1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Rendering for non-mesh shadings */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsmatrix.h" /* for gscoord.h */
#include "gscoord.h"
#include "gspath.h"
#include "gsptype2.h"
#include "gxcspace.h"
#include "gxdcolor.h"
#include "gxfarith.h"
#include "gxfixed.h"
#include "gxgstate.h"
#include "gxpath.h"
#include "gxshade.h"
#include "gxdevcli.h"
#include "gxshade4.h"
#include "gsicc_cache.h"
/* ---------------- Function-based shading ---------------- */
typedef struct Fb_frame_s { /* A rudiment of old code. */
gs_rect region;
gs_client_color cc[4]; /* colors at 4 corners */
int state;
} Fb_frame_t;
typedef struct Fb_fill_state_s {
shading_fill_state_common;
const gs_shading_Fb_t *psh;
gs_matrix_fixed ptm; /* parameter space -> device space */
Fb_frame_t frame;
} Fb_fill_state_t;
/****** NEED GC DESCRIPTOR ******/
static inline void
make_other_poles(patch_curve_t curve[4])
{
int i, j;
for (i = 0; i < 4; i++) {
j = (i + 1) % 4;
curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3;
curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3;
curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3;
curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3;
curve[i].straight = true;
}
}
/* Transform a point with a fixed-point result. */
static void
gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat,
double x, double y, gs_fixed_point * ppt)
{
gs_point fpt;
gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
ppt->x = clamp_coord(fpt.x);
ppt->y = clamp_coord(fpt.y);
}
static int
Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect)
{
patch_fill_state_t pfs1;
patch_curve_t curve[4];
Fb_frame_t * fp = &pfs->frame;
int code;
memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t));
pfs1.Function = pfs->psh->params.Function;
code = init_patch_fill_state(&pfs1);
if (code < 0)
return code;
pfs1.maybe_self_intersecting = false;
pfs1.n_color_args = 2;
pfs1.rect = *rect;
gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p);
gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p);
gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p);
gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p);
make_other_poles(curve);
curve[0].vertex.cc[0] = fp->region.p.x; curve[0].vertex.cc[1] = fp->region.p.y;
curve[1].vertex.cc[0] = fp->region.q.x; curve[1].vertex.cc[1] = fp->region.p.y;
curve[2].vertex.cc[0] = fp->region.q.x; curve[2].vertex.cc[1] = fp->region.q.y;
curve[3].vertex.cc[0] = fp->region.p.x; curve[3].vertex.cc[1] = fp->region.q.y;
code = patch_fill(&pfs1, curve, NULL, NULL);
if (term_patch_fill_state(&pfs1))
return_error(gs_error_unregistered); /* Must not happen. */
return code;
}
int
gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect * rect_clip,
gx_device * dev, gs_gstate * pgs)
{
const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0;
gs_matrix save_ctm;
int xi, yi, code;
float x[2], y[2];
Fb_fill_state_t state;
code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pgs);
if (code < 0)
return code;
state.psh = psh;
/****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/
gs_currentmatrix((gs_gstate *) pgs, &save_ctm);
gs_concat((gs_gstate *) pgs, &psh->params.Matrix);
state.ptm = pgs->ctm;
gs_setmatrix((gs_gstate *) pgs, &save_ctm);
/* Compute the parameter X and Y ranges. */
{
gs_rect pbox;
code = gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox);
if (code < 0)
return code;
x[0] = max(pbox.p.x, psh->params.Domain[0]);
x[1] = min(pbox.q.x, psh->params.Domain[1]);
y[0] = max(pbox.p.y, psh->params.Domain[2]);
y[1] = min(pbox.q.y, psh->params.Domain[3]);
}
if (x[0] > x[1] || y[0] > y[1]) {
/* The region is outside the shading area. */
if (state.icclink != NULL) gsicc_release_link(state.icclink);
return 0;
}
for (xi = 0; xi < 2; ++xi)
for (yi = 0; yi < 2; ++yi) {
float v[2];
v[0] = x[xi], v[1] = y[yi];
gs_function_evaluate(psh->params.Function, v,
state.frame.cc[yi * 2 + xi].paint.values);
}
state.frame.region.p.x = x[0];
state.frame.region.p.y = y[0];
state.frame.region.q.x = x[1];
state.frame.region.q.y = y[1];
code = Fb_fill_region(&state, rect_clip);
if (state.icclink != NULL) gsicc_release_link(state.icclink);
return code;
}
/* ---------------- Axial shading ---------------- */
typedef struct A_fill_state_s {
const gs_shading_A_t *psh;
gs_point delta;
double length;
double t0, t1;
double v0, v1, u0, u1;
} A_fill_state_t;
/****** NEED GC DESCRIPTOR ******/
/* Note t0 and t1 vary over [0..1], not the Domain. */
typedef struct
{
patch_curve_t curve[4];
gs_point corners[4];
} corners_and_curves;
/* Ghostscript cannot possibly render any patch whose bounds aren't
* representable in fixed's. In fact, this is a larger limit than
* we need. We notionally have an area defined by coordinates
* that can be represented in fixed point with at least 1 bit to
* spare.
*
* Any patch that lies completely outside this region can be clipped
* away. Any patch that isn't representable by fixed points can be
* subdivided into 4.
*
* This avoids us subdividing patches huge numbers of times because
* one side is just outside the region we will accept.
*/
#define MIN_CLIP_LIMIT ((int)(fixed2int(min_fixed)/2))
#define MAX_CLIP_LIMIT ((int)(fixed2int(max_fixed)/2))
static int not_clipped_away(const gs_point *p)
{
if (p[0].x < MIN_CLIP_LIMIT &&
p[1].x < MIN_CLIP_LIMIT &&
p[2].x < MIN_CLIP_LIMIT &&
p[3].x < MIN_CLIP_LIMIT)
return 0; /* Clipped away! */
if (p[0].x > MAX_CLIP_LIMIT &&
p[1].x > MAX_CLIP_LIMIT &&
p[2].x > MAX_CLIP_LIMIT &&
p[3].x > MAX_CLIP_LIMIT)
return 0; /* Clipped away! */
if (p[0].y < MIN_CLIP_LIMIT &&
p[1].y < MIN_CLIP_LIMIT &&
p[2].y < MIN_CLIP_LIMIT &&
p[3].y < MIN_CLIP_LIMIT)
return 0; /* Clipped away! */
if (p[0].y > MAX_CLIP_LIMIT &&
p[1].y > MAX_CLIP_LIMIT &&
p[2].y > MAX_CLIP_LIMIT &&
p[3].y > MAX_CLIP_LIMIT)
return 0; /* Clipped away! */
return 1;
}
#define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits)
static int
A_fill_region_floats(patch_fill_state_t *pfs1, corners_and_curves *cc, int depth)
{
corners_and_curves sub[4];
int code;
if (depth == 32)
return gs_error_limitcheck;
if (depth > 0 &&
f_fits_in_fixed(cc->corners[0].x) &&
f_fits_in_fixed(cc->corners[0].y) &&
f_fits_in_fixed(cc->corners[1].x) &&
f_fits_in_fixed(cc->corners[1].y) &&
f_fits_in_fixed(cc->corners[2].x) &&
f_fits_in_fixed(cc->corners[2].y) &&
f_fits_in_fixed(cc->corners[3].x) &&
f_fits_in_fixed(cc->corners[3].y))
{
cc->curve[0].vertex.p.x = float2fixed(cc->corners[0].x);
cc->curve[0].vertex.p.y = float2fixed(cc->corners[0].y);
cc->curve[1].vertex.p.x = float2fixed(cc->corners[1].x);
cc->curve[1].vertex.p.y = float2fixed(cc->corners[1].y);
cc->curve[2].vertex.p.x = float2fixed(cc->corners[2].x);
cc->curve[2].vertex.p.y = float2fixed(cc->corners[2].y);
cc->curve[3].vertex.p.x = float2fixed(cc->corners[3].x);
cc->curve[3].vertex.p.y = float2fixed(cc->corners[3].y);
cc->curve[0].vertex.cc[1] = cc->curve[1].vertex.cc[1] =
cc->curve[2].vertex.cc[1] =
cc->curve[3].vertex.cc[1] = 0;
make_other_poles(cc->curve);
return patch_fill(pfs1, cc->curve, NULL, NULL);
}
/* We have patches with corners:
* 0 1
* 3 2
* We subdivide these into 4 smaller patches:
*
* 0 10 1 Where 0123 are corners
* [0] [1] [0][1][2][3] are patches.
