1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
/* Copyright (C) 2001-2023 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
CA 94129, USA, for further information.
*/
/* pxpaint.c */
/* PCL XL painting operators */
#include "math_.h"
#include "stdio_.h" /* std.h + NULL */
#include "pxoper.h"
#include "pxstate.h"
#include "pxfont.h" /* for px_text */
#include "gsstate.h"
#include "gscoord.h"
#include "gspaint.h"
#include "gspath.h"
#include "gspath2.h"
#include "gsrop.h"
#include "gxfarith.h"
#include "gxfixed.h"
#include "gxgstate.h"
#include "gxmatrix.h"
#include "gxpath.h"
#include "pxptable.h"
#include "pxgstate.h" /* Prototype for px_high_level_pattern */
/*
* The H-P documentation says we are supposed to draw rectangles
* counter-clockwise on the page, which is clockwise in user space.
* However, the LaserJet 6 (and probably the LJ 5 as well) draw rectangles
* clockwise! To draw rectangles clockwise, uncomment the following
* #define.
* clj4550 and clj4600 draw counter-clockwise rectangles
*/
/*#define DRAW_RECTANGLES_CLOCKWISE*/
/*
* The H-P printers do really weird things for arcs, chords, or pies where
* the width and/or height of the bounding box is negative. To emulate
* their behavior, uncomment the following #define.
*/
#define REFLECT_NEGATIVE_ARCS
/* Forward references */
px_operator_proc(pxNewPath);
/* ---------------- Utilities ---------------- */
/* Add lines to the path. line_proc is gs_lineto or gs_rlineto. */
/* Attributes: pxaEndPoint, pxaNumberOfPoints, pxaPointType. */
static int
add_lines(px_args_t * par, px_state_t * pxs,
int (*line_proc) (gs_gstate *, double, double))
{
int code = 0;
if (par->pv[0]) { /* Single segment, specified as argument. */
if (par->pv[1] || par->pv[2])
return_error(errorIllegalAttributeCombination);
return (*line_proc) (pxs->pgs, real_value(par->pv[0], 0),
real_value(par->pv[0], 1));
}
/* Multiple segments, specified in source data. */
if (!(par->pv[1] && par->pv[2]))
return_error(errorMissingAttribute);
{
int32_t num_points = par->pv[1]->value.i;
pxeDataType_t type = (pxeDataType_t) par->pv[2]->value.i;
int point_size = (type == eUByte || type == eSByte ? 2 : 4);
while (par->source.position < (ulong)num_points * point_size) {
const byte *dp = par->source.data;
int px, py;
if (par->source.available < point_size) { /* We don't even have one point's worth of source data. */
return pxNeedData;
}
switch (type) {
case eUByte:
px = dp[0];
py = dp[1];
break;
case eSByte:
px = (int)(dp[0] ^ 0x80) - 0x80;
py = (int)(dp[1] ^ 0x80) - 0x80;
break;
case eUInt16:
px = uint16at(dp, pxs->data_source_big_endian);
py = uint16at(dp + 2, pxs->data_source_big_endian);
break;
case eSInt16:
px = sint16at(dp, pxs->data_source_big_endian);
py = sint16at(dp + 2, pxs->data_source_big_endian);
break;
default: /* can't happen, pacify compiler */
return_error(errorIllegalAttributeValue);
}
code = (*line_proc) (pxs->pgs, (double) px, (double) py);
if (code < 0)
