1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
|
/*
* Lexmark 3200 Color Jetprinter driver
*
* version 0.4.1
*
* Copyright 2000 by Daniel Gordini (dgordin@tin.it)
*
* --------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to:
*
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301
* USA
*
*
* --------------------------------------------------------------------
*
* This driver is almost 100% original code but it is based
* on protocol information partly discovered by Andrew Onifer III
* (http://www.mindspring.com/~aonifer) and Peter B. West
* (http://www.powerup.com.au/~pbwest) that were used as a starting
* base for the reverse-engineering of the protocol.
*
* Please mail me bug reports, comments and suggestions.
*
* Don't forget to read the release notes before installing !!
*
*/
#include "gdevprn.h"
#include "gsparams.h"
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
typedef struct lxm_device_s lxm_device;
/* General global data that must be accessible
* by all routines. (Now moved into device struct).
*/
typedef struct pagedata_s
{
/* General invariant data */
int numbytes; /* Number of bytes in a scanline of the buffer */
int numrbytes; /* Width (in bytes) of one rasterized scanline */
int goffset; /* Guard offset at each side of each scanline (columns) */
int numblines; /* Number of lines in a buffer */
int numlines; /* Number of lines in a vertical head pass */
int rendermode; /* Type of rendering */
int numvlines; /* Number of lines in the page */
int numcols; /* Number of columns in a row */
int numpasses; /* Number of passes used to print one stripe */
int bidirprint; /* Bidirectional printing enabled ? */
int select; /* Resolution selector */
int modelprint; /* which printer? - lxm3200=0, z12=1, z31=2 */
int z31margin; /* margin for the Z31 */
/* Printing offsets */
int leftoffset; /* Start printing offset from left margin */
int topoffset; /* Start printing offset from top margin */
/* Resolution settings */
int xres; /* Horizontal dots per inch */
int yres; /* Vertical dots per inch */
int xrmul; /* Horizontal coordinate multiplier */
int yrmul; /* Vertical coordinate multiplier */
/* Pagewide status */
int curheadpos; /* Current absolute printhead position */
int linetoeject; /* Number of lines for the eject command */
int direction; /* Printing direction for next stripe */
/* Alignment data */
int bwsep; /* Nozzle columns separation in B&W/photo cartridge */
int colsep; /* Nozzle columns separation in color cartridge */
int vertalign; /* Vertical alignment offset of the two cartridges */
int lrhalign; /* Horizontal alignment between left and right cartridges */
/* Data pointers */
byte *outdata; /* Buffer to output data codes for one full stripe */
byte *scanbuf; /* Buffer to contain the rasterized scanlines */
gp_file *stream; /* Output stream */
lxm_device *dev; /* Pointer to our device */
/* Buffer data */
int left, right; /* Actual left and right margins */
int firstline; /* Head of the circular scanline buffer */
int lastblack; /* Line of last black pass rendered in a color print */
int curvline; /* Current vertical position */
/* Stripe related data */
byte header[24]; /* Stripe header data */
int fullflag; /* A stripe is ready to be output */
int stripebytes; /* Number of bytes in a stripe */
int ileave; /* Interleaving pass: 0=even lines, 1=odd lines */
} pagedata;
/* Prototypes for public routines */
static dev_proc_map_rgb_color(lxm3200_map_rgb_color);
static dev_proc_map_color_rgb(lxm3200_map_color_rgb);
static dev_proc_print_page(lxm3200_print_page);
static dev_proc_get_params(lxm3200_get_params);
static dev_proc_put_params(lxm3200_put_params);
static dev_proc_open_device(lxm3200_open);
/* Prototypes for internal routines */
static void freeresources(lxm_device *pdev);
static byte calccheck8(byte *data);
static void outputepilogue(pagedata *gendata);
static void skiplines(pagedata *gendata, int skipcol, int skipin);
static void fillheader(pagedata *gendata, int head, int numcol, int firstcol, int bytes);
static void finalizeheader(pagedata *gendata, int vskip, int newhead);
static void convbuf(pagedata *gendata, int head, int numcols, int firstcol);
static void encode_bw_buf(pagedata *gendata);
static void encode_col_buf(pagedata *gendata, int head);
static int fill_mono_buffer(pagedata *gendata, int vline);
static int init_buffer(pagedata *gendata);
static int qualify_buffer(pagedata *gendata);
static int roll_buffer(pagedata *gendata);
static void calclinemargins(pagedata *gendata, byte *data, int mask, int *left, int *right);
static void calcbufmargins(pagedata *gendata,int head);
static int print_color_page(pagedata *gendata);
static void print_mono_page(pagedata *gendata);
static int print_photo_page(pagedata *gendata);
/* Codes for the color indexes. */
#define WHITE 0x00 /* Pure white */
#define MAGENTA 0x01 /* Standard magenta */
#define CYAN 0x02 /* Standard cyan */
#define YELLOW 0x04 /* Standard yellow */
#define LIGHTCYAN 0x10 /* Light cyan (photo mode) */
#define LIGHTMAGENTA 0x20 /* Light magenta (photo mode) */
#define BLACK 0x40 /* Pure black */
/* Modes for rendering: used by the common procedures to
* discriminate from mono to color and photo modes.
*/
#define LXM3200_M 0 /* Monochrome mode */
#define LXM3200_C 1 /* Standard color mode */
#define LXM3200_P 2 /* Photo color mode */
/* Initial horizontal position for the printheads,
* in 1200ths of an inch. Note that "left" and "right"
* head here refers to paper margin, and so looking at
* them from the front of printer they will appear reversed.
*/
/* Left head (B&W/photo) start position */
#define LHSTART (gendata->leftoffset+6254)
/* added for Lexmark Z12 28.09.2002 */
#define LHSTART_z12 (gendata->leftoffset+5000)
/* Right head (color) start position. This is relative to
* LHSTART so we only need to change one parameter to adjust
* the head starting position. In the case of the Lexmark Z12
* we have only one cartridge: black or color, so
* LHSTART_Z12 = RHSTART_Z12
*/
#define RHSTART (LHSTART-2120)
#define RHSTART_z12 (LHSTART_z12) /* added for Lexmark Z12 28.9.2002 */
/* Difference in starting position between left-to-right
* and right-to-left passes, in 1200ths of an inch.
* Obviously only used in bidirectional mode.
*/
#define LRPASSHOFS 62
/* Initial vertical position of the printheads,
* in 1200ths of an inch.
*/
#define BWTOPSTART (gendata->topoffset+420)
#define COLTOPSTART (gendata->topoffset+476)
/* Base alignment offset between the color cartridge
* and the B&W cartridge in 192 nozzles mode.
*/
#define COLORVALIGN_V 8
#define BLACKVALIGN_V (gendata->vertalign+30)
#define PHOTOVALIGN_V (gendata->vertalign)
/* Values used to index the vertical aligment array */
#define COLORVALIGN 0
#define BLACKVALIGN 1
#define PHOTOVALIGN 2
/* Offset of color pens from first row, in 1/600ths of an inch.
* Pen 0 is the topmost and is the CYAN or LIGHTCYAN pen (depending
* on the cartridge: standard color or photo). Pen 1 is the middle
* one, which carries MAGENTA or LIGHTMAGENTA color. Pen 2 is the
* bottom one, which is YELLOW or BLACK.
*/
#define PEN0OFS 0
#define PEN1OFS 92
#define PEN2OFS 184
/* Number of nozzles in each pen type */
#define COLORPEN 64 /* Each color pen of a color/photo cartridge */
#define BWCOLPEN 192 /* Black cartridge used in color or 1200dpi modes */
#define BWSTDPEN 208 /* Black cartridge used in mono non-1200dpi mode */
/* Values used by the color mapping routines */
#define HALFTONE (gx_max_color_value/2)
#define FULLTONE (gx_max_color_value)
#define ONETHIRD (FULLTONE/3)
#define TWOTHIRD ((2*FULLTONE)/3)
/* Printer head and printing direction selectors */
#define LEFT 0 /* Left head (B/W or photo) or left-to-right direction */
#define RIGHT 1 /* Right head (colour) or right-to-left direction */
/* Qualificators for the scan buffer */
#define LAST 0x01 /* The buffer is the last on the page */
#define LHDATA 0x02 /* The buffer contains data for the left head */
#define RHDATA 0x04 /* The buffer contains data for the right head */
/* Printer's margins, in inches. The Lexmark 3200 has two settings
* for the side margins: one is used with A4-sized paper and one
* (here called conventionally "LETTER") is used for all other paper
* sizes. Envelopes have different margins as well, but under ghostscript
* it's quite hard to know, from inside a printer driver, if we are
* printing on envelopes or on standard paper, so we just ignore that.
*/
#define LXM3200_TOP_MARGIN 0.070f
#define LXM3200_BOTTOM_MARGIN 0.200f
#define LXM3200_A4_LEFT_MARGIN 0.135f
#define LXM3200_LETTER_LEFT_MARGIN 0.250f
#define LXM3200_A4_RIGHT_MARGIN 0.135f
#define LXM3200_LETTER_RIGHT_MARGIN 0.250f
/* Offsets for the top and bootom start of the printing frame. */
#define LXM3200_A4_TOPOFFSET 84
#define LXM3200_A4_LEFTOFFSET 162
#define LXM3200_LETTER_TOPOFFSET 84
#define LXM3200_LETTER_LEFTOFFSET 300
/*
* ------ The device descriptor ------
*/
/* Device procedures */
static void
lxm3200_initialize_device_procs(gx_device *dev)
{
gdev_prn_initialize_device_procs(dev);
set_dev_proc(dev, open_device, lxm3200_open);
set_dev_proc(dev, map_rgb_color, lxm3200_map_rgb_color);
set_dev_proc(dev, map_color_rgb, lxm3200_map_color_rgb);
set_dev_proc(dev, get_params, lxm3200_get_params);
set_dev_proc(dev, put_params, lxm3200_put_params);
set_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
set_dev_proc(dev, encode_color, lxm3200_map_rgb_color);
set_dev_proc(dev, decode_color, lxm3200_map_color_rgb);
}
/* Define an extension (subclass) of gx_device_printer. */
struct lxm_device_s
{
gx_device_common;
gx_prn_device_common;
int rendermode; /* Rendering mode (BW, CMYK, CcMmYK) */
int algnA; /* Horizontal alignment between left and right cartridges */
int algnB; /* Vertical alignment between left and right cartridges */
int algnC; /* Nozzle column separation of left cartridge */
int algnD; /* Nozzle column separation of right cartridge */
int bidir; /* Bidirectional printing active ? */
int numpass; /* Number of head passes for each stripe */
int leftoffset; /* Offset of first column from left side of paper */
int topoffset; /* Offset of first row from top of paper */
int model; /* Parameter to choose the model - lxm3200=0, z12=1, z31=2 */
int z31m; /* Alignment parameter for the Z31 */
/* Lookup table for pen position offsets of color/photo cartridges.
* Parameter is the pen number, as defined by the pen offsets above:
* pen 0 is CYAN/LIGHTCYAN, pen 1 is MAGENTA/LIGHTMAGENTA, pen 2 is
* YELLOW/BLACK. This is used to properly take account the position
* of each color pen relative to the vertical position of the
* color/photo cartridge. */
int penofs[3];
/* Lookup table for vertical alignment of the cartridges relative to
* each other. Parameter is the cartridge type: 0 = color cartridge,
* 1 = black cartridge in color mode, 2 = photo cartridge.
