. Assume that the
* base has been allocated with sufficient padding to allow for any
* alignment required. */
if (base == NULL) {
base = mdev->base;
raster = mdev->raster;
} else {
mdev->base = base;
mdev->raster = raster;
}
/* Now, pad and align as required. */
if (mdev->log2_align_mod > log2_align_bitmap_mod) {
int align = 1<<mdev->log2_align_mod;
align = (-(int)(intptr_t)base) & (align-1);
data = base + align;
} else {
data = mdev->base;
}
if (num_planes) {
if (base && !mdev->plane_depth)
return_error(gs_error_rangecheck);
} else {
num_planes = 1;
}
if (interleaved)
plane_raster = raster, raster *= num_planes;
else
plane_raster = raster * mdev->height;
for (pi = 0; pi < num_planes; ++pi) {
byte **pptr = pline;
byte **pend = pptr + setup_height;
byte *scan_line = data;
while (pptr < pend) {
*pptr++ = scan_line;
scan_line += raster;
}
data += plane_raster;
pline += setup_height; /* not mdev->height, see gxdevmem.h */
}
return 0;
}
/* Return the initial transformation matrix */
void
mem_get_initial_matrix(gx_device * dev, gs_matrix * pmat)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
pmat->xx = mdev->initial_matrix.xx;
pmat->xy = mdev->initial_matrix.xy;
pmat->yx = mdev->initial_matrix.yx;
pmat->yy = mdev->initial_matrix.yy;
pmat->tx = mdev->initial_matrix.tx;
pmat->ty = mdev->initial_matrix.ty;
}
/* Close a memory device, freeing the data area if appropriate. */
int
mem_close(gx_device * dev)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
if (mdev->bitmap_memory != 0) {
gs_free_object(mdev->bitmap_memory, mdev->base, "mem_close");
/*
* The following assignment is strictly for the benefit of one
* client that is sloppy about using is_open properly.
*/
mdev->base = 0;
} else if (mdev->line_pointer_memory != 0) {
gs_free_object(mdev->line_pointer_memory, mdev->line_ptrs,
"mem_close");
mdev->line_ptrs = 0; /* ibid. */
}
return 0;
}
/* Copy bits to a client. */
#undef chunk
#define chunk byte
int
mem_get_bits_rectangle(gx_device * dev, const gs_int_rect * prect,
gs_get_bits_params_t * params)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
gs_get_bits_options_t options = params->options;
int x = prect->p.x, w = prect->q.x - x, y = prect->p.y, h = prect->q.y - y;
if (options == 0) {
params->options =
(GB_ALIGN_STANDARD | GB_ALIGN_ANY) |
(GB_RETURN_COPY | GB_RETURN_POINTER) |
(GB_OFFSET_0 | GB_OFFSET_SPECIFIED | GB_OFFSET_ANY) |
(GB_RASTER_STANDARD | GB_RASTER_SPECIFIED | GB_RASTER_ANY) |
GB_PACKING_CHUNKY | GB_COLORS_NATIVE | GB_ALPHA_NONE;
return_error(gs_error_rangecheck);
}
if (mdev->line_ptrs == NULL)
return_error(gs_error_rangecheck);
if ((w <= 0) | (h <= 0)) {
if ((w | h) < 0)
return_error(gs_error_rangecheck);
return 0;
}
if (x < 0 || w > dev->width - x ||
y < 0 || h > dev->height - y
)
return_error(gs_error_rangecheck);
{
gs_get_bits_params_t copy_params;
byte **base = &scan_line_base(mdev, y);
int code;
copy_params.options =
GB_COLORS_NATIVE | GB_PACKING_CHUNKY | GB_ALPHA_NONE |
(mdev->raster ==
bitmap_raster(mdev->width * mdev->color_info.depth) ?
GB_RASTER_STANDARD : GB_RASTER_SPECIFIED);
copy_params.raster = mdev->raster;
code = gx_get_bits_return_pointer(dev, x, h, params,
©_params, base);
if (code >= 0)
return code;
return gx_get_bits_copy(dev, x, w, h, params, ©_params, *base,
gx_device_raster(dev, true));
}
}
#if !ARCH_IS_BIG_ENDIAN
/*
* Swap byte order in a rectangular subset of a bitmap. If store = true,
* assume the rectangle will be overwritten, so don't swap any bytes where
* it doesn't matter. The caller has already done a fit_fill or fit_copy.