* 3 23 2
* 0 10 1
* [3] [2]
* 3 23 2
*/
sub[0].corners[0].x = cc->corners[0].x;
sub[0].corners[0].y = cc->corners[0].y;
sub[1].corners[1].x = cc->corners[1].x;
sub[1].corners[1].y = cc->corners[1].y;
sub[2].corners[2].x = cc->corners[2].x;
sub[2].corners[2].y = cc->corners[2].y;
sub[3].corners[3].x = cc->corners[3].x;
sub[3].corners[3].y = cc->corners[3].y;
sub[1].corners[0].x = sub[0].corners[1].x = (cc->corners[0].x + cc->corners[1].x)/2;
sub[1].corners[0].y = sub[0].corners[1].y = (cc->corners[0].y + cc->corners[1].y)/2;
sub[3].corners[2].x = sub[2].corners[3].x = (cc->corners[2].x + cc->corners[3].x)/2;
sub[3].corners[2].y = sub[2].corners[3].y = (cc->corners[2].y + cc->corners[3].y)/2;
sub[3].corners[0].x = sub[0].corners[3].x = (cc->corners[0].x + cc->corners[3].x)/2;
sub[3].corners[0].y = sub[0].corners[3].y = (cc->corners[0].y + cc->corners[3].y)/2;
sub[2].corners[1].x = sub[1].corners[2].x = (cc->corners[1].x + cc->corners[2].x)/2;
sub[2].corners[1].y = sub[1].corners[2].y = (cc->corners[1].y + cc->corners[2].y)/2;
sub[0].corners[2].x = sub[1].corners[3].x =
sub[2].corners[0].x =
sub[3].corners[1].x = (sub[0].corners[3].x + sub[1].corners[2].x)/2;
sub[0].corners[2].y = sub[1].corners[3].y =
sub[2].corners[0].y =
sub[3].corners[1].y = (sub[0].corners[3].y + sub[1].corners[2].y)/2;
sub[0].curve[0].vertex.cc[0] = sub[0].curve[3].vertex.cc[0] =
sub[3].curve[0].vertex.cc[0] =
sub[3].curve[3].vertex.cc[0] = cc->curve[0].vertex.cc[0];
sub[1].curve[1].vertex.cc[0] = sub[1].curve[2].vertex.cc[0] =
sub[2].curve[1].vertex.cc[0] =
sub[2].curve[2].vertex.cc[0] = cc->curve[1].vertex.cc[0];
sub[0].curve[1].vertex.cc[0] = sub[0].curve[2].vertex.cc[0] =
sub[1].curve[0].vertex.cc[0] =
sub[1].curve[3].vertex.cc[0] =
sub[2].curve[0].vertex.cc[0] =
sub[2].curve[3].vertex.cc[0] =
sub[3].curve[1].vertex.cc[0] =
sub[3].curve[2].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
depth++;
if (not_clipped_away(sub[0].corners)) {
code = A_fill_region_floats(pfs1, &sub[0], depth);
if (code < 0)
return code;
}
if (not_clipped_away(sub[1].corners)) {
code = A_fill_region_floats(pfs1, &sub[1], depth);
if (code < 0)
return code;
}
if (not_clipped_away(sub[2].corners)) {
code = A_fill_region_floats(pfs1, &sub[2], depth);
if (code < 0)
return code;
}
if (not_clipped_away(sub[3].corners)) {
code = A_fill_region_floats(pfs1, &sub[3], depth);
if (code < 0)
return code;
}
return 0;
}
static int
A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1)
{
const gs_shading_A_t * const psh = pfs->psh;
double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0;
double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0;
double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1;
double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1;
double h0 = pfs->u0, h1 = pfs->u1;
corners_and_curves cc;
int code;
double dx0 = pfs->delta.x * h0;
double dy0 = pfs->delta.y * h0;
double dx1 = pfs->delta.x * h1;
double dy1 = pfs->delta.y * h1;
cc.curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */
cc.curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle priocessing in gxshade.6.c . */
cc.curve[2].vertex.cc[0] = pfs->t1;
cc.curve[3].vertex.cc[0] = pfs->t0;
cc.curve[0].vertex.cc[1] = 0; /* The element cc[1] is set to a dummy value against */
cc.curve[1].vertex.cc[1] = 0; /* interrupts while an idle priocessing in gxshade.6.c . */
cc.curve[2].vertex.cc[1] = 0;
cc.curve[3].vertex.cc[1] = 0;
cc.corners[0].x = x0 + dy0;
cc.corners[0].y = y0 - dx0;
cc.corners[1].x = x1 + dy0;
cc.corners[1].y = y1 - dx0;
cc.corners[2].x = x1 + dy1;
cc.corners[2].y = y1 - dx1;
cc.corners[3].x = x0 + dy1;
cc.corners[3].y = y0 - dx1;
code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[0].x, cc.corners[0].y, &cc.curve[0].vertex.p);
if (code < 0)
goto fail;
code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[1].x, cc.corners[1].y, &cc.curve[1].vertex.p);
if (code < 0)
goto fail;
code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[2].x, cc.corners[2].y, &cc.curve[2].vertex.p);
if (code < 0)
goto fail;
code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[3].x, cc.corners[3].y, &cc.curve[3].vertex.p);
if (code < 0)
goto fail;
make_other_poles(cc.curve);
return patch_fill(pfs1, cc.curve, NULL, NULL);
fail:
if (code != gs_error_limitcheck)
return code;
code = gs_point_transform(cc.corners[0].x, cc.corners[0].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[0]);
if (code < 0)
return code;
code = gs_point_transform(cc.corners[1].x, cc.corners[1].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[1]);
if (code < 0)
return code;
code = gs_point_transform(cc.corners[2].x, cc.corners[2].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[2]);
if (code < 0)
return code;
code = gs_point_transform(cc.corners[3].x, cc.corners[3].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[3]);
if (code < 0)
return code;
return A_fill_region_floats(pfs1, &cc, 0);
}
static inline int
gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect *clip_rect,
gx_device * dev, gs_gstate * pgs)
{
const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0;
gs_function_t * const pfn = psh->params.Function;
gs_matrix cmat;
gs_rect t_rect;
A_fill_state_t state;
patch_fill_state_t pfs1;
float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
float dd = d1 - d0;
double t0, t1;
gs_point dist;
int code;
state.psh = psh;
code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs);
if (code < 0)
return code;
pfs1.Function = pfn;
pfs1.rect = *clip_rect;
code = init_patch_fill_state(&pfs1);
if (code < 0)
goto fail;
pfs1.maybe_self_intersecting = false;
pfs1.function_arg_shift = 1;
/*
* Compute the parameter range. We construct a matrix in which
* (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1,
* and use it to inverse-map the rectangle to be filled.
*/
cmat.tx = psh->params.Coords[0];
cmat.ty = psh->params.Coords[1];
state.delta.x = psh->params.Coords[2] - psh->params.Coords[0];
state.delta.y = psh->params.Coords[3] - psh->params.Coords[1];
cmat.yx = state.delta.x;
cmat.yy = state.delta.y;
cmat.xx = cmat.yy;
cmat.xy = -cmat.yx;
code = gs_bbox_transform_inverse(rect, &cmat, &t_rect);
if (code < 0) {
code = 0; /* Swallow this silently */
goto fail;
}
t0 = min(max(t_rect.p.y, 0), 1);
t1 = max(min(t_rect.q.y, 1), 0);
state.v0 = t0;
state.v1 = t1;
state.u0 = t_rect.p.x;
state.u1 = t_rect.q.x;
state.t0 = t0 * dd + d0;
state.t1 = t1 * dd + d0;
code = gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pgs),
&dist);
if (code < 0)
goto fail;
state.length = hypot(dist.x, dist.y); /* device space line length */
code = A_fill_region(&state, &pfs1);
if (psh->params.Extend[0] && t0 > t_rect.p.y) {
if (code < 0)
goto fail;
/* Use the general algorithm, because we need the trapping. */
state.v0 = t_rect.p.y;
state.v1 = t0;
state.t0 = state.t1 = t0 * dd + d0;
code = A_fill_region(&state, &pfs1);
}
if (psh->params.Extend[1] && t1 < t_rect.q.y) {
if (code < 0)
goto fail;
/* Use the general algorithm, because we need the trapping. */
state.v0 = t1;
state.v1 = t_rect.q.y;
state.t0 = state.t1 = t1 * dd + d0;
code = A_fill_region(&state, &pfs1);
}
fail:
gsicc_release_link(pfs1.icclink);
if (term_patch_fill_state(&pfs1))
return_error(gs_error_unregistered); /* Must not happen. */
return code;
}
int
gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect * rect_clip,
gx_device * dev, gs_gstate * pgs)
{
return gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs);
}
/* ---------------- Radial shading ---------------- */
/* Some notes on what I have struggled to understand about the following
* function. This function renders the 'tube' given by interpolating one
* circle to another.