break;
par->source.position += point_size;
par->source.available -= point_size;
par->source.data += point_size;
}
}
return code;
}
/* Add Bezier curves to the path. curve_proc is gs_curveto or gs_rcurveto. */
/* Attributes: pxaNumberOfPoints, pxaPointType, pxaControlPoint1, */
/* pxaControlPoint2, pxaEndPoint. */
static int
add_curves(px_args_t * par, px_state_t * pxs,
int (*curve_proc) (gs_gstate *, double, double, double, double,
double, double))
{
int code = 0;
if (par->pv[2] && par->pv[3] && par->pv[4]) { /* Single curve, specified as argument. */
if (par->pv[0] || par->pv[1])
return_error(errorIllegalAttributeCombination);
return (*curve_proc) (pxs->pgs, real_value(par->pv[2], 0),
real_value(par->pv[2], 1),
real_value(par->pv[3], 0),
real_value(par->pv[3], 1),
real_value(par->pv[4], 0),
real_value(par->pv[4], 1));
}
/* Multiple segments, specified in source data. */
else if (par->pv[0] && par->pv[1]) {
if (par->pv[2] || par->pv[3] || par->pv[4])
return_error(errorIllegalAttributeCombination);
} else
return_error(errorMissingAttribute);
{
int32_t num_points = par->pv[0]->value.i;
pxeDataType_t type = (pxeDataType_t) par->pv[1]->value.i;
int point_size = (type == eUByte || type == eSByte ? 2 : 4);
int segment_size = point_size * 3;
if (num_points % 3)
return_error(errorIllegalDataLength);
while (par->source.position < (ulong)num_points * point_size) {
const byte *dp = par->source.data;
int points[6];
int i;
if (par->source.available < point_size * 3) { /* We don't even have one point's worth of source data. */
return pxNeedData;
}
switch (type) {
case eUByte:
for (i = 0; i < 6; ++i)
points[i] = dp[i];
break;
case eSByte:
for (i = 0; i < 6; ++i)
points[i] = (int)(dp[i] ^ 0x80) - 0x80;
break;
case eUInt16:
for (i = 0; i < 12; i += 2)
points[i >> 1] =
uint16at(dp + i, pxs->data_source_big_endian);
break;
case eSInt16:
for (i = 0; i < 12; i += 2)
points[i >> 1]
= sint16at(dp + i, pxs->data_source_big_endian);
break;
default: /* can't happen, pacify compiler */
return_error(errorIllegalAttributeValue);
}
code = (*curve_proc) (pxs->pgs,
(double) points[0], (double) points[1],
(double) points[2], (double) points[3],
(double) points[4], (double) points[5]);
if (code < 0)
break;
par->source.position += segment_size;
par->source.available -= segment_size;
par->source.data += segment_size;
}
}
return code;
}
/*
* Set up all the parameters for an arc, chord, ellipse, or pie. If pp3 and
* pp4 are NULL, we're filling the entire box. Store the upper left box
* corner (for repositioning the cursor), the center, the radius, and the
* two angles in *params, and return one of the following (or a negative
* error code):
*/
typedef enum
{
/*
* Arc box is degenerate (zero width and/or height).
* Only origin and center have been set.
*/
arc_degenerate = 0,
/*
* Arc box is square. No CTM adjustment was required; save_ctm is
* not set.
*/
arc_square,
/*
* Arc box is rectangular, CTM has been saved and adjusted.
