1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
|
/* Copyright (C) 2001-2023 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
CA 94129, USA, for further information.
*/
/* PLanar Interlaced Banded device */
#include "gdevprn.h"
#include "gscdefs.h"
#include "gscspace.h" /* For pnm_begin_typed_image(..) */
#include "gxgetbit.h"
#include "gxlum.h"
#include "gxiparam.h" /* For pnm_begin_typed_image(..) */
#include "gdevmpla.h"
#include "gdevplnx.h"
#include "gdevppla.h"
#include "gdevplib.h" /* Band donor functions */
#include "gdevmem.h"
/* This file defines 5 different devices:
*
* plib 24 bit RGB (8 bits per channel)
* plibg 8 bit Grayscale
* plibm 1 bit Monochrome
* plibc 32 bit CMYK (8 bits per channel)
* plibk 4 bit CMYK (1 bit per channel)
*
* It is intended that this device will be built on top of a 'Band Donor'
* that will be responsible for allocating and pass us band buffers for us
* to fill, and to process them as it wishes on completion.
*
* If the band_donor functions are not thread safe, or modify the device, then
* the gdev_prn_bg_output_page should be changed to use gdev_prn_output_page.
*
* For debugging/QA purposes this file can be built with the following
* define enabled, and stub versions of these band donor functions will
* be included here.
*/
#define TESTING_WITH_NO_BAND_DONOR
/* Define DEBUG_PRINT to enable some debugging printfs. */
#undef DEBUG_PRINT
/* Define DEBUG_DUMP to dump the data to the output stream. */
#define DEBUG_DUMP
/* Define HT_RAW_DUMP to store the output as a raw CMYK buffer with the
data size packed into the file name. Photoshop does not handle pam
cmyk properly so we resort to this for debugging */
#define HT_RAW_DUMP
/* Define SHORTSTOP_MEMCPY_ETC to enable braindead implementations of memcpy
* and memset etc in this file. This serves to help profiling on some
* systems, though it should be noted that our implementations here are NOT
* anywhere near as efficient as typical C libraries ones. */
#undef SHORTSTOP_MEMCPY_ETC
#ifdef SHORTSTOP_MEMCPY_ETC
void *memset(void *s_, int c, size_t n)
{
byte *s = (byte *)s_;
while (n--)
*s++ = (unsigned char)c;
return s;
}
void __aebi_memset8(void *dest, size_t n, int c)
{
memset(dest, c,n);
}
void __aebi_memset4(void *dest, size_t n, int c)
{
memset(dest, c,n);
}
void __aebi_memset(void *dest, size_t n, int c)
{
memset(dest, c,n);
}
void __aebi_memclr8(void *dest, size_t n)
{
memset(dest, 0,n);
}
void __aebi_memclr4(void *dest, size_t n)
{
memset(dest, 0,n);
}
void __aebi_memclr(void *dest, size_t n)
{
memset(dest, 0,n);
}
void *memcpy(void *s_, const void *t_, size_t n)
{
byte *s = (byte *)s_;
const byte *t = (const byte *)t_;
while (n--)
*s++ = *t++;
return s;
}
void __aebi_memcpy8(void *dest, const void *src, size_t n)
{
memcpy(dest, src,n);
}
void __aebi_memcpy4(void *dest, const void *src, size_t n)
{
memcpy(dest, src,n);
}
void __aebi_memcpy(void *dest, const void *src, size_t n)
{
memcpy(dest, src,n);
}
void *memmove(void *s_, const void *t_, size_t n)
{
byte *s = (byte *)s_;
const byte *t = (const byte *)t_;
if (s < t) {
while (n--)
*s++ = *t++;
} else {
s += n;
t += n;
while (n--)
*--s = *--t;
}
return s;
}
void __aebi_memmove8(void *dest, const void *src, size_t n)
{
memmove(dest, src,n);
}
void __aebi_memcmove4(void *dest, const void *src, size_t n)
{
memmove(dest, src,n);
}
void __aebi_memmove(void *dest, const void *src, size_t n)
{
memmove(dest, src,n);
}
#endif
#ifdef TESTING_WITH_NO_BAND_DONOR
#include <malloc_.h>
static void *my_buffer;
int gs_band_donor_init(void **opaque,
gs_memory_t *mem)
{
#ifdef DEBUG_PRINT
emprintf(mem, "gs_band_donor_init\n");
#endif
*opaque = NULL;
return 0;
}
void *gs_band_donor_band_get(void *opaque,
uint uWidth,
uint uHeight,
uint uBitDepth,
uint uComponents,
uint uStride,
uint uBandHeight)
{
#ifdef DEBUG_PRINT
eprintf6("gs_band_donor_band_get[%dx%dx%dx%d (stride=%d bandHeight=%d)]\n",
uWidth, uHeight, uBitDepth, uComponents, uStride, uBandHeight);