* Note that the coordinates are specified in bits, not in terms of the
* actual device depth.
*/
void
mem_swap_byte_rect(byte * base, uint raster, int x, int w, int h, bool store)
{
int xbit = x & 31;
if (store) {
if (xbit + w > 64) { /* Operation spans multiple words. */
/* Just swap the words at the left and right edges. */
if (xbit != 0)
mem_swap_byte_rect(base, raster, x, 1, h, false);
x += w - 1;
xbit = x & 31;
if (xbit == 31)
return;
w = 1;
}
}
/* Swap the entire rectangle (or what's left of it). */
{
byte *row = base + ((x >> 5) << 2);
int nw = (xbit + w + 31) >> 5;
int ny;
for (ny = h; ny > 0; row += raster, --ny) {
int nx = nw;
bits32 *pw = (bits32 *) row;
do {
bits32 v = *pw;
*pw++ = (v >> 24) + ((v >> 8) & 0xff00) +
((v & 0xff00) << 8) + (v << 24);
}
while (--nx);
}
}
}
/* Copy a word-oriented rectangle to the client, swapping bytes as needed. */
int
mem_word_get_bits_rectangle(gx_device * dev, const gs_int_rect * prect,
gs_get_bits_params_t * params)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
byte *src;
uint dev_raster = gx_device_raster(dev, 1);
int x = prect->p.x;
int w = prect->q.x - x;
int y = prect->p.y;
int h = prect->q.y - y;
int bit_x, bit_w;
int code;
fit_fill_xywh(dev, x, y, w, h);
if (w <= 0 || h <= 0) {
/*
* It's easiest to just keep going with an empty rectangle.
* We pass the original rectangle to mem_get_bits_rectangle.
*/
x = y = w = h = 0;
}
bit_x = x * dev->color_info.depth;
bit_w = w * dev->color_info.depth;
if(mdev->line_ptrs == NULL)
return_error(gs_error_rangecheck);
src = scan_line_base(mdev, y);
mem_swap_byte_rect(src, dev_raster, bit_x, bit_w, h, false);
code = mem_get_bits_rectangle(dev, prect, params);
mem_swap_byte_rect(src, dev_raster, bit_x, bit_w, h, false);
return code;
}
#endif /* !ARCH_IS_BIG_ENDIAN */
/* Map a r-g-b color to a color index for a mapped color memory device */
/* (2, 4, or 8 bits per pixel.) */
/* This requires searching the palette. */
gx_color_index
mem_mapped_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
byte br = gx_color_value_to_byte(cv[0]);
register const byte *pptr = mdev->palette.data;
int cnt = mdev->palette.size;
const byte *which = 0; /* initialized only to pacify gcc */
int best = 256 * 3;
if (mdev->color_info.num_components != 1) {
/* not 1 component, assume three */
/* The comparison is rather simplistic, treating differences in */
/* all components as equal. Better choices would be 'distance' */
/* in HLS space or other, but these would be much slower. */
/* At least exact matches will be found. */
byte bg = gx_color_value_to_byte(cv[1]);
byte bb = gx_color_value_to_byte(cv[2]);
while ((cnt -= 3) >= 0) {
register int diff = *pptr - br;
if (diff < 0)
diff = -diff;
if (diff < best) { /* quick rejection */
int dg = pptr[1] - bg;
if (dg < 0)
dg = -dg;
if ((diff += dg) < best) { /* quick rejection */
int db = pptr[2] - bb;
if (db < 0)
db = -db;
if ((diff += db) < best)
which = pptr, best = diff;
}
}
if (diff == 0) /* can't get any better than 0 diff */
break;
pptr += 3;
}
} else {
/* Gray scale conversion. The palette is made of three equal */
/* components, so this case is simpler. */
while ((cnt -= 3) >= 0) {
register int diff = *pptr - br;
if (diff < 0)
diff = -diff;
if (diff < best) { /* quick rejection */
which = pptr, best = diff;
}
if (diff == 0)
break;
pptr += 3;
}
}
return (gx_color_index) ((which - mdev->palette.data) / 3);
}
/* Map a color index to a r-g-b color for a mapped color memory device. */
int
mem_mapped_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
const byte *pptr = mdev->palette.data;
if (pptr == NULL) {
color = color * gx_max_color_value / ((1<<mdev->color_info.depth)-1);
prgb[0] = color;
prgb[1] = color;
prgb[2] = color;
} else {
pptr += (int)color * 3;
prgb[0] = gx_color_value_from_byte(pptr[0]);
prgb[1] = gx_color_value_from_byte(pptr[1]);
prgb[2] = gx_color_value_from_byte(pptr[2]);
}
return 0;
}
/*
* Implement draw_thin_line using a distinguished procedure that serves
* as the common marker for all memory devices.