*/
arc_rectangular
} px_arc_type_t;
typedef struct px_arc_params_s
{
gs_point origin;
gs_point center;
double radius;
double ang3, ang4;
gs_matrix save_ctm;
bool reversed;
} px_arc_params_t;
static int /* px_arc_type_t or error code */
setup_arc(px_arc_params_t * params, const px_value_t * pbox,
const px_value_t * pp3, const px_value_t * pp4,
const px_state_t * pxs, bool ellipse)
{
real x1 = real_value(pbox, 0);
real y1 = real_value(pbox, 1);
real x2 = real_value(pbox, 2);
real y2 = real_value(pbox, 3);
real xc = (x1 + x2) * 0.5;
real yc = (y1 + y2) * 0.5;
real xr, yr;
bool rotated;
int code;
#ifdef REFLECT_NEGATIVE_ARCS
rotated = x1 > x2;
params->reversed = rotated ^ (y1 > y2);
#else
rotated = false;
params->reversed = false;
#endif
if (x1 > x2) {
real temp = x1;
x1 = x2;
x2 = temp;
}
if (y1 > y2) {
real temp = y1;
y1 = y2;
y2 = temp;
}
params->origin.x = x1;
params->origin.y = y1;
xr = (x2 - x1) * 0.5;
yr = (y2 - y1) * 0.5;
/* From what we can gather ellipses are degenerate if both
width and height of the bounding box are 0. Other objects
behave as expected. A 0 area bounding box is degenerate */
if (ellipse) {
/* The bounding box is degenerate, set what we can and exit. */
if (xr == 0 && yr == 0) {
params->center.x = xc;
params->center.y = yc;
return arc_degenerate;
}
} else {
if (xr == 0 || yr == 0) {
params->center.x = xc;
params->center.y = yc;
return arc_degenerate;
}
}
if (pp3 && pp4) {
real dx3 = real_value(pp3, 0) - xc;
real dy3 = real_value(pp3, 1) - yc;
real dx4 = real_value(pp4, 0) - xc;
real dy4 = real_value(pp4, 1) - yc;
if ((dx3 == 0 && dy3 == 0) || (dx4 == 0 && dy4 == 0))
return_error(errorIllegalAttributeValue);
{
double ang3 = atan2((double)(dy3 * xr),
(double)(dx3 * yr)) * radians_to_degrees;
double ang4 = atan2((double)(dy4 * xr),
(double)(dx4 * yr)) * radians_to_degrees;
if (rotated)
ang3 += 180, ang4 += 180;
params->ang3 = ang3;
params->ang4 = ang4;
}
}
params->radius = yr;
if (xr == yr) {
params->center.x = xc;
params->center.y = yc;
return arc_square;
} else { /* Must adjust the CTM. Move the origin to (xc,yc) */
/* for simplicity. */
if ((code = gs_currentmatrix(pxs->pgs, ¶ms->save_ctm)) < 0 ||
(code = gs_translate(pxs->pgs, xc, yc)) < 0 ||
(code = gs_scale(pxs->pgs, xr, yr)) < 0)
return code;
params->center.x = 0;
params->center.y = 0;
params->radius = 1.0;
return arc_rectangular;
}
}
/* per the nonsense in 5.7.3 (The ROP3 Operands) from the pxl
reference manual the following rops are allowed for stroking. */
static bool
pxl_allow_rop_for_stroke(gs_gstate * pgs)
{
gs_rop3_t rop = gs_currentrasterop(pgs);
if (rop == 0 || rop == 160 || rop == 170 || rop == 240 || rop == 250
|| rop == 255)
return true;
return false;
}
/* Paint (stroke and/or fill) the current path. */
static int
paint_path(px_state_t * pxs)
{
gs_gstate *pgs = pxs->pgs;
gx_path *ppath = gx_current_path(pgs);
px_gstate_t *pxgs = pxs->pxgs;
bool will_stroke = pxgs->pen.type != pxpNull;
bool will_fill = pxgs->brush.type != pxpNull;
int code = 0;
/* nothing to do. */
if (!will_fill && !will_stroke)
return 0;
if (gx_path_is_void(ppath))
return 0;
pxs->have_page = true;
if (will_fill) {
gx_path *stroke_path = NULL;
int (*fill_proc) (gs_gstate *) =
(pxgs->fill_mode == eEvenOdd ? gs_eofill : gs_fill);
if ((code = px_set_paint(&pxgs->brush, pxs)) < 0)
return code;
/* if we are also going to stroke the path, store a copy. */
if (will_stroke) {
stroke_path = gx_path_alloc_shared(ppath, pxs->memory, "paint_path(save_for_stroke)");
if (stroke_path == NULL)
return_error(errorInsufficientMemory);
gx_path_assign_preserve(stroke_path, ppath);
}
/* Make a reduced version of the path, and put that back. */
code = gx_path_elide_1d(ppath);
if (code < 0)
return code;
/* exit here if no stroke or the fill failed. */
code = (*fill_proc) (pgs);
if (code < 0 || !will_stroke) {
if (stroke_path)
gx_path_free(stroke_path, "paint_path(error_with_fill)");
return code;
}
/* restore the path for the stroke, will_stroke and hence
stroke_path must be set at this point. */
gx_path_assign_free(ppath, stroke_path);
}
/*
* Per the description in the PCL XL reference documentation,
* set a standard logical operation and transparency for stroking.