#endif
my_buffer = (void *)malloc(uStride * uComponents * uBandHeight);
#ifdef DEBUG_PRINT
q = my_buffer;
for (y = uBandHeight; y > 0; y--) {
for (p = 0; p < uComponents; p++) {
memset(q, 0x10+p, uStride);
q += uStride;
}
}
#endif
return my_buffer;
}
int gs_band_donor_band_full(void *opaque, uint nLines)
{
#ifdef DEBUG_PRINT
eprintf1("gs_band_donor_band_full[%d]\n", nLines);
#endif
return 0;
}
int gs_band_donor_band_release(void *opaque)
{
#ifdef DEBUG_PRINT
eprintf("gs_band_donor_band_release\n");
#endif
free(my_buffer);
my_buffer = NULL;
return 0;
}
void gs_band_donor_fin(void *opaque)
{
#ifdef DEBUG_PRINT
eprintf("gs_band_donor_fin\n");
#endif
}
#endif
/* Sanit requires us to work in bands of at least 200 lines */
#define MINBANDHEIGHT 200
/* Structure for plib devices, which extend the generic printer device. */
struct gx_device_plib_s {
gx_device_common;
gx_prn_device_common;
/* Additional state for plib device */
void *opaque;
};
typedef struct gx_device_plib_s gx_device_plib;
/* ------ The device descriptors ------ */
/*
* Default X and Y resolution.
*/
#define X_DPI 600
#define Y_DPI 600
/* For all but mono, we need our own color mapping and alpha procedures. */
static dev_proc_decode_color(plib_decode_color);
static dev_proc_encode_color(plibg_encode_color);
static dev_proc_decode_color(plibg_decode_color);
static dev_proc_decode_color(plibc_decode_color);
static dev_proc_encode_color(plibc_encode_color);
static dev_proc_map_color_rgb(plibc_map_color_rgb);
static dev_proc_open_device(plib_open);
static dev_proc_close_device(plib_close);
static dev_proc_put_params(plib_put_params);
/* And of course we need our own print-page routines. */
static dev_proc_print_page(plib_print_page);
static int plib_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibm_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibg_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibc_print_page(gx_device_printer * pdev, gp_file * pstream);
static int plibk_print_page(gx_device_printer * pdev, gp_file * pstream);
/* The device procedures */
static void
plib_base_initialize_device_procs(gx_device *dev)
{
gdev_prn_initialize_device_procs_bg(dev);
set_dev_proc(dev, open_device, plib_open);
set_dev_proc(dev, close_device, plib_close);
set_dev_proc(dev, put_params, plib_put_params);
}
static void
plibm_initialize_device_procs(gx_device *dev)
{
plib_base_initialize_device_procs(dev);
set_dev_proc(dev, encode_color, gdev_prn_map_rgb_color);
set_dev_proc(dev, decode_color, gdev_prn_map_color_rgb);
}
static void
plibg_initialize_device_procs(gx_device *dev)
{
plib_base_initialize_device_procs(dev);
set_dev_proc(dev, encode_color, plibg_encode_color);
set_dev_proc(dev, decode_color, plibg_decode_color);
}
static void
plib_initialize_device_procs(gx_device *dev)
{
plib_base_initialize_device_procs(dev);
set_dev_proc(dev, encode_color, gx_default_rgb_map_rgb_color);
set_dev_proc(dev, decode_color, plib_decode_color);
}
static void
plibc_initialize_device_procs(gx_device *dev)
{
plib_base_initialize_device_procs(dev);
set_dev_proc(dev, map_color_rgb, plibc_map_color_rgb);
set_dev_proc(dev, encode_color, plibc_encode_color);
set_dev_proc(dev, decode_color, plibc_decode_color);
}
static void
plibk_initialize_device_procs(gx_device *dev)
{
plib_base_initialize_device_procs(dev);
set_dev_proc(dev, map_color_rgb, plibc_map_color_rgb);
set_dev_proc(dev, encode_color, plibc_encode_color);
set_dev_proc(dev, decode_color, plibc_decode_color);
}
/* Macro for generating device descriptors. */
/* Ideally we'd use something like:
* #define plib_prn_device(procs, dev_name, num_comp, depth, max_gray, max_rgb, print_page) \
* { prn_device_body(gx_device_plib, procs, dev_name,\
* DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, X_DPI, Y_DPI,\
* 0, 0, 0, 0,\
* num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\
* print_page)\
* }
* But that doesn't let us override the band space params. So we have to do
* it the large way.