*
* The first circle is at (x0, y0) with radius r0, and has 'color' t0.
* The other circle is at (x1, y1) with radius r1, and has 'color' t1.
*
* We perform this rendering by approximating each quadrant of the 'tube'
* by a tensor patch. The tensor patch is formed by taking a curve along
* 1/4 of the circumference of the first circle, a straight line to the
* equivalent point on the circumference of the second circle, a curve
* back along the circumference of the second circle, and then a straight
* line back to where we started.
*
* There is additional logic in this function that forms the directions of
* the curves differently for different quadrants. This is done to ensure
* that we always paint 'around' the tube from the back towards the front,
* so we don't get unexpected regions showing though. This is explained more
* below.
*
* The original code here examined the position change between the two
* circles dx and dy. Based upon this vector it would pick which quadrant/
* tensor patch to draw first. It would draw the quadrants/tensor patches
* in anticlockwise order. Presumably this was intended to be done so that
* the 'top' quadrant would be drawn last.
*
* Unfortunately this did not always work; see bug 692513. If the quadrants
* were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces
* on top of 0, which was unexpected.
*
* I have therefore altered the code slightly; rather than picking a start
* quadrant and moving anticlockwise, we now draw the 'undermost' quadrant,
* then the two adjacent quadrants, then the topmost quadrant.
*
* For the purposes of explanation, we shall label the octants as below:
*
* \2|1/ and Quadrants as: |
* 3\|/0 Q1 | Q0
* ---+--- ----+----
* 4/|\7 Q2 | Q3
* /5|6\ |
*
* We find (dx,dy), the difference between the centres of the circles.
* We look to see which octant this falls in. Firstly, this tells us which
* quadrant of the circle we need to draw first (Octant n, starts with
* Quadrant floor(n/2)). Secondly, it tells us which direction to form the
* tensor patch in; we always want to draw from the side 'closest' to
* dx/dy to the side further away. This ensures that we don't overwrite
* pixels in the incorrect order as the patch decomposes.
*/
static int
R_tensor_annulus(patch_fill_state_t *pfs,
double x0, double y0, double r0, double t0,
double x1, double y1, double r1, double t1)
{
double dx = x1 - x0, dy = y1 - y0;
double d = hypot(dx, dy);
gs_point p0, p1, pc0, pc1;
int k, j, code, dirn;
bool inside = 0;
/* pc0 and pc1 are the centres of the respective circles. */
pc0.x = x0, pc0.y = y0;
pc1.x = x1, pc1.y = y1;
/* Set p0 up so it's a unit vector giving the direction of 90 degrees
* to the right of the major axis as we move from p0c to p1c. */
if (r0 + d <= r1 || r1 + d <= r0) {
/* One circle is inside another one.
Use any subdivision,
but don't depend on dx, dy, which may be too small. */
p0.x = 0, p0.y = -1, dirn = 0;
/* Align stripes along radii for faster triangulation : */
inside = 1;
pfs->function_arg_shift = 1;
} else {
/* Must generate canonic quadrangle arcs,
because we approximate them with curves. */
if(dx >= 0) {
if (dy >= 0)
p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0);
else
p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1);
} else {
if (dy >= 0)
p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0);
else
p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1);
}
pfs->function_arg_shift = 0;
}
/* fixme: wish: cut invisible parts off.
Note : when r0 != r1 the invisible part is not a half circle. */
for (k = 0; k < 4; k++) {
gs_point p[12];
patch_curve_t curve[4];
/* Set p1 to be 90 degrees anticlockwise from p0 */
p1.x = -p0.y; p1.y = p0.x;
if (dirn == 0) { /* Clockwise */
make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0);
make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1);
} else { /* Anticlockwise */
make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0);
make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1);
}
p[4].x = (p[3].x * 2 + p[6].x) / 3;
p[4].y = (p[3].y * 2 + p[6].y) / 3;
p[5].x = (p[3].x + p[6].x * 2) / 3;
p[5].y = (p[3].y + p[6].y * 2) / 3;
p[10].x = (p[9].x * 2 + p[0].x) / 3;
p[10].y = (p[9].y * 2 + p[0].y) / 3;
p[11].x = (p[9].x + p[0].x * 2) / 3;
p[11].y = (p[9].y + p[0].y * 2) / 3;
for (j = 0; j < 4; j++) {
int jj = (j + inside) % 4;
if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0)
gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p);
if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0)
gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]);
if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0)
gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]);
curve[j].straight = (((j + inside) & 1) != 0);
}
curve[(0 + inside) % 4].vertex.cc[0] = t0;
curve[(1 + inside) % 4].vertex.cc[0] = t0;
curve[(2 + inside) % 4].vertex.cc[0] = t1;
curve[(3 + inside) % 4].vertex.cc[0] = t1;
curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */
curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
/* Move p0 to be ready for the next position */
if (k == 0) {
/* p0 moves clockwise */
p1 = p0;
p0.x = p1.y; p0.y = -p1.x;
dirn = 0;
} else if (k == 1) {
/* p0 flips sides */
p0.x = -p0.x; p0.y = -p0.y;
dirn = 1;
} else if (k == 2) {
/* p0 moves anti-clockwise */
p1 = p0;
p0.x = -p1.y; p0.y = p1.x;
dirn = 0;
}
}
return 0;
}
/* Find the control points for two points on the arc of a circle
* the points must be within the same quadrant.
*/
static int find_arc_control_points(gs_point *from, gs_point *to, gs_point *from_control, gs_point *to_control, gs_point *centre)
{
double from_tan_alpha, to_tan_alpha, from_alpha, to_alpha;
double half_inscribed_angle, intersect_x, intersect_y, intersect_dist;
double radius = sqrt(((from->x - centre->x) * (from->x - centre->x)) + ((from->y - centre->y) * (from->y - centre->y)));
double tangent_intersect_dist;
double F;
int quadrant;
/* Quadrant 0 is upper right, numbered anti-clockwise.