* Black cartridge in monochromatic mode is always aligned at 0
* because in that mode we print with only one cartridge so there can
* be no alignment problems (a single cartridge is always aligned
* with itself, otherwise the printer tray is faulty). */
int valign[3];
/* Lookup table for horizontal offsets. First parameter is the
* head, second parameter the printing direction. */
int hoffset[2][2];
/* formerly globals */
pagedata data;
};
/* Device definition: Lexmark 3200 */
lxm_device far_data gs_lxm3200_device =
{
prn_device_body(lxm_device,
lxm3200_initialize_device_procs,
"lxm3200",
DEFAULT_WIDTH_10THS,
DEFAULT_HEIGHT_10THS,
600, /* default x dpi */
600, /* default y dpi */
0.0, /* left margin, inches (filled-in later) */
0.0, /* bottom margin, inches (filled-in later) */
0.0, /* right margin, inches (filled-in later) */
0.0, /* top margin, inches (filled-in later) */
1, /* number of color components (mono) */
8, /* bits per pixel */
1, /* number of gray levels-1: B&W only */
0, /* number of color levels-1: no color */
2, /* dither gray: maximum 2 distinct gray levels */
0, /* dither rgb: no RGB dithering in this mode */
lxm3200_print_page),
LXM3200_C, /* default printing mode */
16, 8, 16, 16, /* default aligment parameters value */
0, 1, /* default bidirectional and numpasses value */
0, 0, /* left and top offsets (filled-in later) */
0, /* default model = Lexmark 3200 */
100 /* default z31m */
};
/* --------- Static data --------- */
/* Lookup tables to speed up bitwise operations */
static byte bits[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
static byte ibits[8] = { 0x7f, 0xbf, 0xdf, 0xef, 0xf7, 0xfb, 0xfd, 0xfe };
/* Lookup table for masking color pens in color/photo cartridges.
* This is used to check the raster buffer for the presence of a
* particular color in the pixel we are encoding.
* The first index is the head (LEFT or RIGHT) which is used to
* distinguish between photo and color cartridges. The second index
* is the pen number (0 is the upper pen, 1 the middle pen, 2 the
* lower pen) on that cartridge.
*/
static byte colmask[2][3] =
{
{ LIGHTCYAN, LIGHTMAGENTA, BLACK},
{ CYAN, MAGENTA, YELLOW }
};
/* Initialization sequence needed at the beginning of the data stream.
* This is invariant and contains a reset sequence, meaning each single
* page in a multiple page output is sent to the printer as an independent
* print job.
*/
static byte init_sequence[] =
{
0x1b, 0x2a, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x1b, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33,
0x1b, 0x30, 0x80, 0x0C, 0x02, 0x00, 0x00, 0xbe,
0x1b, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21
};
static byte z12_init_sequence[] =
{
0x1b, 0x2a, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x1b, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33,
0x1b, 0x63, 0x00, 0x01, 0x40, 0x02, 0x0d, 0xb3,
0x1b, 0x30, 0x80, 0x0c, 0x01, 0x00, 0x00, 0xbd,
0x1b, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21
};
/* --------- Interface routines --------- */
/* Function called by ghostscript to open the
* printer device. We set the margins and offsets
* here. Note that to guess which paper is loaded
* into the printer, we calculate the line width
* and then anything between 8.25 and 8.4 inches
* is considered to be A4.
* This routine is inspired by the omologous
* routine from the "gdevbj10" driver.
*/
static int
lxm3200_open(gx_device *pdev)
{
float linewidth;
static const float a4_margins[4] =
{
LXM3200_A4_LEFT_MARGIN, LXM3200_BOTTOM_MARGIN,
LXM3200_A4_RIGHT_MARGIN, LXM3200_TOP_MARGIN
};
static const float letter_margins[4] =
{
LXM3200_LETTER_LEFT_MARGIN, LXM3200_BOTTOM_MARGIN,
LXM3200_LETTER_RIGHT_MARGIN, LXM3200_TOP_MARGIN
};
linewidth = (float)(pdev->width) / (float)(pdev->x_pixels_per_inch);
if(linewidth >= 8.25 && linewidth <= 8.4)
{
gx_device_set_margins(pdev, a4_margins, true);
((lxm_device *)pdev)->topoffset = LXM3200_A4_TOPOFFSET;
((lxm_device *)pdev)->leftoffset = LXM3200_A4_LEFTOFFSET;
}
else
{
gx_device_set_margins(pdev, letter_margins, true);
((lxm_device *)pdev)->topoffset = LXM3200_LETTER_TOPOFFSET;
((lxm_device *)pdev)->leftoffset = LXM3200_LETTER_LEFTOFFSET;
}
return gdev_prn_open(pdev);
}
/* Function used by ghostscript to map a RGB
* value to the driver's internal representation
* of the nearest color.
*/
static gx_color_index
lxm3200_map_rgb_color(gx_device *dev, const gx_color_value cv[])
{
gx_color_index col;
gx_color_value r, g, b;
int c, m, y;
gx_color_value tmpcv[3];
r = cv[0]; g = cv[1]; b = cv[2];
/* In case R, G and B values are equal, ghostscript
* prescribes that the color value must be turned
* into a gray shade. In our case this means either
* black or white
*/
if(r == g && r == b)
{
if(r > HALFTONE)
return(WHITE);
else
return(BLACK);
}
/* Calculate CMY values from RGB. This is *overly*
* simple, but it's enough to print something.
*/
c = FULLTONE - r;
m = FULLTONE - g;
y = FULLTONE - b;
/* Now encode the calculated color into the internal
* format. This means simply to turn on or off the
* bits representing each color depending on the value
* of the appropriate CMY component.
* Note that we are not doing black separation or any
* other fancy stuff: this is spartane code just to
* make the printer work.
*/
col = 0;
if(y > HALFTONE)col |= YELLOW;
switch(((lxm_device *)dev)->rendermode)
{
case LXM3200_C:
if(c > HALFTONE)col |= CYAN;
if(m > HALFTONE)col |= MAGENTA;
break;
case LXM3200_P:
if(c > TWOTHIRD)
col |= CYAN;
else
if(c > ONETHIRD)col |= LIGHTCYAN;
if(m > TWOTHIRD)
col |= MAGENTA;
else
if(m > ONETHIRD)col |= LIGHTMAGENTA;
break;
default:
tmpcv[0] = r; tmpcv[1] = g; tmpcv[2] = b;
col = gdev_prn_map_rgb_color(dev, tmpcv);
break;
}
return(col);
}
/* Function called by ghostscript to map the
* internal representation of a color to a
* RGB value.
*/
static int
lxm3200_map_color_rgb(gx_device *dev, gx_color_index color,
gx_color_value prgb[3])
{
int c, m, y;
if(color == WHITE)
{
prgb[0] = FULLTONE;
prgb[1] = FULLTONE;
prgb[2] = FULLTONE;
return(0);
}
if(color & BLACK)
{
prgb[0] = 0;
prgb[1] = 0;
prgb[2] = 0;
return(0);
}
/* Calculate back CMY components from the internal
* representation of the color
*/
c = 0;
m = 0;
y = 0;
switch(((lxm_device *)dev)->rendermode)
{
case LXM3200_C:
color &= (CYAN|MAGENTA|YELLOW);
if(color & CYAN)c = 2;
if(color & MAGENTA)m = 2;
if(color & YELLOW)y = 2;
break;
case LXM3200_P:
default:
color &= (CYAN|MAGENTA|YELLOW|LIGHTCYAN|LIGHTMAGENTA);
if(color & LIGHTCYAN)c = 1;
if(color & LIGHTMAGENTA)m = 1;
if(color & YELLOW)y = 2;
if(color & CYAN)c = 2;
if(color & MAGENTA)m = 2;
break;
}
/* And now turn CMY to RGB, in the usual spartane way */
prgb[0] = (gx_color_value)((2 - c) * HALFTONE);
prgb[1] = (gx_color_value)((2 - m) * HALFTONE);
prgb[2] = (gx_color_value)((2 - y) * HALFTONE);
return(0);
}
/* Main routine of the driver. This takes care of
* all parameters and static data initialization
* and calls the proper page printing routines
* depending on the selected printing mode.
*/
static int
lxm3200_print_page(gx_device_printer *pdev, gp_file *prn_stream)
{
int code = 0;
lxm_device *dev = (lxm_device *)pdev;
pagedata *gendata;
gendata = &dev->data;
/* Store data passed by ghostscript to the driver */
gendata->dev = dev;
gendata->stream = prn_stream;
gendata->rendermode = (gendata->dev)->rendermode;
/* Snap resolution on one of the three supported setting
* (300, 600, 1200 dpi) depending on the input resoution value.
* Horizontal and vertical resolution are treated independently.
*/
gendata->xres = 600;
if((gendata->dev)->x_pixels_per_inch < 450)gendata->xres = 300;
if((gendata->dev)->x_pixels_per_inch > 900)gendata->xres = 1200;
gendata->xrmul = 1200 / gendata->xres;
gendata->yres = 600;
if((gendata->dev)->y_pixels_per_inch < 450)gendata->yres = 300;
if((gendata->dev)->y_pixels_per_inch > 900)gendata->yres = 1200;
gendata->yrmul = 1200 / gendata->yres;
/* Cache horizontal and vertical starting offsets */
gendata->topoffset = (gendata->dev)->topoffset;
gendata->leftoffset = (gendata->dev)->leftoffset;
/* Build lookup table for pen offset, adjusting for
* vertical resolution setting
*/
dev->penofs[0] = (PEN0OFS * 2) / gendata->yrmul;
dev->penofs[1] = (PEN1OFS * 2) / gendata->yrmul;
dev->penofs[2] = (PEN2OFS * 2) / gendata->yrmul;
/* Build lookup table for vertical heads alignment,
* adjusting for vertical resolution setting
*/
dev->valign[COLORVALIGN] = (COLORVALIGN_V * 2) / gendata->yrmul;
dev->valign[BLACKVALIGN] = (BLACKVALIGN_V * 2) / gendata->yrmul;
dev->valign[PHOTOVALIGN] = (PHOTOVALIGN_V * 2) / gendata->yrmul;
/* Build lookup tables for initial horizontal offsets,
* adjusting for horizontal resolution setting
*/
/* choose whether to use lxm3200 or Z12 settings */
gendata->modelprint=(gendata->dev)->model; /* which model? */
gendata->z31margin=(gendata->dev)->z31m; /*which additional margin for z31*/
switch(gendata->modelprint){
case 1: /* we use the Lexmark Z12 */
dev->hoffset[LEFT][LEFT] = LHSTART_z12;
dev->hoffset[RIGHT][LEFT] = RHSTART_z12 + gendata->lrhalign;
break;
default: /* default (if one uses the Lexmark 3200 or the Lexmark Z31) */
dev->hoffset[LEFT][LEFT] = LHSTART;
dev->hoffset[RIGHT][LEFT] = RHSTART + gendata->lrhalign;
break;
}
dev->hoffset[LEFT][RIGHT] = dev->hoffset[LEFT][LEFT] - LRPASSHOFS;
dev->hoffset[RIGHT][RIGHT] = dev->hoffset[RIGHT][LEFT] - LRPASSHOFS;
/* Initialization of general parameters */
gendata->outdata = NULL;
gendata->scanbuf = NULL;
gendata->curheadpos = 0;
gendata->left = 0;
gendata->right = 0;
gendata->lastblack = 0;
gendata->curvline = 0;
gendata->firstline = 0;
gendata->fullflag = FALSE;
gendata->direction = LEFT;
gendata->ileave = 0;
gendata->bidirprint = (gendata->dev)->bidir;
gendata->numpasses = (gendata->dev)->numpass;
/* Set some parameters that depend on resolution and
* printing mode. We calculate all at 600dpi (the native
* resolution) and then correct later for different
* resolution settings.
*/
switch(gendata->rendermode)
{
/* In monochrome mode we try to use all 208 nozzles of
* the black cartridge to speed up printing. But if we
* are printing at 1200 dpi horizontal, only 192 nozzles
* are available anyway (it seems an hardware limitation).
* We print a full buffer at every pass, so the number of
* lines in the buffer is the same as the number of nozzles
* of the head.
*/
case LXM3200_M:
gendata->numblines = 208;
gendata->numlines = 208;
gendata->select = 0x10;
if(gendata->xres == 1200)
{
gendata->numblines = 192;
gendata->numlines = 192;
gendata->select = 0x00;
}
break;
/* In color or photo mode we must use 192 nozzles only in
* the black cartridge, to cope with the color and photo
* cartridges (which have 3 color pen of 64 nozzles each,
* for a total of 192 nozzles). But the color pens are
* vertically spaced and misaligned with respect to the
* black pen. To solve this problem, we need a buffer which
* is larger than 192 lines and then we print only the
* proper "windows" from it. We choose to set the buffer
* height to 256, which is the smallest power of two large
* enough to hold all the needed data. We use a power of
* two for speed, since in this way the modulo operation
* in the inner loops (needed to take care of buffer rolling)
* becomes a simple and much faster bitwise AND.