*/
#define plib_prn_device(init, dev_name, num_comp, depth, max_gray, max_rgb, print_page) \
{ std_device_full_body_type(gx_device_plib, init, dev_name, &st_device_printer,\
(int)((float)(DEFAULT_WIDTH_10THS) * (X_DPI) / 10 + 0.5),\
(int)((float)(DEFAULT_HEIGHT_10THS) * (Y_DPI) / 10 + 0.5),\
X_DPI, Y_DPI,\
num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\
(float)(0), (float)(0),\
(float)(0), (float)(0),\
(float)(0), (float)(0)\
),\
prn_device_body_rest2_(print_page, gx_default_print_page_copies, -1)}
/* The device descriptors themselves */
const gx_device_plib gs_plib_device =
plib_prn_device(plib_initialize_device_procs, "plib",
3, 24, 255, 255, plib_print_page);
const gx_device_plib gs_plibg_device =
plib_prn_device(plibg_initialize_device_procs, "plibg",
1, 8, 255, 0, plibg_print_page);
const gx_device_plib gs_plibm_device =
plib_prn_device(plibm_initialize_device_procs, "plibm",
1, 1, 1, 0, plibm_print_page);
const gx_device_plib gs_plibk_device =
plib_prn_device(plibk_initialize_device_procs, "plibk",
4, 4, 1, 1, plibk_print_page);
const gx_device_plib gs_plibc_device =
plib_prn_device(plibc_initialize_device_procs, "plibc",
4, 32, 255, 255, plibc_print_page);
/* ------ Initialization ------ */
/*
* We need to create custom memory buffer devices that just point into the
* bandBuffer we've got from the digicolor system.
*/
static byte *bandBufferBase = NULL;
static int bandBufferStride = 0;
#ifdef DEBUG_DUMP
static int dump_w;
static int dump_nc;
static int dump_l2bits;
static void dump_start(int w, int h, int num_comps, int log2bits,
gp_file *dump_file)
{
if ((num_comps == 3) && (log2bits == 3)) {
/* OK */
} else if ((num_comps == 1) && (log2bits == 0)) {
/* OK */
} else if ((num_comps == 1) && (log2bits == 3)) {
/* OK */
} else if ((num_comps == 4) && (log2bits == 0)) {
/* OK */
} else if ((num_comps == 4) && (log2bits == 3)) {
/* OK */
} else
return;
dump_nc = num_comps;
dump_l2bits = log2bits;
if (dump_file == NULL)
return;
if (dump_nc == 3)
gp_fprintf(dump_file, "P6 %d %d 255\n", w, h);
else if (dump_nc == 4) {
gp_fprintf(dump_file, "P7\nWIDTH %d\nHEIGHT %d\nDEPTH 4\n"
"MAXVAL 255\nTUPLTYPE CMYK\nENDHDR\n", w, h);
} else if (log2bits == 0)
gp_fprintf(dump_file, "P4 %d %d\n", w, h);
else
gp_fprintf(dump_file, "P5 %d %d 255\n", w, h);
dump_w = w;
}
static void dump_band(int y, gp_file *dump_file)
{
byte *r = bandBufferBase;
byte *g = r + bandBufferStride;
byte *b = g + bandBufferStride;
byte *k = b + bandBufferStride;
if (dump_file == NULL)
return;
if (dump_nc == 3) {
while (y--) {
int w = dump_w;
while (w--) {
gp_fputc(*r++, dump_file);
gp_fputc(*g++, dump_file);
gp_fputc(*b++, dump_file);
}
r += bandBufferStride*3-dump_w;
g += bandBufferStride*3-dump_w;
b += bandBufferStride*3-dump_w;
}
} else if (dump_nc == 4) {
if (dump_l2bits == 0) {
while (y--) {
int w = dump_w;
while (w) {
byte C = *r++;
byte M = *g++;
byte Y = *b++;
byte K = *k++;
int s;
for (s=7; s>=0; s--) {
gp_fputc(255*((C>>s)&1), dump_file);
gp_fputc(255*((M>>s)&1), dump_file);