* If the direction of the from->to is atni-clockwise, add 4
*/
if (from->x > to->x) {
if (from->y > to->y) {
if (to->y >= centre->y)
quadrant = 1 + 4;
else
quadrant = 3;
} else {
if (to->x >= centre->x)
quadrant = 0 + 4;
else
quadrant = 2;
}
} else {
if (from->y > to->y) {
if (from->x >= centre->x)
quadrant = 0;
else
quadrant = 2 + 4;
} else {
if (from->x >= centre->x)
quadrant = 3 + 4;
else
quadrant = 1;
}
}
switch(quadrant) {
/* quadrant 0, arc goes clockwise */
case 0:
if (from->x == centre->x) {
from_alpha = M_PI / 2;
} else {
from_tan_alpha = (from->y - centre->y) / (from->x - centre->x);
from_alpha = atan(from_tan_alpha);
}
to_tan_alpha = (to->y - centre->y) / (to->x - centre->x);
to_alpha = atan(to_tan_alpha);
half_inscribed_angle = (from_alpha - to_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y + sin(to_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 1, arc goes clockwise */
case 1:
from_tan_alpha = (from->y - centre->y) / (centre->x - from->x);
from_alpha = atan(from_tan_alpha);
if (to->x == centre->x) {
to_alpha = M_PI / 2;
} else {
to_tan_alpha = (to->y - centre->y) / (centre->x - to->x);
to_alpha = atan(to_tan_alpha);
}
half_inscribed_angle = (to_alpha - from_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 2, arc goes clockwise */
case 2:
if (from->x == centre->x) {
from_alpha = M_PI / 2;
} else {
from_tan_alpha = (centre->y - from->y) / (centre->x - from->x);
from_alpha = atan(from_tan_alpha);
}
to_tan_alpha = (centre->y - to->y) / (centre->x - to->x);
to_alpha = atan(to_tan_alpha);
half_inscribed_angle = (to_alpha - from_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 3, arc goes clockwise */
case 3:
from_tan_alpha = (centre->y - from->y) / (from->x - centre->x);
from_alpha = atan(from_tan_alpha);
if (to->x == centre->x) {
to_alpha = M_PI / 2;
} else {
to_tan_alpha = (centre->y - to->y) / (to->x - centre->x);
to_alpha = atan(to_tan_alpha);
}
half_inscribed_angle = (to_alpha - from_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 0, arc goes anti-clockwise */
case 4:
from_tan_alpha = (from->y - centre->y) / (from->x - centre->x);
from_alpha = atan(from_tan_alpha);
if (to->y == centre->y)
to_alpha = M_PI / 2;
else {
to_tan_alpha = (to->y - centre->y) / (to->x - centre->x);
to_alpha = atan(to_tan_alpha);
}
half_inscribed_angle = (to_alpha - from_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 1, arc goes anti-clockwise */
case 5:
from_tan_alpha = (centre->x - from->x) / (from->y - centre->y);
from_alpha = atan(from_tan_alpha);
if (to->y == centre->y) {
to_alpha = M_PI / 2;
}
else {
to_tan_alpha = (centre->x - to->x) / (to->y - centre->y);
to_alpha = atan(to_tan_alpha);
}
half_inscribed_angle = (to_alpha - from_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x - sin(from_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y + cos(from_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 2, arc goes anti-clockwise */
case 6:
from_tan_alpha = (from->y - centre->y) / (centre->x - from->x);
from_alpha = atan(from_tan_alpha);
if (to->x == centre->x) {
to_alpha = M_PI / 2;
} else {
to_tan_alpha = (centre->y - to->y) / (centre->x - to->x);
to_alpha = atan(to_tan_alpha);
}
half_inscribed_angle = (to_alpha - from_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
break;
/* quadrant 3, arc goes anti-clockwise */
case 7:
if (from->x == centre->x) {
from_alpha = M_PI / 2;
} else {
from_tan_alpha = (centre->y - from->y) / (from->x - centre->x);
from_alpha = atan(from_tan_alpha);
}
to_tan_alpha = (centre->y - to->y) / (to->x - centre->x);
to_alpha = atan(to_tan_alpha);
half_inscribed_angle = (from_alpha - to_alpha) / 2;
intersect_dist = radius / cos(half_inscribed_angle);
tangent_intersect_dist = tan(half_inscribed_angle) * radius;
intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist;
intersect_y = centre->y - sin(to_alpha + half_inscribed_angle) * intersect_dist;
break;
}
F = (4.0 / 3.0) / (1 + sqrt(1 + ((tangent_intersect_dist / radius) * (tangent_intersect_dist / radius))));
from_control->x = from->x - ((from->x - intersect_x) * F);
from_control->y = from->y - ((from->y - intersect_y) * F);
to_control->x = to->x - ((to->x - intersect_x) * F);
to_control->y = to->y - ((to->y - intersect_y) * F);
return 0;
}
/* Create a 'patch_curve' element whch is a straight line between two points */
static int patch_lineto(gs_matrix_fixed *ctm, gs_point *from, gs_point *to, patch_curve_t *p, float t)
{
double x_1third, x_2third, y_1third, y_2third;
x_1third = (to->x - from->x) / 3;
x_2third = x_1third * 2;
y_1third = (to->y - from->y) / 3;
y_2third = y_1third * 2;
gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p);
gs_point_transform2fixed(ctm, from->x + x_1third, from->y + y_1third, &p->control[0]);
gs_point_transform2fixed(ctm, from->x + x_2third, from->y + y_2third, &p->control[1]);
p->vertex.cc[0] = t;
p->vertex.cc[1] = t;
p->straight = 1;
return 0;
}
static int patch_curveto(gs_matrix_fixed *ctm, gs_point *centre, gs_point *from, gs_point *to, patch_curve_t *p, float t)
{
gs_point from_control, to_control;
find_arc_control_points(from, to, &from_control, &to_control, centre);
gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p);
gs_point_transform2fixed(ctm, from_control.x, from_control.y, &p->control[0]);
gs_point_transform2fixed(ctm, to_control.x, to_control.y, &p->control[1]);
p->vertex.cc[0] = t;
p->vertex.cc[1] = t;
p->straight = 0;
return 0;
}
static int draw_quarter_annulus(patch_fill_state_t *pfs, gs_point *centre, double radius, gs_point *corner, float t)
{
gs_point p0, p1, initial;
patch_curve_t p[4];
int code;
if (corner->x > centre->x) {
initial.x = centre->x + radius;
}
else {
initial.x = centre->x - radius;
}
initial.y = centre->y;
p1.x = initial.x;
p1.y = corner->y;
patch_lineto(&pfs->pgs->ctm, &initial, &p1, &p[0], t);
p0.x = centre->x;
p0.y = p1.y;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &p[1], t);
p1.x = centre->x;
if (centre->y > corner->y) {
p1.y = centre->y - radius;
} else {
p1.y = centre->y + radius;
}
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t);
patch_curveto(&pfs->pgs->ctm, centre, &p1, &initial, &p[3], t);
code = patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL);
if (code < 0)
return code;
if (corner->x > centre->x)
initial.x = corner->x - (corner->x - (centre->x + radius));
else
initial.x = centre->x - radius;
initial.y = corner->y;
patch_lineto(&pfs->pgs->ctm, corner, &initial, &p[0], t);
p0.x = initial.x;
p0.y = centre->y;
patch_lineto(&pfs->pgs->ctm, &initial, &p0, &p[1], t);
p1.y = p0.y;
p1.x = corner->x;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t);
patch_lineto(&pfs->pgs->ctm, &p1, corner, &p[3], t);
return (patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL));
}
static int R_tensor_annulus_extend_tangent(patch_fill_state_t *pfs,
double x0, double y0, double r0, double t0,
double x1, double y1, double r1, double t1, double r2)
{
patch_curve_t curve[4];
gs_point p0, p1;
int code = 0, q = 0;
/* special case axis aligned circles. Its quicker to handle these specially as it
* avoid lots of trigonometry in the general case code, and avoids us
* having to watch out for infinity as the result of tan() operations.
*/
if (x0 == x1 || y0 == y1) {
if (x0 == x1 && y0 > y1) {
/* tangent at top of circles */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 + r2, p1.y = y1 + r1;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r2, p1.y = y1 + r1;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
if (x0 == x1 && y0 < y1) {
/* tangent at bottom of circles */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 + r2, p1.y = y1 - r1;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r2, p1.y = y1 - r1;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
if (y0 == y1 && x0 > x1) {
/* tangent at right of circles */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 + r1, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 + r1, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
if (y0 == y1 && x0 < x1) {
/* tangent at left of circles */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 + r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r1, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p1.x = x1 - r1, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
}
else {
double tx, ty, endx, endy, intersectx, intersecty, alpha, sinalpha, cosalpha, tanalpha;
gs_point centre;
/* First lets figure out which quadrant the smaller circle is in (we always
* get called to fill from the larger circle), x0, y0, r0 is the smaller circle.
*/
if (x0 < x1) {
if (y0 < y1)
q = 2;
else
q = 1;
} else {
if (y0 < y1)
q = 3;
else
q = 0;
}
switch(q) {
case 0:
/* We have two four-sided elements, from the tangent point
* each side, to the point where the tangent crosses an
* axis of the larger circle. A line back to the edge
* of the larger circle, a line to the point where an axis
* crosses the smaller circle, then an arc back to the starting point.
*/
/* Figure out the tangent point */
/* sin (angle) = y1 - y0 / r1 - r0
* ty = ((y1 - y0) / (r1 - r0)) * r1
*/
ty = y1 + ((y0 - y1) / (r1 - r0)) * r1;
tx = x1 + ((x0 - x1) / (r1 - r0)) * r1;
/* Now actually calculating the point where the tangent crosses the axis of the larger circle
* So we need to know the angle the tangent makes with the axis of the smaller circle
* as its the same angle where it crosses the axis of the larger circle.
* We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
* We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
* is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
* circle
*/
sinalpha = (y0 - y1) / (r1 - r0);
alpha = asin(sinalpha);
cosalpha = cos(alpha);
intersectx = x1 + (r1 / cosalpha);
intersecty = y1;
p0.x = tx, p0.y = ty;
p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = intersectx, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1 + r1, p1.y = y1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
if (intersectx < x1 + r2) {
/* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = intersectx, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
endx = x1 + r2;
endy = y1 - (tan ((M_PI / 2) - alpha)) * (endx - intersectx);
p0.x = intersectx, p0.y = y1;
p1.x = x1 + r2, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 + r2, p0.y = y0 - r2;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = intersectx, p1.y = p0.y;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = intersectx, p0.y = y1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 3 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
/* Q2 is always a full annulus... */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
/* alpha is now the angle between the x axis and the tangent to the
* circles.