* will_stroke is asserted true here.
*/
{
gs_rop3_t save_rop = gs_currentrasterop(pgs);
bool save_transparent = gs_currenttexturetransparent(pgs);
bool need_restore_rop = false;
if (pxl_allow_rop_for_stroke(pgs) == false) {
gs_setrasterop(pgs, rop3_T);
gs_settexturetransparent(pgs, false);
need_restore_rop = true;
}
code = px_set_paint(&pxgs->pen, pxs);
if (code < 0)
DO_NOTHING;
code = gs_stroke(pgs);
/* Bit hacky. Normally we handle this up at the interpreter level, and for
* fill (above) that's how it works. However, px_set_paint() will call
* gs_setpattern, which means that the high level pattern we've saved will
* not be the one we use here. If we simply returned remap_color, as might be
* expected, we would throw an error in the interpreter, and even if we didn't,
* when we came back we would do the fill again, which is wasteful. Instead we
* will cater for the situation here by calling the high level pattern routine
* to install the pattern, then do the stroke again.
*/
if (code == gs_error_Remap_Color) {
code = px_high_level_pattern(pxs->pgs);
code = gs_stroke(pgs);
}
if (code < 0)
DO_NOTHING;
if (need_restore_rop) {
gs_setrasterop(pgs, save_rop);
gs_settexturetransparent(pgs, save_transparent);
}
}
return code;
}
/* Paint a shape defined by a one-operator path. */
static int
paint_shape(px_args_t * par, px_state_t * pxs, px_operator_proc((*path_op)))
{
int code;
gs_gstate *pgs = pxs->pgs;
gs_fixed_point fxp;
/* build the path */
if ((code = pxNewPath(par, pxs)) < 0 ||
(code = (*path_op) (par, pxs)) < 0)
return code;
/* save position and stroke and or fill the path */
code = gx_path_current_point(gx_current_path(pxs->pgs), &fxp);
if (code < 0)
return code;
code = paint_path(pxs);
if (code < 0)
return code;
/* restore the saved position, and open a new subpath */
code = gx_path_add_point(gx_current_path(pxs->pgs), fxp.x, fxp.y);
if (code < 0)
return code;
return gx_setcurrentpoint_from_path(pgs, gx_current_path(pxs->pgs));
}
/* ---------------- Operators ---------------- */
const byte apxCloseSubPath[] = { 0, 0 };
int
pxCloseSubPath(px_args_t * par, px_state_t * pxs)
{
return gs_closepath(pxs->pgs);
}
const byte apxNewPath[] = { 0, 0 };
int
pxNewPath(px_args_t * par, px_state_t * pxs)
{
return gs_newpath(pxs->pgs);
}
/* Unlike painting single objects the PaintPath operator preserves the
path */
const byte apxPaintPath[] = { 0, 0 };
int
pxPaintPath(px_args_t * par, px_state_t * pxs)
{
gx_path *ppath = gx_current_path(pxs->pgs);
gx_path *save_path =
gx_path_alloc_shared(ppath, pxs->memory, "pxPaintPath");
int code;
if (save_path == 0)
return_error(errorInsufficientMemory);
gx_path_assign_preserve(save_path, ppath);
code = paint_path(pxs);
gx_path_assign_free(ppath, save_path);
if (code >= 0)
code = gx_setcurrentpoint_from_path(pxs->pgs, ppath);
return code;
}
const byte apxArcPath[] = {
pxaBoundingBox, pxaStartPoint, pxaEndPoint, 0,
pxaArcDirection, 0
};
int
pxArcPath(px_args_t * par, px_state_t * pxs)
{ /*
* Note that "clockwise" in user space is counter-clockwise on
* the page, because the Y coordinate is inverted.