gp_fputc(255*((Y>>s)&1), dump_file);
gp_fputc(255*((K>>s)&1), dump_file);
w--;
if (w == 0) break;
}
}
r += bandBufferStride*4-((dump_w+7)>>3);
g += bandBufferStride*4-((dump_w+7)>>3);
b += bandBufferStride*4-((dump_w+7)>>3);
k += bandBufferStride*4-((dump_w+7)>>3);
}
} else {
while (y--) {
int w = dump_w;
while (w--) {
gp_fputc(*r++, dump_file);
gp_fputc(*g++, dump_file);
gp_fputc(*b++, dump_file);
gp_fputc(*k++, dump_file);
}
r += bandBufferStride*4-dump_w;
g += bandBufferStride*4-dump_w;
b += bandBufferStride*4-dump_w;
k += bandBufferStride*4-dump_w;
}
}
} else {
if (dump_l2bits == 0) {
while (y--) {
int w = (dump_w+7)>>3;
while (w--) {
gp_fputc(*r++, dump_file);
}
r += bandBufferStride - ((dump_w+7)>>3);
}
} else {
while (y--) {
int w = dump_w;
while (w--) {
gp_fputc(*r++, dump_file);
}
r += bandBufferStride - dump_w;
}
}
}
}
#endif
int
plib_put_params(gx_device * pdev, gs_param_list * plist)
{
int ecode = 0;
int code;
gx_device_printer * const ppdev = (gx_device_printer *)pdev;
/* Assumed to be valid on entry - remember it */
int bandHeight = ppdev->space_params.band.BandHeight;
code = gdev_prn_put_params(pdev, plist);
/* Note that 0 means "default". This will encounter a future check in "open" */
if (ppdev->space_params.band.BandHeight != 0 &&
ppdev->space_params.band.BandHeight < MINBANDHEIGHT) {
emprintf2(pdev->memory, "BandHeight of %d not valid, BandHeight minimum is %d\n",
ppdev->space_params.band.BandHeight, MINBANDHEIGHT);
ecode = gs_error_rangecheck;
/* Restore to the previous (possibly default == 0) value */
ppdev->space_params.band.BandHeight = bandHeight;
}
if (ecode >= 0)
ecode = code;
return ecode;
}
/*
* Set up the scan line pointers of a memory device.
* See gxdevmem.h for the detailed specification.
* Sets or uses line_ptrs, base, raster; uses width, color_info.depth,
* num_planes, plane_depths, plane_depth.
*/
static int
set_line_ptrs(gx_device_memory * mdev, byte * base, int raster,
byte **line_ptrs, int setup_height)
{
int num_planes = mdev->color_info.num_components;
int pi;
if (num_planes) {
if (base && !mdev->plane_depth)
return_error(gs_error_rangecheck);
} else {
num_planes = 1;
}
if (line_ptrs) {
mdev->line_ptrs = line_ptrs;
for (pi = 0; pi < num_planes; ++pi) {
byte **pend = line_ptrs + setup_height;
byte *scan_line = base;
while (line_ptrs < pend) {
*line_ptrs++ = scan_line;
scan_line += raster * num_planes;
}
base += raster;
}
}
return 0;
}
static int
plib_setup_buf_device(gx_device *bdev, byte *buffer, int bytes_per_line,
byte **line_ptrs, int y, int setup_height,
int full_height)
{
gx_device_memory *mdev = (gx_device_memory *)bdev;
int code;
/* buffer is the buffer used by clist writing. We could use that as the
* page buffer, but we'd rather use the buffer given to us by the
* digicolor code. b */
if (line_ptrs == NULL) {
/* Free any existing line pointers array */
if (mdev->line_ptrs != NULL)
gs_free_object(mdev->line_pointer_memory, mdev->line_ptrs,
"mem_close");
/*
* Allocate line pointers now; free them when we close the device.