*/
case LXM3200_P:
case LXM3200_C:
gendata->numblines = 256;
gendata->numlines = 192;
gendata->select = 0x00;
break;
}
/* Correct the number of lines of the buffer to take care
* of different vertical resolution modes. Since the buffer
* does cover a constant vertical spacing, we must double the
* number of lines at 1200dpi and half it at 300dpi, to take
* into account the different thickness of the lines at the
* three different vertical resolutions.
*/
gendata->numblines = (gendata->numblines * 2) / gendata->yrmul;
/* Now correct the "select" field to adjust the horizontal
* motor speed depending on position. Meanwhile, if we are
* at 1200 dpi, double the number of horizontal passes
* because each stripe at 1200 dpi horizontal must be printed
* in two passes.
*/
switch(gendata->xres)
{
case 300:
gendata->select |= 0x60;
break;
case 1200:
gendata->select |= 0x40;
gendata->numpasses *= 2;
break;
}
/* Now store some useful info taken from the ghostscript
* device structure to speed up access.
*/
gendata->numcols = (gendata->dev)->width;
gendata->numvlines = (gendata->dev)->height;
gendata->lrhalign = (gendata->dev)->algnA;
gendata->vertalign = (gendata->dev)->algnB;
gendata->bwsep = (gendata->dev)->algnC;
gendata->colsep = (gendata->dev)->algnD;
gendata->goffset = (max(gendata->bwsep, gendata->colsep) * 2) / gendata->xrmul;
gendata->numbytes = gendata->numcols + (2 * gendata->goffset);
gendata->numrbytes = gdev_mem_bytes_per_scan_line(gendata->dev);
/* Calculate number of lines in the page and initialize the
* counter of the lines to eject. At the end of the printing,
* to eject the paper sheet we must send to the printer a
* command to move the paper forward. The amount to move is
* the length of paper which is still inside the printer plus
* two inches (the number is expressed in 1200ths of an inch,
* so "plus two inches" means "add 2400").
*/
gendata->linetoeject = gendata->numvlines * gendata->yrmul;
gendata->linetoeject += 2400;
/* Allocate memory for the buffers and
* verify that the allocation was done properly.
*/
gendata->scanbuf = (byte *)gs_malloc(pdev->memory->non_gc_memory, gendata->numbytes, gendata->numblines,
"lxm3200_print_page(scanbuf)");
gendata->outdata = (byte *)gs_malloc(pdev->memory->non_gc_memory, gendata->numbytes, 30,
"lxm3200_print_page(outdata)");
if(gendata->scanbuf == NULL ||
gendata->outdata == NULL)
{
freeresources(dev);
return_error(gs_error_VMerror);
}
/* Send initialization sequence to the printer */
if(gendata->modelprint==1) gp_fwrite(z12_init_sequence, sizeof(z12_init_sequence), 1, prn_stream);
else gp_fwrite(init_sequence, sizeof(init_sequence), 1, prn_stream);
/* Choose the right page printing routine
* depending on the printing mode.
*/
switch(gendata->rendermode)
{
case LXM3200_P:
code = print_photo_page(gendata);
if (code < 0) goto end;
break;
case LXM3200_C:
code = print_color_page(gendata);
if (code < 0) goto end;
break;
case LXM3200_M:
default:
print_mono_page(gendata);
break;
}
/* Output the end-of-page epilogue */
outputepilogue(gendata);
end:
/* Free the allocated resources */
freeresources(dev);
/* Done. Bye bye, see you on next page. */
return code;
}
/* Function that Ghostscript calls to ask the driver
* the value of its parameters. This function is based
* on the equivalent from the HP850 driver (gdevcd8.c)
* by Uli Wortmann.
* I won't comment it because I haven't even tried
* to understand this code... :)
*/
static int
lxm3200_get_params(gx_device *pdev, gs_param_list *plist)
{
int code;
code = gdev_prn_get_params(pdev, plist);
if(code < 0)return(code);
code = param_write_int(plist, "algnA", &((lxm_device *)pdev)->algnA);
if(code < 0)return(code);
code = param_write_int(plist, "algnB", &((lxm_device *)pdev)->algnB);
if(code < 0)return(code);
code = param_write_int(plist, "algnC", &((lxm_device *)pdev)->algnC);
if(code < 0)return(code);
code = param_write_int(plist, "algnD", &((lxm_device *)pdev)->algnD);
if(code < 0)return(code);
code = param_write_int(plist, "bidir", &((lxm_device *)pdev)->bidir);
if(code < 0)return(code);
code = param_write_int(plist, "numpass", &((lxm_device *)pdev)->numpass);
if(code < 0)return(code);
code = param_write_int(plist, "mode", &((lxm_device *)pdev)->rendermode);
if(code < 0)return(code);
code = param_write_int(plist, "model", &((lxm_device *)pdev)->model);
if(code < 0)return(code);
code = param_write_int(plist, "z31m", &((lxm_device *)pdev)->z31m);
return code;
}
/* Function that Ghostscript calls to let the driver
* set the value of its parameters. This function is
* based on the equivalent from the HP850 driver
* (gdevcd8.c) by Uli Wortmann.
* I won't comment it because I haven't even tried
* to understand this code... :)
*/
static int
lxm3200_put_params(gx_device *pdev, gs_param_list *plist)
{
int algnA = ((lxm_device *)pdev)->algnA;
int algnB = ((lxm_device *)pdev)->algnB;
int algnC = ((lxm_device *)pdev)->algnC;
int algnD = ((lxm_device *)pdev)->algnD;
int bidir = ((lxm_device *)pdev)->bidir;
int numpass = ((lxm_device *)pdev)->numpass;
int mode = ((lxm_device *)pdev)->rendermode;
int code = 0;
int model = ((lxm_device *)pdev)->model; /* for model selection */
int z31m = ((lxm_device *)pdev)->z31m; /* additional margin for the z31 */
code = param_read_int(plist, "algnA", &algnA);
if(code < 0)return(code);
if(algnA < 0 || algnA > 30)
param_signal_error(plist, "algnA", gs_error_rangecheck);
code = param_read_int(plist, "algnB", &algnB);
if(code < 0)return(code);
if(algnB < 0 || algnB > 15)
param_signal_error(plist, "algnB", gs_error_rangecheck);
code = param_read_int(plist, "algnC", &algnC);
if(code < 0)return(code);
if(algnC < 0 || algnC > 30)
param_signal_error(plist, "algnC", gs_error_rangecheck);
code = param_read_int(plist, "algnD", &algnD);
if(code < 0)return(code);
if(algnD < 0 || algnD > 30)
param_signal_error(plist, "algnD", gs_error_rangecheck);
code = param_read_int(plist, "bidir", &bidir);
if(code < 0)return(code);
if(bidir != 0 && bidir != 1)
param_signal_error(plist, "bidir", gs_error_rangecheck);
code = param_read_int(plist, "numpass", &numpass);
if(code < 0)return(code);
if(numpass < 1 || numpass > 16)
param_signal_error(plist, "numpass", gs_error_rangecheck);
code = param_read_int(plist, "mode", &mode);
if(code < 0)return(code);
if(mode != LXM3200_M && mode != LXM3200_C && mode != LXM3200_P)
param_signal_error(plist, "mode", gs_error_rangecheck);
code = param_read_int(plist, "model", &model); /* asking for the model of printer: lxm3200 , Z12, Z31 */
if(code < 0)return(code);
if(model < 0 || model > 2 )
param_signal_error(plist, "model", gs_error_rangecheck);
code = param_read_int(plist, "z31m", &z31m); /* What additional margin for the Z31 */
if(code < 0)return(code);
((lxm_device *)pdev)->algnA = algnA;
((lxm_device *)pdev)->algnB = algnB;
((lxm_device *)pdev)->algnC = algnC;
((lxm_device *)pdev)->algnD = algnD;
((lxm_device *)pdev)->bidir = bidir;
((lxm_device *)pdev)->numpass = numpass;
((lxm_device *)pdev)->rendermode = mode;
((lxm_device *)pdev)->model = model; /* Model selection: lxm3200, Z12, Z31. */
((lxm_device *)pdev)->z31m = z31m; /* Additional margin for the Z31 */
/* Depending on the selected rendering mode, change the
* driver's parameters that ghostscript needs for the
* dithering. We need to do it here because the "get_params"
* and "put_params" are the only routines in the driver that
* ghostscript calls before using the dithering parameters.
*/
{
int old_num = pdev->color_info.num_components;
switch (mode)
{
case LXM3200_M:
pdev->color_info.num_components = 1;
pdev->color_info.max_gray = 1;
pdev->color_info.max_color = 0;
pdev->color_info.dither_grays = 2;
pdev->color_info.dither_colors = 0;
break;
case LXM3200_C:
pdev->color_info.num_components = 3;
pdev->color_info.max_gray = 1;
pdev->color_info.max_color = 1;
pdev->color_info.dither_grays = 2;
pdev->color_info.dither_colors = 2;
break;
case LXM3200_P:
pdev->color_info.num_components = 3;
pdev->color_info.max_gray = 1;
pdev->color_info.max_color = 2;
pdev->color_info.dither_grays = 2;
pdev->color_info.dither_colors = 3;
break;
}
/* The above is horrid. But, if we change the color model
the ICC profile needs to change too. Blow away the
current structure. A new one will be built when we
go to gdev_prn_put_params. */
if (old_num != pdev->color_info.num_components) {
rc_decrement(pdev->icc_struct, "lxm3200_put_params");
pdev->icc_struct = NULL;
}
}
code = gdev_prn_put_params(pdev, plist);
return code;
}
/* --------- Internal routines --------- */
/* Free the resources allocated by the driver */
static void
freeresources(lxm_device *dev)
{
pagedata *gendata = &dev->data;
if(gendata->scanbuf)
gs_free(dev->memory->non_gc_memory, (char *)gendata->scanbuf, gendata->numbytes, gendata->numblines,
"lxm3200:freeresources(scanbuf)");
if(gendata->outdata)
gs_free(dev->memory->non_gc_memory, (char *)gendata->outdata, gendata->numbytes, 30,
"lxm3200:freeresources(outdata)");
}
/* Calculate the checksum of an escape sequence.
* It is defined as the sum modulo 256 of the
* six bytes following the escape character.
*
* data: pointer to the first of the 8 characters
* of an escape sequence.
*/
static byte
calccheck8(byte *data)
{
int ck, i;
ck = 0;
for(i=1; i<7; i++)ck += data[i];
return(ck);
}
/* Output the page epilogue. This procedure outputs
* the escape sequence needed to eject the page and
* take the printheads to the "park" position.
*/
static void
outputepilogue(pagedata *gendata)
{
byte trailer[24];
int pos;
/* Page eject sequence */
trailer[0] = 0x1b;
trailer[1] = 0x22;
trailer[2] = 0x80;
trailer[3] = gendata->linetoeject >> 8;
trailer[4] = gendata->linetoeject & 0xff;
trailer[5] = 0x00;
trailer[6] = 0x00;
trailer[7] = calccheck8(trailer);
/* Calculate the value we need to take the head back
* to the park position. This is the current head position
* if we printed the last stripe left-to-right, and the
* current head position minus 168 (0xa8) if we printed the
* last stripe right-to-left.
*/
pos = gendata->curheadpos;
if(gendata->bidirprint && gendata->direction == LEFT)pos -= 0xa8;
if(pos < 0)pos = 0;
/* Horizontal back sequence */
trailer[8] = 0x1b;
trailer[9] = 0x31;
trailer[10] = 0x10;
trailer[11] = pos >> 8;
trailer[12] = pos & 0xff;
trailer[13] = 0x00;
trailer[14] = 0x00;
trailer[15] = calccheck8(trailer+8);
/* Reset sequence */
trailer[16] = 0x1b;
trailer[17] = 0x33;
trailer[18] = 0x00;
trailer[19] = 0x00;
trailer[20] = 0x00;
trailer[21] = 0x00;
trailer[22] = 0x00;
trailer[23] = 0x33;
gp_fwrite(trailer, 8, 3, gendata->stream);
}
/* Output a "page forward" escape sequence,
* needed to move the paper forward some lines.