*/
bool clockwise = (par->pv[3] != 0 && par->pv[3]->value.i == eClockWise);
px_arc_params_t params;
int code =
setup_arc(¶ms, par->pv[0], par->pv[1], par->pv[2], pxs, false);
int rcode = code;
if (code >= 0 && code != arc_degenerate) {
bool closed = params.ang3 == params.ang4;
clockwise ^= params.reversed;
if (closed) {
if (clockwise)
params.ang4 += 360;
else
params.ang3 += 360;
}
code = gs_arc_add(pxs->pgs, !clockwise, params.center.x,
params.center.y, params.radius, params.ang3,
params.ang4, false);
if (code >= 0 && closed) { /* We have to close the path explicitly. */
code = gs_closepath(pxs->pgs);
}
}
if (rcode == arc_rectangular)
gs_setmatrix(pxs->pgs, ¶ms.save_ctm);
return code;
}
const byte apxBezierPath[] = {
0, pxaNumberOfPoints, pxaPointType, pxaControlPoint1, pxaControlPoint2,
pxaEndPoint, 0
};
int
pxBezierPath(px_args_t * par, px_state_t * pxs)
{
return add_curves(par, pxs, gs_curveto);
}
const byte apxBezierRelPath[] = {
0, pxaNumberOfPoints, pxaPointType, pxaControlPoint1, pxaControlPoint2,
pxaEndPoint, 0
};
int
pxBezierRelPath(px_args_t * par, px_state_t * pxs)
{
return add_curves(par, pxs, gs_rcurveto);
}
const byte apxChord[] = {
pxaBoundingBox, pxaStartPoint, pxaEndPoint, 0, 0
};
px_operator_proc(pxChordPath);
int
pxChord(px_args_t * par, px_state_t * pxs)
{
return paint_shape(par, pxs, pxChordPath);
}
const byte apxChordPath[] = {
pxaBoundingBox, pxaStartPoint, pxaEndPoint, 0, 0
};
int
pxChordPath(px_args_t * par, px_state_t * pxs)
{
px_arc_params_t params;
int code =
setup_arc(¶ms, par->pv[0], par->pv[1], par->pv[2], pxs, false);
int rcode = code;
/* See ArcPath above for the meaning of "clockwise". */
if (code >= 0 && code != arc_degenerate) {
if (params.ang3 == params.ang4)
params.ang3 += 360;
code = gs_arc_add(pxs->pgs, !params.reversed,
params.center.x, params.center.y,
params.radius, params.ang3, params.ang4, false);
if (code >= 0)
code = gs_closepath(pxs->pgs);
}
if (rcode == arc_rectangular)
gs_setmatrix(pxs->pgs, ¶ms.save_ctm);
if (code >= 0)
code = gs_moveto(pxs->pgs, params.origin.x, params.origin.y);
return code;
}
const byte apxEllipse[] = {
pxaBoundingBox, 0, 0
};
px_operator_proc(pxEllipsePath);
int
pxEllipse(px_args_t * par, px_state_t * pxs)
{
return paint_shape(par, pxs, pxEllipsePath);
}
const byte apxEllipsePath[] = {
pxaBoundingBox, 0, 0
};
int
pxEllipsePath(px_args_t * par, px_state_t * pxs)
{
px_arc_params_t params;
int code = setup_arc(¶ms, par->pv[0], NULL, NULL, pxs, true);
int rcode = code;
real a_start = 180.0;
real a_end = -180.0;
/* swap start and end angles if counter clockwise ellipse */
if (params.reversed) {
a_start = -180.0;
a_end = 180.0;
}
/* See ArcPath above for the meaning of "clockwise". */
if (code < 0 || code == arc_degenerate ||
(code = gs_arc_add(pxs->pgs, !params.reversed,