* Note that for multi-planar devices, we have to allocate using
* full_height rather than setup_height.
*/
line_ptrs = (byte **)
gs_alloc_byte_array(mdev->memory,
(mdev->num_planar_planes ?
full_height * mdev->num_planar_planes :
setup_height),
sizeof(byte *), "setup_buf_device");
if (line_ptrs == 0)
return_error(gs_error_VMerror);
mdev->line_pointer_memory = mdev->memory;
mdev->foreign_line_pointers = false;
mdev->line_ptrs = line_ptrs;
mdev->raster = bandBufferStride * (mdev->num_planar_planes ? mdev->num_planar_planes : 1);
}
mdev->height = full_height;
code = set_line_ptrs(mdev,
bandBufferBase + bandBufferStride*(mdev->num_planar_planes ? mdev->num_planar_planes : 1)*y,
bandBufferStride,
line_ptrs,
setup_height);
mdev->height = setup_height;
bdev->height = setup_height; /* do here in case mdev == bdev */
return code;
}
static int
plib_get_bits_rectangle_mem(gx_device *pdev, const gs_int_rect *prect,
gs_get_bits_params_t *params)
{
gx_device_memory *mdev = (gx_device_memory *)pdev;
int x = prect->p.x, y = prect->p.y, h = prect->q.y - y;
/* First off, see if we can satisfy get_bits_rectangle with just returning
* pointers to the existing data. */
{
gs_get_bits_params_t copy_params;
byte **base = &scan_line_base(mdev, y);
int code;
copy_params.options =
GB_COLORS_NATIVE | GB_PACKING_PLANAR | GB_ALPHA_NONE |
(mdev->raster ==
bitmap_raster(mdev->width * mdev->color_info.depth) ?
GB_RASTER_STANDARD : GB_RASTER_SPECIFIED);
copy_params.raster = mdev->raster;
code = gx_get_bits_return_pointer(pdev, x, h, params,
©_params, base);
if (code >= 0)
return code;
}
return mem_get_bits_rectangle(pdev, prect, params);
}
static int
plib_create_buf_device(gx_device **pbdev, gx_device *target, int y,
const gx_render_plane_t *render_plane, gs_memory_t *mem,
gx_color_usage_t *color_usage)
{
int code = gdev_prn_create_buf_planar(pbdev, target, y, render_plane,
mem, color_usage);
if (code < 0)
return code;
if (dev_proc((*pbdev), get_bits_rectangle) == mem_get_bits_rectangle)
set_dev_proc((*pbdev), get_bits_rectangle, plib_get_bits_rectangle_mem);
return 0;
}
static int
plib_size_buf_device(gx_device_buf_space_t *space, gx_device *target,
const gx_render_plane_t *render_plane,
int height, bool for_band)
{
return gdev_prn_size_buf_planar(space, target, render_plane,
height, for_band);
}
/*
* Define a special open procedure that changes create_buf_device to use
* a planar device.