*/
alpha = (M_PI / 2) - alpha;
cosalpha = cos(alpha);
endy = y1 + (r1 / cosalpha);
endx = x1;
p0.x = tx, p0.y = ty;
p1.x = endx - ((endx - tx) / 2), p1.y = endy - ((endy - ty) / 2);
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = endx, p0.y = endy;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1, p1.y = y1 + r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
/* Q1 is simimlar to Q3, either a full quarter annulus
* or a partial one, depending on where the tangent crosses
* the y axis
*/
tanalpha = tan(alpha);
intersecty = y1 + tanalpha * (r2 + (intersectx - x1));
intersectx = x1 - r2;
if (endy < y1 + r2) {
/* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = endy;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p0.x = x1, p0.y = y1 + r1;
p1.x = x1, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 - r2, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = p0.x, p1.y = y1 + r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = x1, p0.y = y1 + r1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 1 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
break;
case 1:
/* We have two four-sided elements, from the tangent point
* each side, to the point where the tangent crosses an
* axis of the larger circle. A line back to the edge
* of the larger circle, a line to the point where an axis
* crosses the smaller circle, then an arc back to the starting point.
*/
/* Figure out the tangent point */
/* sin (angle) = y1 - y0 / r1 - r0
* ty = ((y1 - y0) / (r1 - r0)) * r1
*/
ty = y1 + ((y0 - y1) / (r1 - r0)) * r1;
tx = x1 - ((x1 - x0) / (r1 - r0)) * r1;
/* Now actually calculating the point where the tangent crosses the axis of the larger circle
* So we need to know the angle the tangent makes with the axis of the smaller circle
* as its the same angle where it crosses the axis of the larger circle.
* We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
* We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
* is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
* circle
*/
sinalpha = (y0 - y1) / (r1 - r0);
alpha = asin(sinalpha);
cosalpha = cos(alpha);
intersectx = x1 - (r1 / cosalpha);
intersecty = y1;
p0.x = tx, p0.y = ty;
p1.x = tx - (tx - intersectx) / 2, p1.y = ty - (ty - intersecty) / 2;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = intersectx, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1 - r1, p1.y = y1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
if (intersectx > x1 - r2) {
/* didn't get all the way to the edge, quadrant 2 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = intersectx, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
endx = x1 - r2;
endy = y1 - (tan ((M_PI / 2) - alpha)) * (intersectx - endx);
p0.x = intersectx, p0.y = y1;
p1.x = x1 - r2, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 - r2, p0.y = y0 - r2;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = intersectx, p1.y = p0.y;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = intersectx, p0.y = y1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 2 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
/* Q3 is always a full annulus... */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
/* alpha is now the angle between the x axis and the tangent to the
* circles.
*/
alpha = (M_PI / 2) - alpha;
cosalpha = cos(alpha);
endy = y1 + (r1 / cosalpha);
endx = x1;
p0.x = tx, p0.y = ty;
p1.x = endx + ((tx - endx) / 2), p1.y = endy - ((endy - ty) / 2);
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = endx, p0.y = endy;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1, p1.y = y1 + r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
/* Q0 is simimlar to Q2, either a full quarter annulus
* or a partial one, depending on where the tangent crosses
* the y axis
*/
tanalpha = tan(alpha);
intersecty = y1 + tanalpha * (r2 + (x1 - intersectx));
intersectx = x1 + r2;
if (endy < y1 + r2) {
/* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = endy;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p0.x = x1, p0.y = y1 + r1;
p1.x = x1, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 + r2, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = p0.x, p1.y = y1 + r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = x1, p0.y = y1 + r1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 0 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
break;
case 2:
/* We have two four-sided elements, from the tangent point
* each side, to the point where the tangent crosses an
* axis of the larger circle. A line back to the edge
* of the larger circle, a line to the point where an axis
* crosses the smaller circle, then an arc back to the starting point.
*/
/* Figure out the tangent point */
/* sin (angle) = y1 - y0 / r1 - r0
* ty = ((y1 - y0) / (r1 - r0)) * r1
*/
ty = y1 - ((y1 - y0) / (r1 - r0)) * r1;
tx = x1 - ((x1 - x0) / (r1 - r0)) * r1;
/* Now actually calculating the point where the tangent crosses the axis of the larger circle
* So we need to know the angle the tangent makes with the axis of the smaller circle
* as its the same angle where it crosses the axis of the larger circle.
* We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
* We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
* is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
* circle
*/
sinalpha = (y1 - y0) / (r1 - r0);
alpha = asin(sinalpha);
cosalpha = cos(alpha);
intersectx = x1 - (r1 / cosalpha);
intersecty = y1;
p0.x = tx, p0.y = ty;
p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = intersectx, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1 - r1, p1.y = y1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
if (intersectx > x1 - r2) {
/* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = intersectx, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
endy = y1+r2;
endx = intersectx - ((endy - intersecty) / (tan ((M_PI / 2) - alpha)));
p0.x = intersectx, p0.y = y1;
p1.x = endx, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 - r1, p0.y = endy;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1 - r1, p1.y = y1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = intersectx, p0.y = y1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 1 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
/* Q0 is always a full annulus... */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 + r2;
if (p1.y < 0)
p1.y = 0;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
/* alpha is now the angle between the x axis and the tangent to the
* circles.
*/
alpha = (M_PI / 2) - alpha;
cosalpha = cos(alpha);
endy = y1 - (r1 / cosalpha);
endx = x1;
p0.x = tx, p0.y = ty;
p1.x = endx + ((endx - tx) / 2), p1.y = endy - ((ty - endy) / 2);
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = endx, p0.y = endy;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1, p1.y = y1 - r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
/* Q3 is simimlar to Q1, either a full quarter annulus
* or a partial one, depending on where the tangent crosses
* the y axis
*/
tanalpha = tan(alpha);
intersecty = y1 - tanalpha * (r2 + (x1 - intersectx));
intersectx = x1 + r2;
if (endy > y1 - r2) {
/* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = endy;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p0.x = x1, p0.y = y1 - r1;
p1.x = x1, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 + r2, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = p0.x, p1.y = y1 - r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = x1, p0.y = y1 - r1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 1 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
break;
case 3:
/* We have two four-sided elements, from the tangent point
* each side, to the point where the tangent crosses an
* axis of the larger circle. A line back to the edge
* of the larger circle, a line to the point where an axis
* crosses the smaller circle, then an arc back to the starting point.
*/
/* Figure out the tangent point */
/* sin (angle) = y1 - y0 / r1 - r0
* ty = ((y1 - y0) / (r1 - r0)) * r1
*/
ty = y1 - ((y1 - y0) / (r1 - r0)) * r1;
tx = x1 + ((x0 - x1) / (r1 - r0)) * r1;
/* Now actually calculating the point where the tangent crosses the axis of the larger circle
* So we need to know the angle the tangent makes with the axis of the smaller circle
* as its the same angle where it crosses the axis of the larger circle.
* We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
* We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
* is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
* circle
*/
sinalpha = (y1 - y0) / (r1 - r0);
alpha = asin(sinalpha);
cosalpha = cos(alpha);
intersectx = x1 + (r1 / cosalpha);
intersecty = y1;
p0.x = tx, p0.y = ty;
p1.x = tx + (intersectx - tx) / 2, p1.y = ty + (intersecty - ty) / 2;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = intersectx, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1 + r1, p1.y = y1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
if (intersectx < x1 + r2) {
/* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = intersectx, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
endy = y1 + r2;
endx = intersectx + ((endy - intersecty) / (tan ((M_PI / 2) - alpha)));
p0.x = intersectx, p0.y = y1;
p1.x = endx, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 + r1, p0.y = endy;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1 + r1, p1.y = y1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = intersectx, p0.y = y1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 0 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 + r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
/* Q1 is always a full annulus... */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 + r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
/* alpha is now the angle between the x axis and the tangent to the
* circles.
*/
alpha = (M_PI / 2) - alpha;
cosalpha = cos(alpha);
endy = y1 - (r1 / cosalpha);
endx = x1;
p0.x = tx, p0.y = ty;
p1.x = endx + ((tx - endx) / 2), p1.y = endy + ((ty - endy) / 2);
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = endx, p0.y = endy;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = x1, p1.y = y1 - r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = tx, p0.y = ty;
centre.x = x1, centre.y = y1;
patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
/* Q3 is simimlar to Q1, either a full quarter annulus
* or a partial one, depending on where the tangent crosses
* the y axis
*/
tanalpha = tan(alpha);
intersecty = y1 - tanalpha * (r2 + (intersectx - x1));
intersectx = x1 - r2;
if (endy > y1 - r2) {
/* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
* An 'annulus' where the right edge is less than the normal extent and a
* quad which is a rectangle with one corner chopped of at an angle.