params.center.x, params.center.y,
params.radius, a_start, a_end, false)) < 0 ||
/* We have to close the path explicitly. */
(code = gs_closepath(pxs->pgs)) < 0)
DO_NOTHING;
if (rcode == arc_rectangular)
gs_setmatrix(pxs->pgs, ¶ms.save_ctm);
if (code >= 0)
code = gs_moveto(pxs->pgs, params.origin.x, params.origin.y);
return code;
}
const byte apxLinePath[] = {
0, pxaEndPoint, pxaNumberOfPoints, pxaPointType, 0
};
int
pxLinePath(px_args_t * par, px_state_t * pxs)
{
return add_lines(par, pxs, gs_lineto);
}
const byte apxLineRelPath[] = {
0, pxaEndPoint, pxaNumberOfPoints, pxaPointType, 0
};
int
pxLineRelPath(px_args_t * par, px_state_t * pxs)
{
return add_lines(par, pxs, gs_rlineto);
}
const byte apxPie[] = {
pxaBoundingBox, pxaStartPoint, pxaEndPoint, 0, 0
};
px_operator_proc(pxPiePath);
int
pxPie(px_args_t * par, px_state_t * pxs)
{
return paint_shape(par, pxs, pxPiePath);
}
const byte apxPiePath[] = {
pxaBoundingBox, pxaStartPoint, pxaEndPoint, 0, 0
};
int
pxPiePath(px_args_t * par, px_state_t * pxs)
{
px_arc_params_t params;
int code =
setup_arc(¶ms, par->pv[0], par->pv[1], par->pv[2], pxs, false);
int rcode = code;
/* See ArcPath above for the meaning of "clockwise". */
if (code >= 0 && code != arc_degenerate) {
if (params.ang3 == params.ang4)
params.ang3 += 360;
code = gs_moveto(pxs->pgs, params.center.x, params.center.y);
if (code >= 0) {
code = gs_arc_add(pxs->pgs, !params.reversed,
params.center.x, params.center.y,
params.radius, params.ang3, params.ang4, true);
}
}
if (rcode == arc_rectangular)
gs_setmatrix(pxs->pgs, ¶ms.save_ctm);
if (code < 0 || rcode == arc_degenerate ||
(code = gs_closepath(pxs->pgs)) < 0 ||
(code = gs_moveto(pxs->pgs, params.origin.x, params.origin.y)) < 0)
DO_NOTHING;
return code;
}
const byte apxRectangle[] = {
pxaBoundingBox, 0, 0
};
px_operator_proc(pxRectanglePath);
int
pxRectangle(px_args_t * par, px_state_t * pxs)
{
return paint_shape(par, pxs, pxRectanglePath);
}
const byte apxRectanglePath[] = {
pxaBoundingBox, 0, 0
};
int
pxRectanglePath(px_args_t * par, px_state_t * pxs)
{
double x1, y1, x2, y2;
gs_fixed_point p1;
gs_gstate *pgs = pxs->pgs;
gx_path *ppath = gx_current_path(pgs);
gs_fixed_point lines[3];
#define p2 lines[1]
#define pctm (&((const gs_gstate *)pgs)->ctm)
int code;
set_box_value(x1, y1, x2, y2, par->pv[0]);
/*
* Rectangles are always drawn in a canonical order.
*/
if (x1 > x2) {
double t = x1;
x1 = x2;
x2 = t;
}
if (y1 > y2) {
double t = y1;
y1 = y2;
y2 = t;
}
if ((code = gs_point_transform2fixed(pctm, x1, y1, &p1)) < 0 ||
(code = gs_point_transform2fixed(pctm, x2, y2, &p2)) < 0 ||
(code = gs_moveto(pgs, x1, y1)) < 0)
return code;
#ifdef DRAW_RECTANGLES_CLOCKWISE
/*
* DRAW_RECTANGLES_CLOCKWISE means clockwise on the page, which is
* counter-clockwise in user space.