*/
static int
plib_open(gx_device * pdev)
{
gx_device_plib * const bdev = (gx_device_plib *)pdev;
gx_device_printer * const ppdev = (gx_device_printer *)pdev;
int code;
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plib_open\n");
#endif
bdev->printer_procs.buf_procs.create_buf_device = plib_create_buf_device;
bdev->printer_procs.buf_procs.setup_buf_device = plib_setup_buf_device;
bdev->printer_procs.buf_procs.size_buf_device = plib_size_buf_device;
pdev->num_planar_planes = 1;
bdev->space_params.banding_type = BandingAlways;
/* You might expect us to call gdev_prn_open_planar rather than
* gdev_prn_open, but if we do that, it overwrites the 2 function
* pointers we've just overwritten! */
code = gdev_prn_open(pdev);
if (code < 0)
return code;
if (ppdev->space_params.band.BandHeight < MINBANDHEIGHT) {
emprintf2(pdev->memory, "BandHeight of %d not valid, BandHeight minimum is %d\n",
((gx_device_printer *)pdev)->space_params.band.BandHeight,
MINBANDHEIGHT);
return_error(gs_error_rangecheck);
}
pdev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
set_linear_color_bits_mask_shift(pdev);
/* Start the actual job. */
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "calling job_begin\n");
#endif
code = gs_band_donor_init(&bdev->opaque, pdev->memory);
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "called\n");
#endif
return code;
}
static int
plib_close(gx_device *pdev)
{
gx_device_plib *pldev = (gx_device_plib *)pdev;
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plib_close\n");
#endif
gs_band_donor_fin(pldev->opaque);
pldev->opaque = NULL;
return gdev_prn_close(pdev);
}
/* ------ Color mapping routines ------ */
/* Map an RGB color to a gray value. */
static gx_color_index
plibg_encode_color(gx_device * pdev, const gx_color_value cv[])
{ /* We round the value rather than truncating it. */
gx_color_value gray;
gx_color_value r, g, b;
r = cv[0]; g = cv[0]; b = cv[0];
gray = ((r * (ulong) lum_red_weight) +
(g * (ulong) lum_green_weight) +
(b * (ulong) lum_blue_weight) +
(lum_all_weights / 2)) / lum_all_weights
* pdev->color_info.max_gray / gx_max_color_value;
return gray;
}
/* Map a gray value back to an RGB color. */
static int
plibg_decode_color(gx_device * dev, gx_color_index color,
gx_color_value prgb[])
{
gx_color_value gray =
color * gx_max_color_value / dev->color_info.max_gray;
prgb[0] = gray;
prgb[1] = gray;
prgb[2] = gray;
return 0;
}
/* Map an rgb color tuple back to an RGB color. */
static int
plib_decode_color(gx_device * dev, gx_color_index color,
gx_color_value prgb[])
{
uint bitspercolor = dev->color_info.depth / 3;
uint colormask = (1 << bitspercolor) - 1;
uint max_rgb = dev->color_info.max_color;
prgb[0] = ((color >> (bitspercolor * 2)) & colormask) *
(ulong) gx_max_color_value / max_rgb;
prgb[1] = ((color >> bitspercolor) & colormask) *
(ulong) gx_max_color_value / max_rgb;
prgb[2] = (color & colormask) *
(ulong) gx_max_color_value / max_rgb;
return 0;
}
/* Map a cmyk color tuple back to CMYK colorants. */
static int
plibc_decode_color(gx_device * dev, gx_color_index color,
gx_color_value prgb[])
{
uint bitspercolor = dev->color_info.depth / 4;
uint colormask = (1 << bitspercolor) - 1;
uint c, m, y, k;
#define cvalue(c) ((gx_color_value)((ulong)(c) * gx_max_color_value / colormask))
k = color & colormask;
color >>= bitspercolor;
y = color & colormask;
color >>= bitspercolor;
m = color & colormask;
c = color >> bitspercolor;
prgb[0] = cvalue(c);
prgb[1] = cvalue(m);
prgb[2] = cvalue(y);
prgb[3] = cvalue(k);
return 0;
}
/* Map CMYK to color. */
static gx_color_index
plibc_encode_color(gx_device * dev, const gx_color_value cv[])
{
int bpc = dev->color_info.depth / 4;
gx_color_index color;
COLROUND_VARS;
COLROUND_SETUP(bpc);
color = ((((((COLROUND_ROUND(cv[0]) << bpc) +
COLROUND_ROUND(cv[1])) << bpc) +
COLROUND_ROUND(cv[2])) << bpc) +
COLROUND_ROUND(cv[3]));
/* The bitcmyk device does this:
* return (color == gx_no_color_index ? color ^ 1 : color);
* But I don't understand why.
