1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/* Copyright (C) 2001-2024 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
CA 94129, USA, for further information.
*/
/* Device which permutes color components, for testing DeviceN. */
#include "gdevprn.h"
#include "gxdcconv.h"
/**
* With no additional parameters, the device named "permute" looks to
* Ghostscript like a standard CMYK contone device, and outputs a PPM
* file, using a simple CMYK->RGB transform. This should be the
* baseline for regression testing.
*
* With the addition of -dPermute=1, the internal behavior changes
* somewhat, but in most cases the resulting rendered file should be
* the same. In this mode, the color model becomes "DeviceN" rather
* than "DeviceCMYK", the number of components goes to six, and the
* color model is considered to be the (yellow, cyan, cyan, magenta,
* 0, black) tuple. This is what's rendered into the memory
* buffer. Finally, on conversion to RGB for output, the colors are
* permuted back.
*
* As such, this code should check that all imaging code paths are
* 64-bit clean. Additionally, it should find incorrect code that
* assumes that the color model is one of DeviceGray, DeviceRGB, or
* DeviceCMYK.
**/
static dev_proc_print_page(perm_print_page);
static dev_proc_get_params(perm_get_params);
static dev_proc_put_params(perm_put_params);
static dev_proc_get_color_mapping_procs(perm_get_color_mapping_procs);
static dev_proc_get_color_comp_index(perm_get_color_comp_index);
static dev_proc_encode_color(perm_encode_color);
static dev_proc_decode_color(perm_decode_color);
struct gx_device_perm_s {
gx_device_common;
gx_prn_device_common;
const char **std_colorant_names;
int num_std_colorant_names; /* Number of names in list */
int mode;
int permute;
};
typedef struct gx_device_perm_s gx_device_perm_t;
static void
perm_initialize_device_procs(gx_device *dev)
{
gdev_prn_initialize_device_procs_bg(dev);
set_dev_proc(dev, get_params, perm_get_params);
set_dev_proc(dev, put_params, perm_put_params);
set_dev_proc(dev, get_color_mapping_procs, perm_get_color_mapping_procs);
set_dev_proc(dev, get_color_comp_index, perm_get_color_comp_index);
set_dev_proc(dev, encode_color, perm_encode_color);
set_dev_proc(dev, decode_color, perm_decode_color);
}
const gx_device_perm_t gs_perm_device = {
prn_device_body_extended(gx_device_perm_t,
perm_initialize_device_procs, "permute",
DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, 72, 72,
0, 0, 0, 0,
GX_DEVICE_COLOR_MAX_COMPONENTS, 4,
GX_CINFO_POLARITY_SUBTRACTIVE,
32, 0, 255, 255, 256, 256,
GX_CINFO_SEP_LIN,
"DeviceN",
perm_print_page),
NULL, 0, 0, 0
};
static int
perm_print_page(gx_device_printer *pdev, gp_file *pstream)
{
int y;
gx_device_perm_t * const dev = (gx_device_perm_t *)pdev;
int ncomp = dev->num_std_colorant_names;
int raw_raster = pdev->width * ncomp;
byte *raw_line = NULL;
byte *cooked_line = NULL;
byte *row;
int code = 0;
int mode = dev->mode;
int permute = dev->permute;
fprintf(pstream, "P6\n%d %d\n255\n", dev->width, dev->height);
raw_line = gs_alloc_bytes(pdev->memory, raw_raster, "perm_print_page");
cooked_line = gs_alloc_bytes(pdev->memory, dev->width * 3, "perm_print_page");
if (raw_line == NULL || cooked_line == NULL) {
gs_free_object(pdev->memory, raw_line, "perm_print_page");
return_error(gs_error_VMerror);
}
for (y = 0; y < dev->height; y++) {
int x;
code = gdev_prn_get_bits(pdev, y, raw_line, &row);
if (code < 0)
break;
for (x = 0; x < dev->width; x++) {
int c, m, y, k;
int r, g, b;
if (mode == 0) {
if (permute) {
c = row[x * ncomp + 1];
m = row[x * ncomp + 3];
y = row[x * ncomp + 0];
k = row[x * ncomp + 5];
} else {
c = row[x * ncomp];
m = row[x * ncomp + 1];
y = row[x * ncomp + 2];
k = row[x * ncomp + 3];
}
} else /* if (mode == 1) */ {
if (permute) {
c = row[x * ncomp + 1];
m = row[x * ncomp + 3];