*/
int
mem_draw_thin_line(gx_device *dev, fixed fx0, fixed fy0, fixed fx1, fixed fy1,
const gx_drawing_color *pdcolor,
gs_logical_operation_t lop,
fixed adjustx, fixed adjusty)
{
return gx_default_draw_thin_line(dev, fx0, fy0, fx1, fy1, pdcolor, lop,
adjustx, adjusty);
}
void mem_initialize_device_procs(gx_device *dev)
{
set_dev_proc(dev, get_initial_matrix, mem_get_initial_matrix);
set_dev_proc(dev, sync_output, gx_default_sync_output);
set_dev_proc(dev, output_page, gx_default_output_page);
set_dev_proc(dev, close_device, mem_close);
set_dev_proc(dev, get_params, gx_default_get_params);
set_dev_proc(dev, put_params, gx_default_put_params);
set_dev_proc(dev, get_page_device, gx_forward_get_page_device);
set_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
set_dev_proc(dev, fill_path, gx_default_fill_path);
set_dev_proc(dev, stroke_path, gx_default_stroke_path);
set_dev_proc(dev, fill_mask, gx_default_fill_mask);
set_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
set_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
set_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
set_dev_proc(dev, draw_thin_line, mem_draw_thin_line);
set_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
set_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
set_dev_proc(dev, composite, gx_default_composite);
set_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
set_dev_proc(dev, text_begin, gx_default_text_begin);
set_dev_proc(dev, transform_pixel_region, mem_transform_pixel_region);
/* Defaults that may well get overridden. */
set_dev_proc(dev, open_device, mem_open);
set_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
set_dev_proc(dev, map_cmyk_color, gx_default_map_cmyk_color);
set_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
set_dev_proc(dev, get_bits_rectangle, mem_get_bits_rectangle);
}
void mem_dev_initialize_device_procs(gx_device *dev)
{
int depth = dev->color_info.depth;
const gdev_mem_functions *fns;
if (dev->is_planar)
depth /= dev->color_info.num_components;
fns = gdev_mem_functions_for_bits(depth);
mem_initialize_device_procs(dev);
set_dev_proc(dev, map_rgb_color, fns->map_rgb_color);
set_dev_proc(dev, map_color_rgb, fns->map_color_rgb);
set_dev_proc(dev, fill_rectangle, fns->fill_rectangle);
set_dev_proc(dev, copy_mono, fns->copy_mono);
set_dev_proc(dev, copy_color, fns->copy_color);
set_dev_proc(dev, copy_alpha, fns->copy_alpha);
set_dev_proc(dev, strip_copy_rop2, fns->strip_copy_rop2);
set_dev_proc(dev, strip_tile_rectangle, fns->strip_tile_rectangle);
}
void mem_word_dev_initialize_device_procs(gx_device *dev)
{
const gdev_mem_functions *fns =
gdev_mem_word_functions_for_bits(dev->color_info.depth);
mem_initialize_device_procs(dev);
set_dev_proc(dev, map_rgb_color, fns->map_rgb_color);
set_dev_proc(dev, map_color_rgb, fns->map_color_rgb);
set_dev_proc(dev, fill_rectangle, fns->fill_rectangle);
set_dev_proc(dev, copy_mono, fns->copy_mono);
set_dev_proc(dev, copy_color, fns->copy_color);
set_dev_proc(dev, copy_alpha, fns->copy_alpha);
set_dev_proc(dev, strip_copy_rop2, fns->strip_copy_rop2);
set_dev_proc(dev, strip_tile_rectangle, fns->strip_tile_rectangle);
}
|