*
* skiprow: number of buffer lines to skip
* vskip : fixed offset, in 1200ths of an inch
*/
static void
skiplines(pagedata *gendata, int skiprow, int skipin)
{
byte escape[8];
int vskip;
/* The vertical skip command accepts a spacing expressed in
* 1200ths of an inch, so we must convert lines to 1200ths
* of an inch. After the conversion we sum an offset directly
* expressed in 1200ths of an inch: this way we can use this
* routine to skip both a certain amount of lines (which exact
* spacing value depends on the vertical resolution) and a
* fixed offset that we directly know in spacing units.
*/
vskip = skiprow*gendata->yrmul + skipin;
escape[0] = 0x1b;
escape[1] = 0x23;
escape[2] = 0x80;
escape[3] = vskip >> 8;
escape[4] = vskip & 0xff;
escape[5] = 0x00;
escape[6] = 0x00;
escape[7] = calccheck8(escape);
/* Adjust the number of lines still inside the printer */
gendata->linetoeject -= vskip;
gp_fwrite(escape, 8, 1, gendata->stream);
}
/* Fill a stripe header with data.
*
* head: LEFT or RIGHT, chooses which head we are "feeding"
* numcol: number of data columns in this stripe, including blank ones
* firstcol: position of the first column in the stripe (the *very first*,
* even if it's blank).
* bytes: total number of bytes in the stripe, including directories
* (but excluding the 24 bytes of the header).
*/
static void
fillheader(pagedata *gendata, int head, int numcol, int firstcol, int bytes)
{
int len, offs1, startabs;
int endabs, select, fwd;
int back, nabspos;
/* int sep;*/
byte *header;
header = gendata->header;
/* Correct the measures: firstcol and len need to
* be in 1200ths of an inch.
*/
firstcol *= gendata->xrmul;
len = numcol * gendata->xrmul;
/* Alter select to choose direction */
select = gendata->select | (gendata->direction == LEFT ? 0x01 : 0x00);
/* Calculate the proper horizontal offset */
offs1 = gendata->dev->hoffset[head][gendata->direction];
/* Now calculate the correct separation depending on the
* head type and adjust "select" to choose between left
* or right head.
*/
if(head == LEFT)
{
/* sep = (gendata->bwsep * 2) / gendata->xrmul;*/
}
else
{
/* sep = (gendata->colsep * 2) / gendata->xrmul; */
select |= 0x80;
}
/* Now calculate absolute starting and ending positions
* of this stripe, taking into account the printing direction
*/
startabs = firstcol + offs1;
if(gendata->direction == LEFT)
endabs = startabs + len;
else
endabs = startabs - len;
/* And now, basing on current head position,
* transform the absolute coordinates in a
* relative movement of the head.
* The formulas used for this are "black magic",
* since this is a part of the protocol which is
* still not well known. What you see here is an
* empyrical formula devised by examination and
* parameter fitting on the data output by the
* Windows driver.
*/
if(gendata->direction == LEFT)
{
nabspos = (((endabs - 3600) >> 3) & 0xfff0) + 9;
fwd = nabspos - gendata->curheadpos;
}
else
{
if(endabs > 4816)
nabspos = (((endabs - 4800) >> 3) & 0xfff0) + 9;
else
nabspos = (((endabs - 3600) >> 3) & 0xfff0) + 9;
fwd = gendata->curheadpos - nabspos;
}
gendata->curheadpos += (gendata->direction == LEFT ? fwd : -fwd);
/* If we are printing unidirectionally, calculate
* the backward movement to return the printing head
* at the beginning of this stripe.
*/
back = 0;
if(gendata->bidirprint == FALSE)
{
if(startabs > 4816)
nabspos = ((startabs - 4800) >> 3) & 0xfff0;
else
nabspos = ((startabs - 3600) >> 3) & 0xfff0;
if(gendata->direction == LEFT)
back = gendata->curheadpos - nabspos;
else
back = nabspos - gendata->curheadpos;
}
gendata->curheadpos -= (gendata->direction == LEFT ? back : -back);
/* First part of the header */
header[0] = 0x1b;
header[1] = 0x40;
header[2] = select; /* Printing type flags */
header[3] = numcol >> 8; /* MSB of the number of columns to print */
header[4] = numcol & 0xff; /* LSB of the number of columns to print */
header[5] = fwd >> 8; /* MSB of the relative forward head motion */
header[6] = fwd & 0xff; /* LSB of the relative forward head motion */
header[7] = calccheck8(&header[0]);
/* Second part of the header */
header[8] = 0x1b;
header[9] = 0x42;
header[10] = 0x00;
if(gendata->modelprint==1) header[10] = 0x10; /* Lexmark Z12 protocol */
header[11] = back >> 8; /* MSB of the relative backward head motion */
header[12] = back & 0xff; /* LSB of the relative backward head motion */
header[13] = 0x00; /* MSB of the relative downward head motion */
header[14] = 0x00; /* LSB of the relative downward head motion */
header[15] = calccheck8(&header[8]);
/* Third (and last) part of the header */
header[16] = 0x1b;
header[17] = 0x43;
header[18] = (bytes >> 16) & 0xff;
header[19] = (bytes >> 8) & 0xff;
header[20] = bytes & 0xff; /* LSB of the number of bytes in this stripe */
header[21] = startabs >> 8; /* MSB of the starting column of this stripe */
header[22] = startabs & 0xff; /* LSB of the starting column of this stripe */
header[23] = calccheck8(&header[16]);
/* Signal to other routines that the output buffer
* is full and how many bytes it is long.
*/
gendata->stripebytes = bytes;
gendata->fullflag = TRUE;
/* If bidirectional printing is in effect, change
* the printing direction for the next stripe
*/
if(gendata->bidirprint)
gendata->direction = (gendata->direction == LEFT ? RIGHT : LEFT);
}
/* Set final information in the header and output all
* the data passes. This routine is needed because the
* actual values of two fields of the header (final
* head position and number of vertical lines to reach
* the next stripe) depend on the next stripe and are
* therefore unknown when "fillheader" is called.
*
* vskip : number of lines to skip to reach next stripe
* newhead: head used for the next stripe (LEFT or RIGHT)
*/
static void
finalizeheader(pagedata *gendata, int vskip, int newhead)
{
int offs2, nstartabs, back, fwd;
int habs, p, dir, endabs, col;
int newstart, sep;
byte *header;
header = gendata->header;
/* Check the printing direction this stripe
* was originally intended for.
*/
dir = (header[2] & 0x01 ? LEFT : RIGHT);
/* Retrieve the horizontal offset for the next stripe. We don't do this
if newhead is negative, because otherwise we would be out of bounds in
gendata->dev->hoffset[]; offs2 isn't actually used in this case anyway.
*/
if (newhead >= 0) {
offs2 = gendata->dev->hoffset[newhead][gendata->direction];
}
/* Calculate the separation adjust in 1200ths of an inch */
if(newhead == LEFT)
sep = (gendata->bwsep * 2) / gendata->xrmul;
else
sep = (gendata->colsep * 2) / gendata->xrmul;
/* Now calculate the correct starting column
* of the next stripe
*/
if(gendata->direction == LEFT)
newstart = (gendata->left * gendata->xrmul) - sep;
else
newstart = (gendata->right * gendata->xrmul);
vskip *= gendata->yrmul;
/* Calculate absolute starting position of new stripe */
if (newhead >= 0) {
nstartabs = newstart + offs2;
}
/* Calculate absolute ending position of this stripe
* by summing (with proper sign) the starting position
* and the width.
*/
endabs = header[21]*256 + header[22]; /* Starting position */
col = (header[3]*256 + header[4]); /* Width in columns */
col *= gendata->xrmul; /* Transformed in 1200ths of an inch */
if(dir == LEFT)
endabs += col; /* Printing left-to-right */
else
endabs -= col; /* Printing right-to-left */
/* Correct head position neutralizing the effect
* of the last issued head movement commands. The
* head movement for this stripe needs to be
* recalculated from scratch to take into account
* the correct beginning position of the next stripe.
*/
if(dir == LEFT)
{
gendata->curheadpos += header[11]*256 + header[12]; /* Back movement */
gendata->curheadpos -= header[5]*256 + header[6]; /* Forward movement */
}
else
{
gendata->curheadpos -= header[11]*256 + header[12]; /* Back movement */
gendata->curheadpos += header[5]*256 + header[6]; /* Forward movement */
}
/* We use a convention of passing a negative value for
* "newhead" to mean that this is the last stripe of the
* sheet, so we don't need to care for the next stripe.
*/
if(newhead < 0)
{
/* Last stripe: we only need to calculate proper forward
* motion to print all the current stripe.
*/
fwd = ((header[5]*256 + header[6]) & 0xfff0) + 9;
}
else
{
/* This is not the last stripe, so we need to calculate
* the forward (in the printing direction) movement
* that will take the printing head at the end of the
* current stripe or at the beginning of the next,
* whichever is farther. Note that we are always
* talking relative to printing direction, so we must
* take into proper account if we are printing from left
* to right or from right to left.
*/
if(dir == LEFT)
{
p = max(endabs, nstartabs);
habs = (((p - 3600) >> 3) & 0xfff0) + 9;
fwd = habs - gendata->curheadpos;
/* part for the Lexmark Z31!!! */
if(gendata->modelprint==2) fwd += gendata->z31margin;
}
else
{
p = min(endabs, nstartabs);
if(p > 4816)
habs = (((p - 4800) >> 3) & 0xfff0);
else
habs = (((p - 3600) >> 3) & 0xfff0);
fwd = gendata->curheadpos - habs;
}
}
/* Now update the current head position to take into
* account the forward movement just computed
*/
gendata->curheadpos += (dir == LEFT ? fwd : -fwd);
/* Now calculate the value of the needed backward movement
* to poisition the head correctly for the start of the
* next stripe.
*/
if(newhead < 0 || gendata->bidirprint)
{
/* If this is the last stripe of the page,
* there is no need to take back the head:
* it will be done by the parking command.
* Or if we are printing bidirectionally,
* the forward command has taken the head to
* the correct position, so no need to move it.
*/
back = 0;
}
else
{
/* Calculate the right backward movement basing
* on the start of the next stripe.
*/
if(nstartabs > 4856)
habs = ((nstartabs - 4840) >> 3) & 0xfff0;
else
habs = ((nstartabs - 3600) >> 3) & 0xfff0;
back = gendata->curheadpos - habs;
/* If the next stripe starts at the right
* of this one, "back" will be too small or
* negative, so correct it.
* It appears that 16 is the minimum allowable
* backward movement that does not make the 3200
* misbehave in the next stripe. This does not hold
* if we are changing printing direction (in such a
* case backward movement may be zero). This means
* we are moving the head a little more than needed,
* but it seems unavoidable.
*/
if(back < 16)back = 16;
}
/* Lastly, update the current head position with the
* backward movement just calculated.
*/
gendata->curheadpos -= (dir == LEFT ? back : -back);
/* Modify first part of the header */
header[5] = fwd >> 8;
header[6] = fwd & 0xff;
header[7] = calccheck8(&header[0]);
/* Modify second part of the header */
header[8] = 0x1b;
header[9] = 0x42;
header[10] = 0x00;
if(gendata->modelprint==1) header[10] = 0x10; /* Lexmark Z12 protocol */
header[11] = back >> 8; /* MSB of the relative backward head motion */
header[12] = back & 0xff; /* LSB of the relative backward head motion */
header[13] = vskip >> 8; /* MSB of the relative downward head motion */
header[14] = vskip & 0xff; /* LSB of the relative downward head motion */
header[15] = calccheck8(&header[8]);
/* Now output the data, signalling that the output
* buffer is now empty.
*/
gp_fwrite(header, 3, 8, gendata->stream);
gp_fwrite(gendata->outdata, gendata->stripebytes, 1, gendata->stream);
gendata->fullflag = FALSE;
}
/* Convert a buffer data stream into
* directory/data representation, using the
* shortest coding (either direct or RLE)
*
* head : head we are printing with (left or right).
* numcols : number of columns in the buffer.
* firstcol: first column to print.
*/
static void
convbuf(pagedata *gendata, int head, int numcols, int firstcol)
{
byte *read, *write;
int x, i, c, p, q, cnt, rle, std;
int nby, ofs, dts0, dtr0, dtr1;
int bytes;
/* Initialize the pointers. We use the same buffer
* for both input and output (we can do it because
* the output data is at most as long as the input).