*/
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = endy;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
p0.x = x1, p0.y = y1 - r1;
p1.x = x1, p1.y = endy;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
p0.x = x1 - r2, p0.y = intersecty;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
p1.x = p0.x, p1.y = y1 - r1;
patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
p0.x = x1, p0.y = y1 - r1;
patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
} else {
/* Quadrant 1 is a normal quarter annulua */
p0.x = x1, p0.y = y1;
p1.x = x1 - r2, p1.y = y1 - r2;
draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
}
break;
}
}
return 0;
}
static int
R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double r0,
double x1, double y1, double r1,
double *x2, double *y2, double *r2)
{
double dx = x1 - x0, dy = y1 - y0;
double sp, sq, s;
/* Compute a cone circle, which contacts the rect externally. */
/* Don't bother with all 4 sides of the rect,
just do with the X or Y span only,
so it's not an exact contact, sorry. */
if (any_abs(dx) > any_abs(dy)) {
/* Solving :
x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px
(x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0
sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0)
x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx
(x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0
sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0)
*/
if (x1 - x0 + r1 - r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
if (x1 - x0 - r1 + r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0);
sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0);
} else {
/* Same by Y. */
if (y1 - y0 + r1 - r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
if (y1 - y0 - r1 + r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0);
sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0);
}
if (sp >= 1 && sq >= 1)
s = max(sp, sq);
else if(sp >= 1)
s = sp;
else if (sq >= 1)
s = sq;
else {
/* The circle 1 is outside the rect, use it. */
s = 1;
}
if (r0 + (r1 - r0) * s < 0) {
/* Passed the cone apex, use the apex. */
s = r0 / (r0 - r1);
*r2 = 0;
} else
*r2 = r0 + (r1 - r0) * s;
*x2 = x0 + (x1 - x0) * s;
*y2 = y0 + (y1 - y0) * s;
return 0;
}
static double
R_rect_radius(const gs_rect *rect, double x0, double y0)
{
double d, dd;
dd = hypot(rect->p.x - x0, rect->p.y - y0);
d = hypot(rect->p.x - x0, rect->q.y - y0);
dd = max(dd, d);
d = hypot(rect->q.x - x0, rect->q.y - y0);
dd = max(dd, d);
d = hypot(rect->q.x - x0, rect->p.y - y0);
dd = max(dd, d);
return dd;
}
static int
R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double x1, double y1, double x2, double y2, double t)
{
shading_vertex_t p0, p1, p2;
patch_color_t *c;
int code;
reserve_colors(pfs, &c, 1); /* Can't fail */
p0.c = c;
p1.c = c;
p2.c = c;
code = gs_point_transform2fixed(&pfs->pgs->ctm, x0, y0, &p0.p);
if (code >= 0)
code = gs_point_transform2fixed(&pfs->pgs->ctm, x1, y1, &p1.p);
if (code >= 0)
code = gs_point_transform2fixed(&pfs->pgs->ctm, x2, y2, &p2.p);
if (code >= 0) {
c->t[0] = c->t[1] = t;
patch_resolve_color(c, pfs);
code = mesh_triangle(pfs, &p0, &p1, &p2);
}
release_colors(pfs, pfs->color_stack, 1);
return code;
}
static int
R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double r0,
double x1, double y1, double r1, double t0, double r_rect)
{
double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
double d = hypot(dx, dy);
/* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */
double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */
double ax, ay, as; /* Cone apex. */
double g0; /* The distance from apex to the tangent point of the 0th circle. */
int code;
as = r0 / (r0 - r1);
ax = x0 + (x1 - x0) * as;
ay = y0 + (y1 - y0) * as;
g0 = sqrt(dx * dx + dy * dy - dr * dr) * as;
if (g0 < 1e-7 * r0) {
/* Nearly degenerate, replace with half-plane. */
/* Restrict the half plane with triangle, which covers the rect. */
gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit,
(right, left == when looking from the apex). */
p0.x = ax - dy * r / d;
p0.y = ay + dx * r / d;
p1.x = ax - dx * r / d;
p1.y = ay - dy * r / d;
p2.x = ax + dy * r / d;
p2.y = ay - dx * r / d;
/* Split into 2 triangles at the apex,
so that the apex is preciselly covered.
Especially important when it is not exactly degenerate. */
code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0);
if (code < 0)
return code;
return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0);
} else {
/* Compute the "limit" circle so that its
tangent points are outside the rect. */
/* Note: this branch is executed when the condition above is false :
g0 >= 1e-7 * r0 .
We believe that computing this branch with doubles
provides enough precision after converting coordinates into 'fixed',
and that the limit circle radius is not dramatically big.
*/
double es, er; /* The limit circle parameter, radius. */
double ex, ey; /* The limit circle centrum. */
es = as - as * r / g0; /* Always negative. */
er = r * r0 / g0 ;
ex = x0 + dx * es;
ey = y0 + dy * es;
/* Fill the annulus: */
code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0);
if (code < 0)
return code;
/* Fill entire ending circle to ensure entire rect is covered. */
return R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0);
}
}
static int
R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double r0,
double x1, double y1, double r1, double t)
{
double as = r0 / (r0 - r1);
double ax = x0 + (x1 - x0) * as;
double ay = y0 + (y1 - y0) * as;
return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t);
}
/*
* A map of this code:
*
* R_extensions
* |-> (R_rect_radius)
* |-> (R_outer_circle)
* |-> R_obtuse_cone
* | |-> R_fill_triangle_new
* | | '-> mesh_triangle
* | | '-> mesh_triangle_rec <--.
* | | |--------------------'
* | | |-> small_mesh_triangle
* | | | '-> fill_triangle
* | | | '-> triangle_by_4 <--.
* | | | |----------------'
* | | | |-> constant_color_triangle
* | | | |-> make_wedge_median (etc)
* | | '-----------+--------------------.
* | '-------------------. |
* |-> R_tensor_cone_apex | |
* | '-------------------+ |
* '-> R_tensor_annulus <--' \|/
* |-> (make_quadrant_arc) |
* '-> patch_fill |
* |-> fill_patch <--. |
* | |-------------' |
* | |------------------------------------+
* | '-> fill_stripe |
* | |-----------------------. |
* | \|/ | |
* |-> fill_wedges | |
* '-> fill_wedges_aux <--. | |
* |------------------' \|/ |
* |----------------> mesh_padding '
* | '----------------------------------.
* '-> wedge_by_triangles <--. . |
* |---------------------' | |
* '-> fill_triangle_wedge <----' |
* '-> fill_triangle_wedge_aux |
* '-> fill_wedge_trap |
* '-> wedge_trap_decompose |
* '-> linear_color_trapezoid |
* '-> decompose_linear_color <--|
* |-------------------------'
* '-> constant_color_trapezoid
*/
static int
R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect,
double t0, double t1, bool Extend0, bool Extend1)
{
float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
double r0 = psh->params.Coords[2];
float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
double r1 = psh->params.Coords[5];
double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
double d = hypot(dx, dy), r;
int code;
/* In order for the circles to be nested, one end circle
* needs to be sufficiently large to cover the entirety
* of the other end circle. i.e.
*
* max(r0,r1) >= d + min(r0,r1)
* === min(r0,r1) + dr >= d + min(r0,r1)
* === dr >= d
*
* This, plus a fudge factor for FP operation is what we use below.
*
* An "Obtuse Cone" is defined to be one for which the "opening
* angle" is obtuse.
*
* Consider two circles; one at (r0,r0) of radius r0, and one at
* (r1,r1) of radius r1. These clearly lie on the acute/obtuse
* boundary. The distance between the centres of these two circles
* is d = sqr(2.(r0-r1)^2) by pythagoras. Thus d = sqr(2).dr.
* By observation if d gets longer, we become acute, shorter, obtuse.
* i.e. if sqr(2).dr > d we are obtuse, if d > sqr(2).dr we are acute.
* (Thanks to Paul Gardiner for this reasoning).
*
* The code below tests (dr > d/3) (i.e. 3.dr > d). This
* appears to be a factor of 2 and a bit out, so I am confused
* by it.