*/
return color;
}
/* Map a cmyk color back to an rgb tuple. */
static int
plibc_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
uint bitspercolor = dev->color_info.depth / 4;
uint colormask = (1 << bitspercolor) - 1;
uint c, m, y, k;
#define cvalue(c) ((gx_color_value)((ulong)(c) * gx_max_color_value / colormask))
k = color & colormask;
color >>= bitspercolor;
y = color & colormask;
color >>= bitspercolor;
m = color & colormask;
c = color >> bitspercolor;
k = colormask - k;
prgb[0] = cvalue((colormask - c) * k / colormask);
prgb[1] = cvalue((colormask - m) * k / colormask);
prgb[2] = cvalue((colormask - y) * k / colormask);
return 0;
}
/* ------ Internal routines ------ */
/* Print a page using a given row printing routine. */
static int
plib_print_page_loop(gx_device_printer * pdev, int log2bits, int numComps,
gp_file *pstream)
{
gx_device_plib *pldev = (gx_device_plib *)pdev;
int lnum;
int code = 0;
byte *buffer;
int stride = bitmap_raster(pdev->width * (1<<log2bits));
int bandHeight = pdev->space_params.band.BandHeight;
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Calling page_begin\n");
#endif
buffer = gs_band_donor_band_get(pldev->opaque,
pdev->width,
pdev->height,
1<<log2bits,
numComps,
stride,
bandHeight);
#ifdef DEBUG_PRINT
emprintf1(pdev->memory, "Called page_begin %x\n", buffer);
#endif
if (buffer == NULL)
return_error(gs_error_VMerror);
/* Write these into the globals here so the setup_buf_device code can
* find it later. Nasty. */
bandBufferBase = buffer;
bandBufferStride = stride;
#ifdef DEBUG_DUMP
dump_start(pdev->width, pdev->height, numComps, log2bits, pstream);
#endif
for (lnum = 0; lnum < pdev->height; lnum += bandHeight) {
gs_int_rect rect;
gs_get_bits_params_t params;
rect.p.x = 0;
rect.p.y = lnum;
rect.q.x = pdev->width;
rect.q.y = lnum+bandHeight;
if (rect.q.y > pdev->height)
rect.q.y = pdev->height;
memset(¶ms, 0, sizeof(params));
params.options = GB_ALIGN_ANY |
GB_RETURN_POINTER |
GB_OFFSET_0 |
GB_RASTER_STANDARD |
GB_PACKING_PLANAR |
GB_COLORS_NATIVE |
GB_ALPHA_NONE;
params.x_offset = 0;
code = (*dev_proc(pdev, get_bits_rectangle))((gx_device *)pdev, &rect, ¶ms);
if (code < 0)
break;
#ifdef DEBUG_DUMP
dump_band(rect.q.y-rect.p.y, pstream);
#endif
#ifdef DEBUG_PRINT
emprintf3(pdev->memory, "Calling band_full (%d->%d) of %d\n",
rect.p.y, rect.q.y, pdev->height);
#endif
gs_band_donor_band_full(pldev->opaque, rect.q.y-rect.p.y);
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Called band_full\n");
#endif
}
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Calling band_release\n");
#endif
gs_band_donor_band_release(pldev->opaque);
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "Called band_release\n");
#endif
return (code < 0 ? code : 0);
}
/* ------ Individual page printing routines ------ */
/* Print a monobit page. */
static int
plibm_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibm_print_page\n");
#endif
return plib_print_page_loop(pdev, 0, 1, pstream);
}
/* Print a gray-mapped page. */
static int
plibg_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibg_print_page\n");
#endif
return plib_print_page_loop(pdev, 3, 1, pstream);
}
/* Print a color-mapped page. */
static int
plib_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibc_print_page\n");
#endif
return plib_print_page_loop(pdev, 3, 3, pstream);
}
/* Print a 1 bit CMYK page. */
static int
plibk_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibk_print_page\n");
#endif
return plib_print_page_loop(pdev, 0, 4, pstream);
}
/* Print an 8bpc CMYK page. */
static int
plibc_print_page(gx_device_printer * pdev, gp_file * pstream)
{
#ifdef DEBUG_PRINT
emprintf(pdev->memory, "plibc_print_page\n");
#endif
return plib_print_page_loop(pdev, 3, 4, pstream);
}
|