* Note that the encode routines skipped 4 bytes at
* each column to make room for the directory word.
*/
read = gendata->outdata + 4;
write = gendata->outdata;
/* Set the parameters that will be used to create the directory and
* to access the data. These parameters define the structure of the
* directory word (32 bit) and depend on the number of nozzles that
* are used. Note that the directory bitfield is initialized to all
* ones (but read below for further info) because it works in negative
* logic (i.e. a change is marked by a zero bit).
* Below, nby is the number of bytes needed in the input data to map
* a column (each nozzle is 1 bit, so 208 nozzles are 26 bytes and
* 192 nozzles are 24 bytes). Ofs is the number of the first bit of
* the directory bitfield in the directory word (with 208 nozzles we
* need 26 bits, from 6 to 31, with 192 nozzles we need 24 bits, from
* 8 to 31). The other three parameters are the values needed to
* initialize the directory word properly: the key is the first two
* bits, which must be "10" for a directly encoded stripe and "01" for
* a RLE encoded one. In the lexmark directory, each bit represents a
* group of 8 nozzles: in a directly encoded stripe if the bit is "1"
* it means none of the nozzles in the group are used, if it is a "0"
* it means at least one is used and we need to append a data byte to
* define the exact usage pattern. So, for direct encoded stripes we
* start with the first two bits set to "10" and all the directory
* bitfield set to "1" (we will unset to "0" only the needed bits in
* the encoding loop). If we are using RLE encoding, each "0" bits
* means that there is a data byte that defines a pattern for the
* group of 8 nozzles associated to that bit, and an "1" means that
* the pattern for the associated group of nozzles is the same as the
* previous group. This means that for RLE encoded stripes we start the
* directory word with two bits set to "01" and then initialize to "1"
* all the directory bitfield, except the first one which must be 0
* because we must have at least one data byte to define the initial
* pattern that will be eventually repeated.
*/
if(gendata->numlines == 208)
{
nby = 26;
ofs = 6;
dts0 = 0x83;
dtr0 = 0x41;
dtr1 = 0xff;
}
else
{
nby = 24;
ofs = 8;
dts0 = 0x80;
dtr0 = 0x40;
dtr1 = 0x7f;
}
/* The variable "bytes" will contain the total
* number of output bytes in the data stripe.
*/
bytes = 0;
/* For all the columns in the stripe */
for(x = 0; x < numcols; x++)
{
/* Calculate which representation is smaller by counting
* the number of non zero data bytes for the direct encoding
* and the number of changes between data bytes for the RLE.
* At the end we have in "std" the length of the output data
* if encoded with standard encoding, and in "rle" the length
* of the output data if encoded with RLE.
*/
rle = 1;
c = read[0];
std = (c ? 1 : 0);
for(i=1; i<nby; i++)
{
if((p = read[i]))std++;
if(p != c)
{
rle++;
c = read[i];
}
}
/* Now initialize the last two bytes in the directory
* word. These always belong to the directory bitfield
* and must be set to all ones.
*/
write[2] = 0xff;
write[3] = 0xff;
/* And now encode the column, using the shortest encoding.
* If the two encodings are of equal length we prefer the
* standard encoding to the RLE one. No real reason for
* this: it could have been done the other way, but it
* seems the Windows driver does this way as well...
*/
if(std > rle)
{
/* Run-length encoding */
write[0] = dtr0;
write[1] = dtr1;
p = read[0];
write[4] = p;
cnt = 5;
q = ofs + 1;
for(i=1; i<nby; i++)
{
if(read[i] != p)
{
p = read[i];
write[cnt] = p;
write[q>>3] &= ibits[q & 7];
cnt++;
}
q++;
}
}
else
{
/* Standard encoding */
write[0] = dts0;
write[1] = 0xff;
cnt = 4;
q = ofs;
for(i=0; i<nby; i++)
{
p = read[i];
if(p)
{
write[cnt] = p;
write[q>>3] &= ibits[q & 7];
cnt++;
}
q++;
}
}
/* Update the counters and pointers. Note that when
* we are here "cnt" is the number of bytes that we
* have actually output, including the directory word.
*/
read += (nby + 4);
write += cnt;
bytes += cnt;
}
fillheader(gendata, head, numcols, firstcol, bytes);
}
/* This routine takes one full buffer of data and
* prints the black part, which of course is the only
* one if we are printing in monochrome mode.
*/
static void
encode_bw_buf(pagedata *gendata)
{
int left, right, x, y, nn, mod;
int nxp, yy, numcols, incr;
int dy, dy2, csep, pass, f1;
int f2, start, s1, s2, yincr;
int q, mask, lines;
byte *scan, *data;
/* Set some parameters that depend on resolution and are
* used in the inner loop to select lines to print.
* We basically encode all the even nozzles in a loop and
* all the odd nozzles in another loop. The values of s1
* and s2 are the starting offset in the line buffer for
* the first and second loop, and yincr is the number of lines
* in the buffer we move on at each cycle.
*/
switch(gendata->yres)
{
/* At 300 dpi we use only one nozzle column, and
* each line in the buffer is printed. So both offsets
* are zero (only one is used, actually) and yincr is 1.
* The mask is set to 127 because the buffer is 128 lines.
*/
case 300:
yincr = 1;
s1 = 0;
s2 = 0;
mask = 127;
break;
/* At 600 dpi we use both nozzle columns: each row goes
* alternatively to the left or right nozzle column. So
* the even offset is zero, the odd offset is 1 and the
* increment is 2: in this way the even loop scans lines
* 0, 2, 4, ... and the odd loop lines 1, 3, 5, ...
* Here the buffer is 256 lines so mask is set to 255.
*/
default:
case 600:
yincr = 2;
s1 = 0;
s2 = 1;
mask = 255;
break;
/* At 1200 dpi we are printing two interleaved passes. Each
* nozzle column sees every fourth line in the buffer (so
* yincr is 4) and the starting offset varies depending on
* which interleaved pass we are doing.
* During the first pass, even nozzles are used to print
* lines 0, 4, 8, ... and odd nozzles are used to print
* lines 2, 6, 10, ... while in the second pass the even
* nozzles print lines 1, 5, 9, ... and the odd nozzles
* print lines 3, 7, 11, ...
* The buffer is 512 lines, so mask is set to 511 */
case 1200:
yincr = 4;
s1 = (gendata->ileave ? 1 : 0);
s2 = (gendata->ileave ? 3 : 2);
mask = 511;
break;
}
/* Now we must calculate the offset q from the beginning of
* the buffer of the first line to print in this pass, and
* the total number of lines to be printed. We print as many
* lines as we can in a single pass, i.e. the value of "lines"
* is simply the number of lines that at the current vertical
* resolution fully cover the printing pen.
* Note that in case of monochrome printing we print all
* buffer lines, from first to last, so we also need to set
* the mask to a neutral value because we don't use wrapping.
*/
if(gendata->rendermode == LXM3200_M)
{
mask = 511;
q = 0;
lines = gendata->numblines;
}
else
{
q = gendata->firstline + gendata->dev->valign[BLACKVALIGN];
lines = (BWCOLPEN * 2) / gendata->yrmul;
}
/* Adjust the value of the nozzle column separation to the
* horizontal resolution we are using now.
*/
csep = (gendata->bwsep * 2) / gendata->xrmul;
/* Here we calculate how many "real" passes we are doing.
* A "real" pass is a pass where a full column is printed
* and then some columns (maybe zero) are skipped before
* printing another one. If we are at 1200 dpi horizontal
* then we must use only one nozzle column at a time, so each
* real pass comprises two subpasses, one where we print with
* even nozzles only and another where we print with odd
* nozzles only. So at 1200 dpi the "real" passes are half the
* total number of passes. Another way of looking at it: the
* "nxp" variable holds the separation, in columns, between two
* dot columns printed in the same head sweep.
*/
nxp = gendata->numpasses;
if(gendata->xres == 1200)nxp /= 2;
/* Now calculate the byte increments for the *output* data
* buffer (i.e. the encoded buffer). The first variable,
* dy, is the number of bytes taken by a single data burst
* (both even and odd nozzle columns). The second variable,
* dy2, tells how many bytes we must skip from one column
* to the other (if we are printing multipass we skip some
* columns that will be printed in subsequent passes).
*/
dy = (gendata->numlines / 8) + 4;
dy2 = dy * nxp;
/* Calculate the starting and ending horizontal positions for
* this head pass. There are the margins corrected to take
* into account the displacement between the odd and even
* nozzle columns (csep). Moreover we start "csep" pixels
* before the margin to give the head a little more room to
* accelerate properly (not sure if this really works, but it
* doesn't cost much, so I've left it in).
*/
if(gendata->direction == LEFT)
{
left = gendata->left - 2*csep;
right = gendata->right + csep;
}
else
{
left = gendata->left - csep;
right = gendata->right + 2*csep;
}
/* Make sure we don't try to write data to the left of 0, or the right of the
* media. In the absence of a physical pritner to try this on, we'll have to
* hope the comment above is correct and we can simply not bother with the
* optimisation for accelerating the print head. The right edge one seems
* bonkers, why would we care about accelerating the head when we have
* already started printing ?
* This is to fix bug #701905, accessing beyond the end of gendata->outdata
* in 'convbuf' because right - left > number bytes in scan line.
*/
if (left < 0)
left = 0;
if (right > gendata->numbytes)
right = gendata->numbytes;
/* Number of columns in a full row */
numcols = right - left;
/* Calculate the last pixel of the first pass of the
* stripe. If we are printing bidirectionally, this
* will be the base to calculate the start of the
* passes printed right-to-left.
*/
mod = numcols - (numcols % nxp);
/* f1 and f2 are two flags that define which nozzle columns
* we are using in this stripe, f1 for the even nozzle column
* and f2 for the odd nozzle column: if they are zero that
* nozzle column is not used in this pass.
*/
f1 = 1;
f2 = 1;
if(gendata->yres == 300)
{
/* At 300 dpi we use only one nozzle column. As of now this
* is always the even one, but maybe it could be tried to
* alternate between columns at each pass, to improve the
* output quality.
*/
f1 = 1;
f2 = 0;
}
/* Now start the passes to fill all the stripe */
for(pass = 0; pass < gendata->numpasses; pass++)
{
/* If there is data in the buffer which has not been
* sent to the printer yet, send it now.
*/
if(gendata->fullflag)
{
gp_fwrite(gendata->header, 3, 8, gendata->stream);
gp_fwrite(gendata->outdata, gendata->stripebytes, 1, gendata->stream);
gendata->fullflag = FALSE;
}
/* Clear the output buffer to avoid problems with the bitwise
* operations we will do later on.
*/
memset(gendata->outdata, 0, gendata->numbytes * 30);
/* Calculate standard increments, starting column
* and start of output data. They will be corrected
* later for 1200dpi or right-to-left printing direction.
*/
incr = nxp;
start = left + pass;
data = gendata->outdata + (pass*dy) + 4;
/* It appears that at 1200dpi, in addition of not being able
* to use 208 nozzles mode for the black cartridge, the Lexmark
* 3200 cannot print at full rate with all the 192 useable nozzles.
* Maybe the reason is that the data rate of 1200dpi horizontal
* resolution exceeds the mechanical/thermal limits of the heads.
* So if we are printing at 1200dpi we need to use alternatively
* only odd or even numbered nozzles, for each printed column, to
* half the data rate towards the head.
* This obviously means that, at 1200dpi horizontal, a minimum of
* two passes are required to print each stripe. Since if we are
* printing at 1200dpi vertical we need two interlaced passes, a
* minimum grand total of 4 passes are needed to print one full
* 1200x1200 dpi stripe with the Lexmark 3200.
*/
if(gendata->xres == 1200)
{
f1 = pass & 1;
f2 = 1 - f1;
start = left + (pass/2);
data = gendata->outdata + ((pass/2)*dy) + 4;
}
/* If printing right-to-left we need to present data
* to the printer in that direction, inverting the
* normal flow of data.
*/
if(gendata->direction == RIGHT)
{
incr = -nxp;
start += mod;
}
/* Start column scanning */
x = start;
/* Now we split the behaviour depending on the printing
* direction. To be honest, the inner loops are almost
* identical between left-to-right and right-to-left
* directions. The only difference is where is computed
* the contribute of the nozzle columns separation ("csep"),
* but having the "if" outside the loop it's somehow better.