y = row[x * ncomp + 0];
k = 0;
} else {
c = row[x * ncomp];
m = row[x * ncomp + 1];
y = row[x * ncomp + 2];
k = 0;
}
}
r = (255 - c) * (255 - k) / 255;
g = (255 - m) * (255 - k) / 255;
b = (255 - y) * (255 - k) / 255;
cooked_line[x * 3] = r;
cooked_line[x * 3 + 1] = g;
cooked_line[x * 3 + 2] = b;
}
gp_fwrite(cooked_line, 1, dev->width * 3, pstream);
}
gs_free_object(pdev->memory, cooked_line, "perm_print_page");
gs_free_object(pdev->memory, raw_line, "perm_print_page");
return code;
}
static void
perm_permute_cm(gx_device *pdev, frac out[])
{
gx_device_perm_t * const dev = (gx_device_perm_t *)pdev;
if (dev->permute) {
frac y;
out[5] = dev->mode == 0 ? out[3] : 0;
out[4] = frac_0;
y = out[2];
out[3] = out[1];
out[2] = out[0];
out[1] = out[0];
out[0] = y;
}
}
static void
gray_cs_to_perm_cm_0(gx_device *dev, frac gray, frac out[])
{
out[0] = out[1] = out[2] = frac_0;
out[3] = frac_1 - gray;
perm_permute_cm(dev, out);
}
static void
rgb_cs_to_perm_cm_0(gx_device *dev, const gs_gstate *pgs,
frac r, frac g, frac b, frac out[])
{
color_rgb_to_cmyk(r, g, b, pgs, out, dev->memory);
perm_permute_cm(dev, out);
}
static void
cmyk_cs_to_perm_cm_0(gx_device *dev, frac c, frac m, frac y, frac k, frac out[])
{
out[0] = c;
out[1] = m;
out[2] = y;
out[3] = k;
perm_permute_cm(dev, out);
};
static void
gray_cs_to_perm_cm_1(gx_device *dev, frac gray, frac out[])
{
out[0] = out[1] = out[2] = frac_1 - gray;
perm_permute_cm(dev, out);
}
static void
rgb_cs_to_perm_cm_1(gx_device *dev, const gs_gstate *pgs,
frac r, frac g, frac b, frac out[])
{
out[0] = frac_1 - r;
out[1] = frac_1 - g;
out[2] = frac_1 - b;
perm_permute_cm(dev, out);
}
static void
cmyk_cs_to_perm_cm_1(gx_device *dev, frac c, frac m, frac y, frac k, frac out[])
{
color_cmyk_to_rgb(c, m, y, k, NULL, out, dev->memory);
out[0] = frac_1 - out[0];
out[1] = frac_1 - out[1];
out[2] = frac_1 - out[2];
perm_permute_cm(dev, out);
};
static const gx_cm_color_map_procs perm_cmapping_procs_0 = {
gray_cs_to_perm_cm_0, rgb_cs_to_perm_cm_0, cmyk_cs_to_perm_cm_0
};
static const gx_cm_color_map_procs perm_cmapping_procs_1 = {
gray_cs_to_perm_cm_1, rgb_cs_to_perm_cm_1, cmyk_cs_to_perm_cm_1
};
static const gx_cm_color_map_procs *perm_cmapping_procs[] = {
&perm_cmapping_procs_0,
&perm_cmapping_procs_1
};
static const gx_cm_color_map_procs *
perm_get_color_mapping_procs(const gx_device *dev)
{
const gx_device_perm_t * const pdev = (const gx_device_perm_t *)dev;
if (pdev->mode < 0 || pdev->mode >= sizeof(perm_cmapping_procs) / sizeof(perm_cmapping_procs[0]))
return NULL;
return perm_cmapping_procs[pdev->mode];
}
#define compare_color_names(name, name_size, str, str_size) \
(name_size == str_size && \
(strncmp((const char *)name, (const char *)str, name_size) == 0))
static int
perm_get_color_comp_index(const gx_device *pdev, const char *pname,
int name_size, int component_type)
{
const gx_device_perm_t * const dev = (const gx_device_perm_t *)pdev;
int n_separation_names = dev->num_std_colorant_names;
int i;
for (i = 0; i < n_separation_names; i++) {
const char *sep_name = dev->std_colorant_names[i];
if (compare_color_names(pname, name_size, sep_name, strlen(sep_name)))
return i;
}
return -1;
}
/* Note: the encode and decode procs are entirely standard. The
permutation is all done in the color space to color model mapping.
In fact, we could probably just use the default here.
*/
/*
* Encode a list of colorant values into a gx_color_index_value.
*/
static gx_color_index
perm_encode_color(gx_device *dev, const gx_color_value colors[])
{
int bpc = 8;
gx_color_index color = 0;
int i = 0;
int ncomp = dev->color_info.num_components;
COLROUND_VARS;
COLROUND_SETUP(bpc);
for (; i<ncomp; i++) {
color <<= bpc;
color |= COLROUND_ROUND(colors[i]);
}
return (color == gx_no_color_index ? color ^ 1 : color);
}
/*
* Decode a gx_color_index value back to a list of colorant values.