*
* Either Igor meant something different to the standard meaning
* of "Obtuse Cone", or he got his maths wrong. Or he was more
* cunning than I can understand. Leave it as it until we find
* an actual example that goes wrong.
*/
/* Tests with Acrobat seem to indicate that it uses a fudge factor
* of around .0001. (i.e. [1.0001 0 0 0 0 1] is accepted as a
* non nested circle, but [1.00009 0 0 0 0 1] is a nested one.
* Approximate the same sort of value here to appease bug 690831.
*/
if (any_abs (dr - d) < 0.001) {
if ((r0 > r1 && Extend0) || (r1 > r0 && Extend1)) {
r = R_rect_radius(rect, x0, y0);
if (r0 < r1)
code = R_tensor_annulus_extend_tangent(pfs, x0, y0, r0, t1, x1, y1, r1, t1, r);
else
code = R_tensor_annulus_extend_tangent(pfs, x1, y1, r1, t0, x0, y0, r0, t0, r);
if (code < 0)
return code;
} else {
if (r0 > r1) {
if (Extend1 && r1 > 0)
return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
}
else {
if (Extend0 && r0 > 0)
return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
}
}
} else
if (dr > d - 1e-4 * (d + dr)) {
/* Nested circles, or degenerate. */
if (r0 > r1) {
if (Extend0) {
r = R_rect_radius(rect, x0, y0);
if (r > r0) {
code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0);
if (code < 0)
return code;
}
}
if (Extend1 && r1 > 0)
return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
} else {
if (Extend1) {
r = R_rect_radius(rect, x1, y1);
if (r > r1) {
code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1);
if (code < 0)
return code;
}
}
if (Extend0 && r0 > 0)
return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
}
} else if (dr > d / 3) {
/* Obtuse cone. */
if (r0 > r1) {
if (Extend0) {
r = R_rect_radius(rect, x0, y0);
code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r);
if (code < 0)
return code;
}
if (Extend1 && r1 != 0)
return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1);
return 0;
} else {
if (Extend1) {
r = R_rect_radius(rect, x1, y1);
code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r);
if (code < 0)
return code;
}
if (Extend0 && r0 != 0)
return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0);
}
} else {
/* Acute cone or cylinder. */
double x2, y2, r2, x3, y3, r3;
if (Extend0) {
code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3);
if (code < 0)
return code;
if (x3 != x1 || y3 != y1) {
code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0);
if (code < 0)
return code;
}
}
if (Extend1) {
code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2);
if (code < 0)
return code;
if (x2 != x0 || y2 != y0) {
code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1);
if (code < 0)
return code;
}
}
}
return 0;
}
static int
R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t)
{
#if 0 /* Disabled because the clist writer device doesn't pass
the clipping path with fill_recatangle. */
patch_color_t pc;
const gs_color_space *pcs = pfs->direct_space;
gx_device_color dc;
int code;
code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
if (code < 0)
return code;
pcs->type->restrict_color(&pc.cc, pcs);
code = patch_color_to_device_color(pfs, &pc, &dc);
if (code < 0)
return code;
return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y),
fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x),
fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y),
&dc, pfs->dev, pfs->pgs->log_op);
#else
/* Can't apply fill_rectangle, because the clist writer device doesn't pass
the clipping path with fill_recatangle. Convert into trapezoids instead.
*/
quadrangle_patch p;
shading_vertex_t pp[2][2];
const gs_color_space *pcs = pfs->direct_space;
patch_color_t pc;
int code;
code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
if (code < 0)
return code;
pcs->type->restrict_color(&pc.cc, pcs);
pc.t[0] = pc.t[1] = t;
pp[0][0].p = clip_rect->p;
pp[0][1].p.x = clip_rect->q.x;
pp[0][1].p.y = clip_rect->p.y;
pp[1][0].p.x = clip_rect->p.x;
pp[1][0].p.y = clip_rect->q.y;
pp[1][1].p = clip_rect->q;
pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc;
p.p[0][0] = &pp[0][0];
p.p[0][1] = &pp[0][1];
p.p[1][0] = &pp[1][0];
p.p[1][1] = &pp[1][1];
return constant_color_quadrangle(pfs, &p, false);
#endif
}
typedef struct radial_shading_attrs_s {
double x0, y0;
double x1, y1;
double span[2][2];
double apex;
bool have_apex;
bool have_root[2]; /* ongoing contact, outgoing contact. */
bool outer_contact[2];
gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */
} radial_shading_attrs_t;
#define Pw2(a) ((a)*(a))
static void
radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index)
{
double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t;
double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t;
double rx = rsa->p[point_index].x - cx;
double ry = rsa->p[point_index].y - cy;
double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x;
double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y;
if (at_corner) {
double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x;
double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y;
bool b1 = (dx * rx + dy * ry >= 0);
bool b2 = (Dx * rx + Dy * ry >= 0);
if (b1 & b2)
rsa->outer_contact[root_index] = true;
} else {
if (rx * dy - ry * dx < 0)
rsa->outer_contact[root_index] = true;
}
}
static void
store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner)
{
int i;
for (i = 0; i < 2; i++) {
bool good_root;
if (!have_root[i])
continue;
good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex));
if (good_root) {
radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i);
if (!rsa->have_root[i]) {
rsa->span[i][0] = rsa->span[i][1] = t[i];
rsa->have_root[i] = true;
} else {
if (rsa->span[i][0] > t[i])
rsa->span[i][0] = t[i];
if (rsa->span[i][1] < t[i])
rsa->span[i][1] = t[i];
}
}
}
}
static void
compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
{
double cc, c;
bool have_root[2] = {false, false};
double t[2];
bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x);
int i;
/* As t moves from 0 to 1, the circles move from r0 to r1, and from
* from position p0 to py. For simplicity, adjust so that p0 is at
* the origin. Consider the projection of the circle drawn at any given
* time onto the x axis. The range of points would be:
* p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last)
* moments when the range includes a point c on the x axis. So solve for:
* p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x.
* So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0)
* p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0)
*/
if (by_x) {
c = rsa->p[point_index].x - rsa->x0;
cc = rsa->x1 - rsa->x0;
} else {
c = rsa->p[point_index].y - rsa->y0;
cc = rsa->y1 - rsa->y0;
}
t[0] = (c - r0) / (cc + r1 - r0);
t[1] = (c + r0) / (cc - r1 + r0);
if (t[0] > t[1]) {
c = t[0];
t[0] = t[1];
t[1] = c;
}
for (i = 0; i < 2; i++) {
double d, d0, d1;
if (by_x) {
d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i];
d0 = rsa->p[point_index].y;
d1 = rsa->p[point_index + 1].y;
} else {
d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i];
d0 = rsa->p[point_index].x;
d1 = rsa->p[point_index + 1].x;
}
if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0)
have_root[i] = true;
}
store_roots(rsa, have_root, t, r0, r1, point_index, false);
}
static int
compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
{
/* As t moves from 0 to 1, the circles move from r0 to r1, and from
* from position p0 to py. At any given time t, therefore, we
* paint the points that are distance r0+(r1-r0)*t from point
* (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t).
*
* To simplify our algebra, adjust so that (p0x, p0y) is at the origin.
* To find the time(s) t at which the a point q is painted, we therefore
* solve for t in:
*
* |q-P(t)| = r0+(r1-r0)*t
*
* (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0
* = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 -
* (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2)
* = qx^2 + qy^2 - r0^2
* + -2(qx.p1x + qy.p1y + r0(r1-r0)).t
* + (p1x^2 + p1y^2 - (r1-r0)^2).t^2
*
* So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where
* a = p1x^2 + p1y^2 - (r1-r0)^2
* b = -2(qx.p1x + qy.p1y + r0(r1-r0))
* c = qx^2 + qy^2 - r0^2
*/
double p1x = rsa->x1 - rsa->x0;
double p1y = rsa->y1 - rsa->y0;
double qx = rsa->p[point_index].x - rsa->x0;
double qy = rsa->p[point_index].y - rsa->y0;
double a = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1));
bool have_root[2] = {false, false};
double t[2];
if (fabs(a) < 1e-8) {
/* Linear equation. */
/* This case is always the ongoing ellipse contact. */
double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0);
double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0);
t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2;
have_root[0] = true;
} else {
/* Square equation. No solution if b^2 - 4ac = 0. Equivalently if
* (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 === (-b/2)^2 - a.c = 0 */
double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy;
double c = Pw2(qx) + Pw2(qy) - Pw2(r0);
double desc2 = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */
if (desc2 < 0) {
return -1; /* The point is outside the shading coverage.