*/
if ((code = gs_point_transform2fixed(pctm, x2, y1, &lines[0])) < 0 ||
(code = gs_point_transform2fixed(pctm, x1, y2, &lines[2])) < 0)
return code;
#else
if ((code = gs_point_transform2fixed(pctm, x1, y2, &lines[0])) < 0 ||
(code = gs_point_transform2fixed(pctm, x2, y1, &lines[2])) < 0)
return code;
#endif
if ((code = gx_path_add_lines(ppath, lines, 3)) < 0)
return code;
return gs_closepath(pgs);
#undef pctm
#undef p2
}
const byte apxRoundRectangle[] = {
pxaBoundingBox, pxaEllipseDimension, 0, 0
};
px_operator_proc(pxRoundRectanglePath);
int
pxRoundRectangle(px_args_t * par, px_state_t * pxs)
{
return paint_shape(par, pxs, pxRoundRectanglePath);
}
const byte apxRoundRectanglePath[] = {
pxaBoundingBox, pxaEllipseDimension, 0, 0
};
int
pxRoundRectanglePath(px_args_t * par, px_state_t * pxs)
{
double x1, y1, x2, y2;
real xr = real_value(par->pv[1], 0) * 0.5;
real yr = real_value(par->pv[1], 1) * 0.5;
real xd, yd;
gs_matrix save_ctm;
gs_gstate *pgs = pxs->pgs;
int code;
set_box_value(x1, y1, x2, y2, par->pv[0]);
xd = x2 - x1;
yd = y2 - y1;
/*
* H-P printers give an error if the points are specified out
* of order.
*/
if (xd < 0 || yd < 0)
return_error(errorIllegalAttributeValue);
if (xr == 0 || yr == 0)
return pxRectanglePath(par, pxs);
gs_currentmatrix(pgs, &save_ctm);
gs_translate(pgs, x1, y1);
if (xr != yr) { /* Change coordinates so the arcs are circular. */
double scale = xr / yr;
if ((code = gs_scale(pgs, scale, 1.0)) < 0)
return code;
xd *= yr / xr;
}
#define r yr
/*
* Draw the rectangle counter-clockwise on the page, which is
* clockwise in user space. (This may be reversed if the
* coordinates are specified in a non-standard order.)
*/
if ((code = gs_moveto(pgs, 0.0, r)) < 0 ||
(code = gs_arcn(pgs, r, yd - r, r, 180.0, 90.0)) < 0 ||
(code = gs_arcn(pgs, xd - r, yd - r, r, 90.0, 0.0)) < 0 ||
(code = gs_arcn(pgs, xd - r, r, r, 0.0, 270.0)) < 0 ||
(code = gs_arcn(pgs, r, r, r, 270.0, 180.0)) < 0 ||
(code = gs_closepath(pgs)) < 0 ||
(code = gs_moveto(pgs, 0.0, 0.0)) < 0)
return code;
#undef r
return gs_setmatrix(pgs, &save_ctm);
}
const byte apxText[] = {
pxaTextData, 0, pxaXSpacingData, pxaYSpacingData, 0
};
int
pxText(px_args_t * par, px_state_t * pxs)
{
{
int code = px_set_paint(&pxs->pxgs->brush, pxs);
if (code < 0)
return code;
}
if (par->pv[0]->value.array.size != 0 && pxs->pxgs->brush.type != pxpNull)
pxs->have_page = true;
return px_text(par, pxs, false);
}
const byte apxTextPath[] = {
pxaTextData, 0, pxaXSpacingData, pxaYSpacingData, 0
};
int
pxTextPath(px_args_t * par, px_state_t * pxs)
{
int code = px_set_paint(&pxs->pxgs->pen, pxs);
if (code < 0)
return code;
/* NB this should be refactored with pxText (immediately above)
and it is not a good heuristic for detecting a marked page. */
if (par->pv[0]->value.array.size != 0 && pxs->pxgs->pen.type != pxpNull)
pxs->have_page = true;
return px_text(par, pxs, true);
}
|