*/
if(gendata->direction == LEFT)
{
/* For all the columns in this pass */
for(nn = 0; nn < numcols; nn += nxp)
{
/* Encode the even numbered nozzles */
if((x >= 0) && f1)
{
scan = gendata->scanbuf + x;
yy = 0;
for(y = s1; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & BLACK)
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
/* Encode the odd numbered nozzles */
if(((x+csep) < gendata->numbytes) && f2)
{
scan = gendata->scanbuf + x + csep;
yy = 1;
for(y = s2; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & BLACK)
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
/* If we are in 1200dpi horizontal resolution,
* alternate between nozzle columns to avoid
* overstressing the printing head.
*/
if(gendata->xres == 1200)
{
f1 = 1 - f1;
f2 = 1 - f2;
}
/* Adjust data pointers */
data += dy2;
x += incr;
}
}
else /* direction == RIGHT */
{
/* For all the columns in this pass */
for(nn = 0; nn < numcols; nn += nxp)
{
/* Encode the odd numbered nozzles */
if((x < gendata->numbytes) && f1)
{
scan = gendata->scanbuf + x;
yy = 1;
for(y = s1; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & BLACK)
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
/* Encode the even numbered nozzles */
if(((x-csep) >= 0) && f2)
{
scan = gendata->scanbuf + x - csep;
yy = 0;
for(y = s2; y < lines; y += yincr)
{
if(scan[((y+q) & mask)*gendata->numbytes] & BLACK)
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
/* If we are in 1200dpi horizontal resolution,
* alternate between nozzle columns to avoid
* overstressing the printing head.
*/
if(gendata->xres == 1200)
{
f1 = 1 - f1;
f2 = 1 - f2;
}
/* Adjust data pointers */
data += dy2;
x += incr;
}
}
/* Convert the buffer to the shortest output format.
* Which is the first column of the output depends
* on the printing direction: it will be the left
* margin if we are printing left to right or the
* right margin if we are printing right to left.
*/
if(gendata->direction == LEFT)
convbuf(gendata, LEFT, numcols, left);
else
convbuf(gendata, LEFT, numcols, right);
}
}
/* This routine is the equivalent of encode_bw_buf() but
* for color or photo cartridge. Since this routine is
* heavily based on the B/W one, the comments here will
* be somewhat less esaurient. Please have a look at
* encode_bw_buf() to understand better how this routine
* works: I will only pinpoint the differences between this
* routine and encode_bw_buf().
*
* head: the head we are calculating the buffer for. It will
* be LEFT for a photo cartridge or RIGHT for a color one.
*/
static void
encode_col_buf(pagedata *gendata, int head)
{
int left, right, x, y, nn, mod;
int nxp, yy, numcols, incr;
int dy, dy2, csep, pass, f1;
int f2, start, s1, s2, yincr;
int q, mask, k, align, lines;
byte *scan, *data;
/* Here there are two more parameters: mask and lines, that
* for color cartridges are both dependent on vertical
* resolution. Since the buffer is "rolling", i.e. it is
* implemented as a circular array, all the coordinates of
* the buffer lines must be taken modulo the buffer length.
* We choose a buffer length that is a power of two to be
* able to turn the modulo operation into a bitwise AND, so
* we need to set "mask" to the correct value for the AND.
* Another difference is that "lines", i.e. the number of
* lines to print in each pass, is based on the height of a
* color pen. Since there are three color pens in each cartridge,
* each color pen is treated separately to fully cover the
* printing head.
*/
switch(gendata->yres)
{
case 300:
yincr = 1;
s1 = 0;
s2 = 0;
mask = 127;
lines = COLORPEN/2;
break;
default:
case 600:
yincr = 2;
s1 = 0;
s2 = 1;
mask = 255;
lines = COLORPEN;
break;
case 1200:
yincr = 4;
s1 = (gendata->ileave ? 1 : 0);
s2 = (gendata->ileave ? 3 : 2);
mask = 511;
lines = COLORPEN*2;
break;
}
/* Choose the vertical alignment depending on the head.
* This is needed to vertically align the color cartridge
* with the photo or black cartridge.
*/
if(head == LEFT)
align = gendata->dev->valign[PHOTOVALIGN];
else
align = gendata->dev->valign[COLORVALIGN];
/* All the stuff below is exactly the same as in
* encode_bw_buf(), and is therefore commented there.
*/
csep = (gendata->bwsep * 2) / gendata->xrmul;
nxp = gendata->numpasses;
if(gendata->xres == 1200)nxp /= 2;
dy = (gendata->numlines / 8) + 4;
dy2 = dy * nxp;
if(gendata->direction == LEFT)
{
left = gendata->left - 2*csep;
right = gendata->right + csep;
}
else
{
left = gendata->left - csep;
right = gendata->right + 2*csep;
}
numcols = right - left;
mod = numcols - (numcols % nxp);
f1 = 1;
f2 = 1;
if(gendata->yres == 300)
{
f1 = 1;
f2 = 0;
}
/* For all passes */
for(pass = 0; pass < gendata->numpasses; pass++)
{
/* If there is data in the buffer which has not been
* sent to the printer yet, do it now.
*/
if(gendata->fullflag)
{
gp_fwrite(gendata->header, 3, 8, gendata->stream);
gp_fwrite(gendata->outdata, gendata->stripebytes, 1, gendata->stream);
gendata->fullflag = FALSE;
}
/* All the stuff below is exactly the same as in
* encode_bw_buf(), and is therefore commented there.
*/
memset(gendata->outdata, 0, gendata->numbytes * 30);
incr = nxp;
start = left + pass;
data = gendata->outdata + (pass*dy) + 4;
if(gendata->xres == 1200)
{
f1 = pass & 1;
f2 = 1 - f1;
start = left + (pass/2);
data = gendata->outdata + ((pass/2)*dy) + 4;
}
if(gendata->direction == RIGHT)
{
incr = -nxp;
start += mod;
}
/* Start column scanning */
x = start;
if(gendata->direction == LEFT)
{
/* For all the columns */
for(nn = 0; nn < numcols; nn += nxp)
{
/* Encode the even numbered nozzles */
if((x >= 0) && f1)
{
scan = gendata->scanbuf + x;
yy = 0;
/* In color printing there is one more loop to scan
* all three color pens. We have to do exactly the
* same things for all pens: the only differences are
* the color encoding bit we are testing and the offset
* from the beginning of the buffer and the offset of the
* output data. All of this is stored into arrays. The
* "penofs" array stores the offset of the first line of
* each pen in the raster buffer. The array "colmask" stores
* the encoding bits for the color of each pen, and it
* is bidimensional because pen masks are different between
* a color cartridge (where pens are Cyan, Magenta, Yellow)
* and a photo cartridge (where pens are LightCyan,
* LightMagenta and Black).
*/
for(k=0; k<3; k++)
{
q = gendata->firstline + align + gendata->dev->penofs[k];
for(y = s1; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & colmask[head][k])
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
}
/* Encode the odd numbered nozzles */
if(((x+csep) < gendata->numbytes) && f2)
{
scan = gendata->scanbuf + x + csep;
yy = 1;
for(k=0; k<3; k++)
{
q = gendata->firstline + align + gendata->dev->penofs[k];
for(y = s2; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & colmask[head][k])
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
}
/* If we are in 1200dpi horizontal resolution,
* alternate between nozzle columns to avoid
* overstressing the printing head.
*/
if(gendata->xres == 1200)
{
f1 = 1 - f1;
f2 = 1 - f2;
}
/* Adjust data pointers */
data += dy2;
x += incr;
}
}
else
{
/* For all the columns */
for(nn = 0; nn < numcols; nn += nxp)
{
/* Encode the odd numbered nozzles */
if((x < gendata->numbytes) && f1)
{
scan = gendata->scanbuf + x;
yy = 1;
for(k=0; k<3; k++)
{
q = gendata->firstline + align + gendata->dev->penofs[k];
for(y = s1; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & colmask[head][k])
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
}
/* Encode the even numbered nozzles */
if(((x-csep) >= 0) && f2)
{
scan = gendata->scanbuf + x - csep;
yy = 0;
for(k=0; k<3; k++)
{
q = gendata->firstline + align + gendata->dev->penofs[k];
for(y = s2; y < lines; y += yincr)
{
if(scan[((y+q) & mask) * gendata->numbytes] & colmask[head][k])
data[yy/8] |= bits[yy&7];
yy += 2;
}
}
}
/* If we are in 1200dpi horizontal resolution,
* alternate between nozzle columns to avoid
* overstressing the printing head.
*/
if(gendata->xres == 1200)
{
f1 = 1 - f1;
f2 = 1 - f2;
}
/* Adjust data pointers */
data += dy2;
x += incr;
}
}
if(gendata->direction == LEFT)
convbuf(gendata, head, numcols, left);
else
convbuf(gendata, head, numcols, right);
}
}
/* Fill monochrome buffer: this routine fills the buffer
* with rasterized lines, skipping over vertical spacing
* (i.e. completely blank lines). The routine is only
* used in monochrome mode, where we print a full buffer
* at each stripe. The color printing needs a different
* routine which makes use of a circular buffer.
*
* vline: the line from which to start searching for data.
*/
static int
fill_mono_buffer(pagedata *gendata, int vline)
{
byte *in_data, *data;
int i, ret, ofs, code = 0;
/* Initialize the "data" pointer, that will be used to
* scan all the lines in the buffer, and the "ofs" pointer
* that will be used to mark the start of the "real" rasterized
* data into the buffer (see below). To compensate for the offsets
* caused by the horizontal spacing between nozzle columns on a
* cartridge, the head must start before the horizontal margin, so
* the buffer width is slightly bigger than the width of the
* rasterized lines. The difference is the "guard offset", and the
* variables gendata->numbytes and gendata->numrbytes hold respectively
* the number of bytes in a buffer line and the number of bytes in a
* rasterized scanline, while gendata->goffset contains the number of
* bytes reserved to the guard offset on each side of the scanline.
*/
data = gendata->scanbuf;
ofs = gendata->goffset;
/* Cycle until we have no more lines on the page */
while(vline < gendata->numvlines)
{
/* Ask Ghostscript for one rasterized line */
code = gdev_prn_get_bits((gx_device_printer *)gendata->dev,
vline, data+ofs, &in_data);
if (code < 0)
return code;
/* And check if it's all zero: if not, break out of
* the loop. This nice trick with memcpy it's by Stephen
* Taylor (if I'm not wrong...)
*/
if(in_data[0] != 0 ||
memcmp(in_data, in_data+1,gendata->numrbytes-1))break;
vline++;
}
/* If we are here because no non-empty lines were found before
* the end of the page, our work is over. Return to the caller
* saying that this is the last buffer (LAST bit set) and it's
* empty (no LHDATA or RHDATA bit set).
*/
if(vline >= gendata->numvlines)return(LAST);
/* This buffer contains at least one non-empty line.
* Adjust the current vertical position and load the first
* line into the buffer.
*/
gendata->curvline = vline;
memset(data, 0, gendata->numbytes);
if(in_data != data+ofs)memcpy(data+ofs, in_data, gendata->numrbytes);
vline++;
data += gendata->numbytes;
/* Now initialize the return value to LHDATA (since at least
* one non-blank line was found, this buffer contains data, and
* it is obviously left-head data because we are in monochromatic
* mode and so we are printing with left head only).
* After that, get as many rasterized lines as needed to fill the
* buffer, checking if in the process we have reached the end of
* the page.
*/
ret = LHDATA;
for(i=1; i<gendata->numblines; i++)
{
memset(data, 0, gendata->numbytes);
if(vline > gendata->numvlines)
{
/* Ok, we are at the end of the page, so set the LAST bit
* in the return value but don't exit the loop because we
* need to make sure all remaining lines in the buffer will
* be blanked (exiting now would leave them untouched from
* the previous stripe). This is needed to avoid printing
* random data under the bottom margin.
*/
ret = LHDATA | LAST;
}
else
{
/* If we are not at the end of the page, copy one more
* scanline into the buffer.