Do not shorten, because we didn't observe it in practice. */
} else {
double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */
if (a > 0) {
t[0] = (minushalfb - desc1) / a;
t[1] = (minushalfb + desc1) / a;
} else {
t[0] = (minushalfb + desc1) / a;
t[1] = (minushalfb - desc1) / a;
}
have_root[0] = have_root[1] = true;
}
}
store_roots(rsa, have_root, t, r0, r1, point_index, true);
if (have_root[0] && have_root[1])
return 15;
if (have_root[0])
return 15 - 4;
if (have_root[1])
return 15 - 2;
return -1;
}
#undef Pw2
static int
compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1)
{
int span_type0, span_type1;
span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1);
if (span_type0 == -1)
return -1;
span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4);
if (span_type0 != span_type1)
return -1;
compute_radial_shading_span_extended_side(rsa, r0, r1, 1);
compute_radial_shading_span_extended_side(rsa, r0, r1, 2);
compute_radial_shading_span_extended_side(rsa, r0, r1, 3);
compute_radial_shading_span_extended_side(rsa, r0, r1, 4);
return span_type0;
}
static int
compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, double r0, float x1, float y1, double r1, const gs_rect * rect)
{
/* If the shading area is much larger than the path bbox,
we want to shorten the shading for a faster rendering.
If any point of the path bbox falls outside the shading area,
our math is not applicable, and we render entire shading.
If the path bbox is inside the shading area,
we compute 1 or 2 'spans' - the shading parameter intervals,
which covers the bbox. For doing that we need to resolve
a square eqation by the shading parameter
for each corner of the bounding box,
and for each side of the shading bbox.
Note the equation to be solved in the user space.
Since each equation gives 2 roots (because the points are
strongly inside the shading area), we will get 2 parameter intervals -
the 'lower' one corresponds to the first (ongoing) contact of
the running circle, and the second one corresponds to the last (outgoing) contact
(like in a sun eclipse; well our sun is rectangular).
Here are few exceptions.
First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2)
appears equal to r0-r1. In this case the base circles do contact,
and the running circle does contact at the same point.
The equation degenerates to a linear one.
Since we don't want float precision noize to affect the result,
we compute this condition in 'fixed' coordinates.
Second, Postscript approximates any circle with 3d order beziers.
This approximation may give a 2% error.
Therefore using the precise roots may cause a dropout.
To prevetn them, we slightly modify the base radii.
However the sign of modification smartly depends
on the relative sizes of the base circles,
and on the contact number. Currently we don't want to
define and debug the smart optimal logic for that,
so we simply try all 4 variants for each source equation,
and use the union of intervals.
Third, we could compute which quarter of the circle
really covers the path bbox. Using it we could skip
rendering of uncovering quarters. Currently we do not
implement this optimization. The general tensor patch algorithm
will skip uncovering parts.
Fourth, when one base circle is (almost) inside the other,
the parameter interval must include the shading apex.
To know that, we determine whether the contacting circle
is outside the rectangle (the "outer" contact),
or it is (partially) inside the rectangle.
At last, a small shortening of a shading won't give a
sensible speedup, but it may replace a symmetric function domain
with an assymmetric one, so that the rendering
would be asymmetyric for a symmetric shading.
Therefore we do not perform a small sortening.
Instead we shorten only if the shading span
is much smaller that the shading domain.
*/
const double extent = 1.02;
int span_type0, span_type1, span_type;
memset(rsa, 0, sizeof(*rsa));
rsa->x0 = x0;
rsa->y0 = y0;
rsa->x1 = x1;
rsa->y1 = y1;
rsa->p[0] = rsa->p[4] = rect->p;
rsa->p[1].x = rsa->p[5].x = rect->p.x;
rsa->p[1].y = rsa->p[5].y = rect->q.y;
rsa->p[2] = rect->q;
rsa->p[3].x = rect->q.x;
rsa->p[3].y = rect->p.y;
rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0);
rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0);
span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent);
if (span_type0 == -1)
return -1;
span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent);
if (span_type1 == -1)
return -1;
if (r0 < r1) {
if (rsa->have_root[0] && !rsa->outer_contact[0])
rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */
if (rsa->have_root[1] && !rsa->outer_contact[1])
rsa->span[1][0] = rsa->apex;
} else if (r0 > r1) {
if (rsa->have_root[0] && !rsa->outer_contact[0])
rsa->span[0][1] = rsa->apex;
if (rsa->have_root[1] && !rsa->outer_contact[1])
rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */
}
span_type = 0;
if (rsa->have_root[0] && rsa->span[0][0] < 0)
span_type |= 1;
if (rsa->have_root[1] && rsa->span[1][0] < 0)
span_type |= 1;
if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1)
span_type |= 2;
if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1)
span_type |= 4;
if (rsa->have_root[0] && rsa->span[0][1] > 1)
span_type |= 8;
if (rsa->have_root[1] && rsa->span[1][1] > 1)
span_type |= 8;
return span_type;
}
static bool
shorten_radial_shading(float *x0, float *y0, double *r0, float *d0, float *x1, float *y1, double *r1, float *d1, double span_[2])
{
double s0 = span_[0], s1 = span_[1], w;
if (s0 < 0)
s0 = 0;
if (s1 < 0)
s1 = 0;
if (s0 > 1)
s0 = 1;
if (s1 > 1)
s1 = 1;
w = s1 - s0;
if (w == 0)
return false; /* Don't pass a degenerate shading. */
if (w > 0.3)
return false; /* The span is big, don't shorten it. */
{ /* Do shorten. */
double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0;
double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1;
*r0 = R0 + (R1 - R0) * s0;
*x0 = X0 + (X1 - X0) * s0;
*y0 = Y0 + (Y1 - Y0) * s0;
*d0 = D0 + (D1 - D0) * s0;
*r1 = R0 + (R1 - R0) * s1;
*x1 = X0 + (X1 - X0) * s1;
*y1 = Y0 + (Y1 - Y0) * s1;
*d1 = D0 + (D1 - D0) * s1;
}
return true;
}
static bool inline
is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect)
{
const double d = hypot(x1 - x0, y1 - y0);
const double area0 = M_PI * r0 * r0 / 2;
const double area1 = M_PI * r1 * r1 / 2;
const double area2 = (r0 + r1) / 2 * d;
const double arbitrary = 8;
double areaX, areaY;
/* The shading area is not equal to area0 + area1 + area2
when one circle is (almost) inside the other.
We believe that the 'arbitrary' coefficient recovers that
when it is set greater than 2. */
/* If one dimension is large enough, the shading parameter span is wide. */
areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x);
if (areaX * arbitrary < area0 + area1 + area2)
return true;
areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y);
if (areaY * arbitrary < area0 + area1 + area2)
return true;
return false;
}
static int
gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect *clip_rect,
gx_device * dev, gs_gstate * pgs)
{
const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0;
float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
double r0 = psh->params.Coords[2];
float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
double r1 = psh->params.Coords[5];
radial_shading_attrs_t rsa;
int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */
int code;
patch_fill_state_t pfs1;
if (r0 == 0 && r1 == 0)
return 0; /* PLRM requires to paint nothing. */
code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs);
if (code < 0)
return code;
pfs1.Function = psh->params.Function;
code = init_patch_fill_state(&pfs1);
if (code < 0) {
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
return code;
}
pfs1.function_arg_shift = 0;
pfs1.rect = *clip_rect;
pfs1.maybe_self_intersecting = false;
if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect))
span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect);
else
span_type = -1;
if (span_type < 0) {
code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
if (code >= 0)
code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1);
if (code >= 0)
code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
} else if (span_type == 1) {
code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0);
} else if (span_type == 8) {
code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1);
} else {
bool second_interval = true;
code = 0;
if (span_type & 1)
code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
if ((code >= 0) && (span_type & 2)) {
float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
double R0 = r0, R1 = r1;
if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) {
double united[2];
united[0] = rsa.span[0][0];
united[1] = rsa.span[1][1];
shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united);
second_interval = false;
} else {
second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]);
}
code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
}
if (code >= 0 && second_interval) {
if (span_type & 4) {
float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
double R0 = r0, R1 = r1;
shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]);
code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
}
}
if (code >= 0 && (span_type & 8))
code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
}
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
if (term_patch_fill_state(&pfs1))
return_error(gs_error_unregistered); /* Must not happen. */
return code;
}
int
gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect * rect_clip,
gx_device * dev, gs_gstate * pgs)
{
return gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs);
}
|