*/
static int
perm_decode_color(gx_device *dev, gx_color_index color, gx_color_value *out)
{
int bpc = 8;
int drop = sizeof(gx_color_value) * 8 - bpc;
int mask = (1 << bpc) - 1;
int i = 0;
int ncomp = dev->color_info.num_components;
COLDUP_VARS;
COLDUP_SETUP(bpc);
for (; i<ncomp; i++) {
out[ncomp - i - 1] = COLDUP_DUP(color & mask);
color >>= bpc;
}
return 0;
}
#define set_param_array(a, d, s)\
(a.data = d, a.size = s, a.persistent = false);
static int
perm_get_params(gx_device *pdev, gs_param_list *plist)
{
gx_device_perm_t * const dev = (gx_device_perm_t *)pdev;
int code;
code = param_write_int(plist, "Permute", &dev->permute);
if (code >= 0)
code = param_write_int(plist, "Mode", &dev->mode);
/*
* We need to specify the SeparationColorNames if we are permuting the colors.
*/
if (code >= 0 && dev->permute == 1) {
int i;
/* Temp variables. The data is copied into the plist below. */
gs_param_string_array scna;
gs_param_string scn[6];
set_param_array(scna, scn, dev->num_std_colorant_names);
/* Place colorant names into string array elements */
for (i = 0; i < dev->num_std_colorant_names; i++)
param_string_from_string(scn[i], dev->std_colorant_names[i]);
/*
* Place the name array in the plist. This includes allocating
* memory for the name array element and the actual string array.
*/
code = param_write_name_array(plist, "SeparationColorNames", &scna);
}
if (code >= 0)
code = gdev_prn_get_params(pdev, plist);
return code;
}
#undef set_param_array
static const char * DeviceCMYKComponents[] = {
"Cyan",
"Magenta",
"Yellow",
"Black",
0 /* List terminator */
};
static const char * DeviceCMYComponents[] = {
"Cyan",
"Magenta",
"Yellow",
0 /* List terminator */
};
static const char * DeviceNComponents[] = {
"Yellow",
"Cyan",
"Cyan2",
"Magenta",
"Zero",
"Black",
0 /* List terminator */
};
static int
perm_set_color_model(gx_device_perm_t *dev, int mode, int permute)
{
dev->mode = mode;
dev->permute = permute;
if (mode == 0 && permute == 0) {
dev->std_colorant_names = DeviceCMYKComponents;
dev->num_std_colorant_names = 4;
dev->color_info.cm_name = "DeviceCMYK";
dev->color_info.polarity = GX_CINFO_POLARITY_SUBTRACTIVE;
} else if (mode == 0 && permute == 1) {
dev->std_colorant_names = DeviceNComponents;
dev->num_std_colorant_names = 6;
dev->color_info.cm_name = "DeviceN";
dev->color_info.polarity = GX_CINFO_POLARITY_SUBTRACTIVE;
} else if (mode == 1 && permute == 0) {
dev->std_colorant_names = DeviceCMYComponents;
dev->num_std_colorant_names = 3;
dev->color_info.cm_name = "DeviceCMY";
dev->color_info.polarity = GX_CINFO_POLARITY_SUBTRACTIVE;
} else if (mode == 1 && permute == 1) {
dev->std_colorant_names = DeviceNComponents;
dev->num_std_colorant_names = 6;
dev->color_info.cm_name = "DeviceN";
dev->color_info.polarity = GX_CINFO_POLARITY_SUBTRACTIVE;
} else {
return -1;
}
dev->color_info.num_components = dev->num_std_colorant_names;
dev->color_info.depth = 8 * dev->num_std_colorant_names;
return 0;
}
static int
perm_put_params(gx_device *pdev, gs_param_list *plist)
{
gx_device_perm_t * const dev = (gx_device_perm_t *)pdev;
gx_device_color_info save_info;
int code;
int new_permute = dev->permute;
int new_mode = dev->mode;
code = param_read_int(plist, "Permute", &new_permute);
if (code < 0)
return code;
code = param_read_int(plist, "Mode", &new_mode);
if (code < 0)
return code;
if (new_mode < 0 || new_mode >= sizeof(perm_cmapping_procs) / sizeof(perm_cmapping_procs[0])) {
dmlprintf(pdev->memory, "rangecheck!\n");
return_error(gs_error_rangecheck);
}
dev->permute = new_permute;
dev->mode = new_mode;
save_info = pdev->color_info;
code = perm_set_color_model(dev, dev->mode, dev->permute);
if (code >= 0)
code = gdev_prn_put_params(pdev, plist);
if (code < 0)
pdev->color_info = save_info;
return code;
}
|