*/
code = gdev_prn_get_bits((gx_device_printer *)gendata->dev,
vline, data+ofs, &in_data);
if (code < 0)
return code;
if(in_data != data+ofs)memcpy(data+ofs, in_data, gendata->numrbytes);
}
vline++;
data += gendata->numbytes;
}
return(ret);
}
/* Fill the buffer with initial data.
* This routine is used to load the first buffer at the
* beginning of the page. If we are printing in monochromatic
* mode, we just call fill_mono_buffer for the first line.
* If we are printing in color mode, we have a problem to
* solve: since the color pen are stacked vertically, we
* need multiple head passes to print all colors on the
* same line. So, to simplify all, we start with the paper
* at a fixed vertical position, even if it's blank, and
* then we go down in fixed increments, equal to the height
* of a color pen. This means we check all buffers without
* skipping over blank ones, but since we actually send the
* printing commands to the printer only when there is something
* to print, there is no speed impact.
*/
static int
init_buffer(pagedata *gendata)
{
byte *in_data, *data;
int i, ret, p1, p2, ofs, code = 0;
data = gendata->scanbuf;
ofs = gendata->goffset;
if(gendata->rendermode == LXM3200_M)return(fill_mono_buffer(gendata, 0));
/* We position the heads with the bottom color pen (the
* yellow one in the color cartridge and the black one
* in the photo cartridge) just covering the first lines
* of the paper sheet. So the first buffer is divided in
* two parts: "p1" is the number of lines above the top
* border and "p2" the number of lines below.
*/
p1 = 368 / gendata->yrmul;
p2 = 144 / gendata->yrmul;
/* Initialize the counters */
gendata->curvline = -p1;
gendata->lastblack = gendata->curvline - 1;
data = gendata->scanbuf;
/* Clear the lines of the buffer that correspond to
* lines above the top margin: of course we don't
* want to print anything on the air...
*/
for(i=0; i<p1; i++)
{
memset(data, 0, gendata->numbytes);
data += gendata->numbytes;
}
/* And now load the last part of the buffer.
* Note that here we don't check for blank lines,
* this will be cared for later.
*/
for(i=0; i<p2; i++)
{
memset(data, 0, gendata->numbytes);
if(i < gendata->numvlines)
{
code = gdev_prn_get_bits((gx_device_printer *)gendata->dev,
i, data+ofs, &in_data);
if (code < 0)
return code;
if(in_data != data+ofs)memcpy(data+ofs, in_data, gendata->numrbytes);
}
data += gendata->numbytes;
}
gendata->firstline = 0;
/* Now check the return value. If by chance we are under
* the bottom margin, add the LAST bit to the return value.
* Of course, since this is the first buffer of the page,
* it's not likely we will reach the bottom margin in
* this pass. Anyway this is code that will be executed
* only once per page, so better safe than sorry.
*/
ret = (gendata->numvlines < p2 ? LAST : 0) | qualify_buffer(gendata);
return(ret);
}
/* This function checks if the current buffer contains
* data to be printed with the left or right head.
* It assumes that we are printing in color mode, and it
* is useful to minimize the number of needed passes.
* When we are printing in monochrome mode we directly skip
* over blank lines, so this routine is not needed.
*/
static int
qualify_buffer(pagedata *gendata)
{
int i, j, k, ret;
int rmsk, q, v1;
int bpsz, cpsz;
byte *data;
ret = 0;
/* Set variables which contains the size, in rows, of
* each color pen and of the black pen in color mode,
* adjusting for different resolution settings.
* Also set the mask used to rollover the buffer.
*/
cpsz = (COLORPEN * 2) / gendata->yrmul;
bpsz = (BWCOLPEN * 2) / gendata->yrmul;
rmsk = gendata->numblines - 1;
/* Check the right head data, it is always a color cartridge */
for(k=0; k<3 && ret==0; k++)
{
/* For each pen, scan all the bytes on each row of
* the buffer that is covered by the current pen,
* ORing together all the bits.
*/
v1 = 0;
q = gendata->firstline + gendata->dev->valign[COLORVALIGN] + gendata->dev->penofs[k];
for(i=0; i<cpsz; i++)
{
data = gendata->scanbuf + ((q+i) & rmsk)*gendata->numbytes;
for(j=0; j<gendata->numbytes; j++)v1 |= *data++;
}
/* If the result of the OR has the proper color bit
* set, it means that this buffer contains at least
* one pixel of this pen, so we need a color pass.
* Note that we exit as soon as we find a color bit
* set, because if at least one color pen is used
* in this buffer we need to do a color pass anyway,
* so there's no need to check the other two pens.
*/
if(v1 & colmask[RIGHT][k])ret |= RHDATA;
}
/* Check the left head data: it could be a black or
* a photo cartridge, depending on the printing mode.
*/
if(gendata->rendermode == LXM3200_C)
{
/* We are in standard color mode: the left cartridge
* is a black cartridge used in 192 nozzles mode.
* This is done exactly in the same way as above, but
* without the outer loop because we have only one
* color pen on this cartridge.
*/
v1 = 0;
q = gendata->firstline + gendata->dev->valign[BLACKVALIGN];
for(i=0; i<bpsz; i++)
{
data = gendata->scanbuf + ((q+i) & rmsk)*gendata->numbytes;
for(j=0; j<gendata->numbytes; j++)v1 |= *data++;
}
if(v1 & BLACK)ret |= LHDATA;
}
else
{
/* If we are here we need to check for a photo cartridge
* (this routine is never called in monochrome mode, so
* if we are not in color mode we must be in photo mode).
* This routine is identical to the color routine above.
*/
for(k=0; k<3 && !(ret & LHDATA); k++)
{
v1 = 0;
q = gendata->firstline + gendata->dev->valign[PHOTOVALIGN] + gendata->dev->penofs[k];
for(i=0; i<cpsz; i++)
{
data = gendata->scanbuf + ((q+i) & rmsk)*gendata->numbytes;
for(j=0; j<gendata->numbytes; j++)v1 |= *data++;
}
if(v1 & colmask[LEFT][k])ret |= LHDATA;
}
}
return(ret);
}
/* This functions rolls the circular buffer by the
* number of lines of one color pen, reading new
* lines to refill the buffer.
* In color mode we use a circular buffer because
* we need to read the same lines more than once.
* So when we are forwarding to the next pass we
* simply read in the new lines and then update the
* pointers, without actually moving data into memory.
* The need to read the same data more than once arises
* from the fact that the color pens are vertically
* stacked, so we need to read a data line to lay down
* the yellow component at the first pass. We need to
* read it again at the next pass to lay down magenta,
* and on the last pass we read the same line once more
* to lay down the cyan component.
*/
static int
roll_buffer(pagedata *gendata)
{
int i, ret, fline, vl, ofs;
int cpen, cmask, lline;
byte *data, *in_data;
/* Adjust the size of the color pen and the
* mask to take into account the current resolution
*/
cpen = (COLORPEN * 2) / gendata->yrmul;
cmask = (gendata->numblines) - 1;
/* Calculate the line number corresponding to
* the last buffer we can print before being
* forced to eject the page. At 600dpi this
* has been experimentally determined to be
* 112 lines from the bottom of the page.
*/
lline = gendata->numvlines - (224 / gendata->yrmul);
/* Roll the buffer by advancing the first line
* pointer by the height of one color pen.
*/
fline = gendata->firstline;
gendata->firstline = (fline + cpen) & cmask;
/* Now calculate the pointer to the first "fresh"
* line on the page, i.e. the first line we must
* read into the buffer at this pass.
*/
vl = gendata->curvline + cmask + 1;
/* Take into account the guard offset */
ofs = gendata->goffset;
/* Initialize the return value and update the
* current vertical position on the page, while
* checking if we have reached the last printable
* buffer.
*/
ret = 0;
gendata->curvline += cpen;
if(gendata->curvline >= lline)ret = LAST;
/* Now read "fresh" rasterized scanlines into the
* input buffer.
*/
for(i=0; i<cpen; i++)
{
data = gendata->scanbuf + ((fline + i) & cmask) * gendata->numbytes;
memset(data, 0, gendata->numbytes);
if(vl < gendata->numvlines)
{
int code = gdev_prn_get_bits((gx_device_printer *)gendata->dev, vl, data+ofs, &in_data);
if (code < 0) {
return code;
}
if(in_data != data+ofs)memcpy(data+ofs, in_data, gendata->numrbytes);
}
vl++;
}
/* And test for the presence of actual data to print */
ret |= qualify_buffer(gendata);
return(ret);
}
/* Calculate the margins of one line, i.e. the leftmost
* and the rightmost non-blank pixel on the line.
*
* data: the pointer to the data for this line
* mask: the mask with the bits to check for: if the buffer
* contains data which is not on the mask it will be
* ignored (for the purpose of calculating margins)
* left: calculated left margin (output variable)
* right: calculated right margin (output variable)
*/
static void
calclinemargins(pagedata *gendata, byte *data, int mask, int *left, int *right)
{
int l,r,num;
num = gendata->numbytes - 1;
l = 0;
while((l <= num) && ((data[l] & mask) == 0))l++;
r = num;
while((r >= 0) && ((data[r] & mask) == 0))r--;
*left = l;
*right = r;
}
/* Calculate the margins of the whole buffer. The
* calculation accounts separately for the data to
* be printed with the left or with the right head,
* so we can try to minimize the head movement even
* on multiple passes.
*
* head: the code of the head we are calculating
* margins for (LEFT or RIGHT)
*/
static void
calcbufmargins(pagedata *gendata, int head)
{
int i, l1, r1, q, k;
int mleft, mright, nl;
int cpen, cmask, al;
byte *scan;
/* Adjust mask and pen height according to vertical resolution */
cpen = (COLORPEN * 2) / gendata->yrmul;
cmask = (gendata->numblines) - 1;
/* Calculate margins for a color or photo cartridge */
if(head == RIGHT || (gendata->rendermode == LXM3200_P))
{
/* Get correct vertical aligment */
al = (head == LEFT ? PHOTOVALIGN : COLORVALIGN);
q = gendata->firstline + gendata->dev->valign[al];
/* Calculate margins for first line, using those values
* to initialize the max and min values.
*/
scan = gendata->scanbuf + ((q+gendata->dev->penofs[0]) & cmask)*gendata->numbytes;
calclinemargins(gendata, scan, colmask[head][0], &mleft, &mright);
/* And now scan all the remaining buffer. We scan according
* to color pens, i.e. we calculate the margin on the rows
* where magenta will be laid down taking into account magenta
* pixels only, and this will be the magenta submargin. After
* having done that for cyan and yellow as well, we take as the
* global margin the smaller space that contains all the three
* submargins.
*/
for(k=0; k<3; k++)
{
for(i=0; i<cpen; i++)
{
scan = gendata->scanbuf + ((q+i+gendata->dev->penofs[k]) & cmask)*gendata->numbytes;
calclinemargins(gendata, scan, colmask[head][k], &l1, &r1);
mleft = min(mleft, l1);
mright = max(mright, r1);
}
}
gendata->left = mleft;
gendata->right = mright;
return;
}
/* Calculate buffer margins for a black head. This is
* almost exactly the same as before, but now we do
* a single pass because we have only one black pen.
*/
if(gendata->rendermode == LXM3200_M)
{
/* Monochromatic mode: we use 208 nozzles and
* all the buffer, so the initial offset is zero.
*/
scan = gendata->scanbuf;
calclinemargins(gendata, scan, BLACK, &mleft, &mright);
for(i=1; i<gendata->numblines; i++)
{
scan += gendata->numbytes;
calclinemargins(gendata, scan, BLACK, &l1, &r1);
mleft = min(mleft, l1);
mright = max(mright, r1);
}
gendata->left = mleft;
gendata->right = mright;
return;
}
/* Standard color mode: we use 192 nozzles and must
* take into account the vertical alignment.
*/
nl = (gendata->numlines * 2) / gendata->yrmul;
q = gendata->firstline + gendata->dev->valign[BLACKVALIGN];
scan = gendata->scanbuf + (q & cmask)*gendata->numbytes;
calclinemargins(gendata, scan, BLACK, &mleft, &mright);
for(i=1; i<nl; i++)
{
scan = gendata->scanbuf + ((q+i) & cmask)*gendata->numbytes;
calclinemargins(gendata, scan, BLACK, &l1, &r1);
mleft = min(mleft, l1);
mright = max(mright, r1);
}
gendata->left = mleft;
gendata->right = mright;
}
/*
* This is the main routine that prints in
* standard color mode.
*/
static int
print_color_page(pagedata *gendata)
{
int res, lline, cmask;
int i, j, nl, q, sk;
byte *scan;
/* Set the blackskip value depending on vertical resolution.
* Since we have a black pen which is 3 times as high as
* each color pen, we must print black only once every three
* passes. So we take into account on which line we printed
* the last black stripe and then we print another only if
* the current line is at least "sk" lines after that.
*/
sk = (BWCOLPEN * 2) / gendata->yrmul;
/* Get the first buffer, and if it's empty continue
* to skip forward without doing anything.
*/
res = init_buffer(gendata);
while(res == 0)res = roll_buffer(gendata);
if (res < 0) {
return res;
}
/* If this buffer happens to be the last one,
* and empty as well, we had a blank page.
* Just exit without ado.
*/
if(res == LAST)return 0;
/* This is the first non-blank line of the
* page: issue a vertical skip command to
* advance the paper to proper position.
*/
skiplines(gendata, gendata->curvline, COLTOPSTART);
/* "lline" holds the number of the first line of
* the last buffer printed, either with left or
* right head. This is needed to keep track of
* how many lines we must skip from one stripe to
* the next (if we encounter blank buffers we just
* ignore them without moving the head, so we need
* to do the proper vertical motion in one single
* pass as soon as we encounter a non-blank buffer).
*/
lline = gendata->curvline;
/* Now depending on the data we have into the
* buffer, print with the left head, right
* head or both.
* NOTE: this is the first buffer, and it needs
* to be treated specially from the others.
* The main difference is that we usually finalize
* the buffer (issuing the print commands) at the
* start of the next buffer, and not at the end of
* the current one. This is because the Lexmark 3200
* wants to know where to leave the printing head
* at the end of each printing command, but we can't
* know that until we start the next buffer so discovering
* its margins and position. The solution is that we keep
* "suspended" each buffer until we find another valid one.
* The first buffer is special since there is no previous
* buffer to finalize.
* NOTE: I will comment the general case below, because
* this code is simply a subset of the main loop.
*/
switch(res)
{
case LHDATA:
calcbufmargins(gendata, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
gendata->lastblack = gendata->curvline + sk;
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
lline++;
}
break;
case RHDATA:
calcbufmargins(gendata, RIGHT);
gendata->ileave = 0;
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, RIGHT);
gendata->ileave = 1;
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
case LHDATA|RHDATA:
calcbufmargins(gendata, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
gendata->lastblack = gendata->curvline + sk;
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
}
/* Skip to next buffer */
res = roll_buffer(gendata);
/* Start the main loop. Here we do all the stuff required
* to print buffers properly.
*/
while(!(res & LAST))
{
/* If we haven't forwarded until "lastblack", do not
* print black data because it has been printed on
* previous passes. So, if we are below gendata->lastblack
* clear the LHDATA flag to ignore left-head data.
*/
if(gendata->curvline < gendata->lastblack)res &= ~LHDATA;
/* And now start examining the buffer for data */
switch(res)
{
/* We have left head data */
case LHDATA:
/* Calculate the margins of this buffer */
calcbufmargins(gendata, LEFT);
/* And then finalize the previous buffer. We can't
* do this until now, because only now we know the
* margins and vertical position of the next buffer,
* which are required data to calculate the final
* head position at the end of the previous buffer.
*/
finalizeheader(gendata, gendata->curvline - lline, LEFT);
/* Set interleave to zero (only meaningful in 1200dpi
* vertical mode.
*/
gendata->ileave = 0;
/* Encode this buffer making it the current buffer */
encode_bw_buf(gendata);
/* Since we are printing a black buffer, update
* gendata->lastblack to point to the first line
* not covered by this black pass.
*/
gendata->lastblack = gendata->curvline + sk;
/* And update "lline" as well */
lline = gendata->curvline;
/* If we are printing at 1200 dpi vertical, we must
* do one more pass, interleaved with the one before.
*/
if(gendata->yres == 1200)
{
/* Finalize previous buffer, moving down 1/1200th
* of an inch to properly interleave the two passes.
* This is naive: we should do something here, because
* this way two adjacent lines are printed by the same
* nozzle, and there is the danger of having a slight
* banding on output (no more than 1/600th of an inch,
* but maybe noticeable).
*/
finalizeheader(gendata, 1, LEFT);
/* Set interleave to 1 to start an interleaved pass */
gendata->ileave = 1;
/* Encode the buffer, and not finalize it: we leave
* the buffer suspended until we find another buffer
* to print.
*/
encode_bw_buf(gendata);
/* And adjust "lline" because to print the interleaved
* pass we have moved down one line, so we need to
* skip one line less to print the next buffer.
*/
lline++;
}
break;
/* Right head data. This is absolutely identical to the
* code above for left head data, with two exceptions: all
* the "LEFT" codes are changed to "RIGHT" and we don't
* update gendata->lastblack because we are printing a
* color stripe and not a black one.
*/
case RHDATA:
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, gendata->curvline - lline, RIGHT);
gendata->ileave = 0;
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, RIGHT);
gendata->ileave = 1;
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
/* We have both left and right head data (i.e. black and
* color on the same stripe).
* The code here is identical to the code for the left data
* only and right data only cases above. But they are
* interleaved, because since we can't take back the paper
* once it's advanced, in case we are printing at 1200 dpi
* vertical (and so we need two interlaced passes) we need
* to do both the first black and the first color pass,
* advance the paper and then do the second black and the
* second color pass. Simply appendig the two code pieces
* above would not work.
*/
case LHDATA|RHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
gendata->lastblack = gendata->curvline + sk;
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
}
/* Get another buffer */
res = roll_buffer(gendata);
}
/* Last buffer. We treat this one specially as well,
* because we don't have a subsequent buffer to print,
* and so we need to finalize this buffers as soon as
* possible.
*/
res = qualify_buffer(gendata);
/* Void the printed blacks. Since we are printing the
* last buffer, it could happen that we have advanced
* from the last time we printed a black stripe but
* we are not yet at the point where another black
* stripe would have been triggered. This would cause
* an eventual black component in the last lines of
* the page to be ignored.
* To avoid the problem we do an unconditional black
* pass, but we also must clear the black bits from the
* lines we have already printed otherwise we would
* print them twice.
*/
if((res & LHDATA) && (gendata->curvline <= gendata->lastblack))
{
/* Find how many black lines we have yet printed
* are still in the buffer
*/
nl = gendata->lastblack - gendata->curvline;
/* And now remove the BLACK bit from them */
q = gendata->firstline + gendata->dev->valign[BLACKVALIGN];
cmask = (gendata->numblines) - 1;
for(i=0; i<nl; i++)
{
scan = gendata->scanbuf + ((i+q) & cmask)*gendata->numbytes;
for(j=0; j<gendata->numbytes; j++)
{
*scan &= ~BLACK;
scan++;
}
}
}
/* Now we can print the last buffer as usual.
* This is perfectly identical to the code
* into the loop above: we are replicating it
* only because we need the blanking code above
* to be executed before this code.
* Maybe there is a better way to do it...
*/
switch(res)
{
case LHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
lline++;
}
break;
case RHDATA:
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, gendata->curvline - lline, RIGHT);
gendata->ileave = 0;
encode_col_buf(gendata, RIGHT);
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, RIGHT);
gendata->ileave = 1;
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
case LHDATA|RHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
if(gendata->yres == 1200)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
}
/* Now finalize the header using a value of "0" for
* the vertical skip (no need to move down: the
* paper is about to be ejected) and -1 for the
* head (meaning: last buffer, don't care for the
* final head position, it will be reset unconditionally
* by the trailing sequence).
*/
finalizeheader(gendata, 0, -1);
return 0;
}
/* This is the equivalent of print_color_page()
* for monochrome output. It is almost identical,
* only much simpler because now we are printing
* with only one head.
*/
static void
print_mono_page(pagedata *gendata)
{
int res, lline;
/* Load the first buffer, skipping over
* blank lines (if any).
*/
res = init_buffer(gendata);
/* If we happen to have a buffer which is LAST
* and empty, we have a blank page to print:
* just say goodbye.
*/
if(res == LAST)return;
/* Skip enough lines to reach the start of
* the first stripe to print.
*/
skiplines(gendata, gendata->curvline, BWTOPSTART);
lline = gendata->curvline;
/* And now print the first buffer. This part of
* the code is identical to the LHDATA part in
* print_color_page()
*/
calcbufmargins(gendata, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
lline++;
}
/* And now load another buffer, starting to
* look for it from the first line after the
* pass we have just done.
*/
res = fill_mono_buffer(gendata, gendata->curvline + gendata->numblines);
/* Now loop. Even this code is identical
* to the code above: the only difference
* is that here we also finalize the previous
* buffer before encoding this one. No need
* to check if the buffer is empty because
* a buffer is reported only if it's full
* or if it is the last one, so if it's not
* the last it must be full.
*/
while(!(res & LAST))
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_bw_buf(gendata);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
lline++;
}
/* Get another buffer, and so on */
res = fill_mono_buffer(gendata, gendata->curvline + gendata->numblines);
}
/* Last buffer. This can be either empty or full.
* If it's not empty (LHDATA bit set), print it.
*/
if(res & LHDATA)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
encode_bw_buf(gendata);
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_bw_buf(gendata);
lline++;
}
}
/* Finalize the last buffer */
finalizeheader(gendata, 0, -1);
}
/* This is the equivalent of print_color_page()
* for photoquality output. They are almost identical,
* the only real difference is that we now are
* printing with two identical heads, so there is
* no need to care for different heights of the
* printing pens (i.e.: no "lastblack" tricks).
*/
static int
print_photo_page(pagedata *gendata)
{
int res, lline;
res = init_buffer(gendata);
while(res == 0)res = roll_buffer(gendata);
if (res < 0) {
return res;
}
if(res == LAST)return 0;
skiplines(gendata, gendata->curvline, COLTOPSTART);
lline = gendata->curvline;
switch(res)
{
case LHDATA:
calcbufmargins(gendata, LEFT);
gendata->ileave = 0;
encode_col_buf(gendata, LEFT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_col_buf(gendata, LEFT);
lline++;
}
break;
case RHDATA:
calcbufmargins(gendata, RIGHT);
gendata->ileave = 0;
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, RIGHT);
gendata->ileave = 1;
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
case LHDATA|RHDATA:
calcbufmargins(gendata, LEFT);
gendata->ileave = 0;
encode_col_buf(gendata, LEFT);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_col_buf(gendata, LEFT);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
}
res = roll_buffer(gendata);
if (res < 0) {
return res;
}
while(!(res & LAST))
{
switch(res)
{
case LHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_col_buf(gendata, LEFT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_col_buf(gendata, LEFT);
lline++;
}
break;
case RHDATA:
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, gendata->curvline - lline, RIGHT);
gendata->ileave = 0;
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, RIGHT);
gendata->ileave = 1;
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
case LHDATA|RHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_col_buf(gendata, LEFT);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline = gendata->curvline;
if(gendata->yres == 1200)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_col_buf(gendata, LEFT);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
}
res = roll_buffer(gendata);
if (res < 0) {
return res;
}
}
switch(res)
{
case LHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_col_buf(gendata, LEFT);
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_col_buf(gendata, LEFT);
lline++;
}
break;
case RHDATA:
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, gendata->curvline - lline, RIGHT);
gendata->ileave = 0;
encode_col_buf(gendata, RIGHT);
if(gendata->yres == 1200)
{
finalizeheader(gendata, 1, RIGHT);
gendata->ileave = 1;
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
case LHDATA|RHDATA:
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, gendata->curvline - lline, LEFT);
gendata->ileave = 0;
encode_col_buf(gendata, LEFT);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
if(gendata->yres == 1200)
{
calcbufmargins(gendata, LEFT);
finalizeheader(gendata, 1, LEFT);
gendata->ileave = 1;
encode_col_buf(gendata, LEFT);
calcbufmargins(gendata, RIGHT);
finalizeheader(gendata, 0, RIGHT);
encode_col_buf(gendata, RIGHT);
lline++;
}
break;
}
finalizeheader(gendata, 0, -1);
return 0;
}
|