1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
/* Copyright (C) 2001-2023 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
CA 94129, USA, for further information.
*/
/*
* Program to generate a stochastic threshold array that has good edge
* blending and high frequency spatial distribution.
*
* usage: gen_stochastic [ options ] SIZEWxSIZEH outfile
*
* SIZEWxSIZEH are the width and height of the threshold array separated
* by a lower case 'x'. If the threshold array is square, then only the
* first number is required and the 'x' should not be present. Maximum
* value is 512 (MAX_ARRAY_WIDTH, MAX_ARRAY_HEIGHT compile time option).
*
* 'outfile' is the name of the threshold array file.
*
* options are any combination of the following:
*
* -m# set the minimum dot size/shape pattern. This is an index
* to a specific size/shape table as follows:
*
* 0: 1: 2: 3: 4: 5:
* x xx x xx x xx
* x x x xx
*
* 6: 7: 8: 9: 10: 11: 12: 13:
* xxx xxx xxx xxx xxx xxx xxx xxx
* x xx xxx x xx xxx xxx
* x x x xx
*
* 14: 15: 16: 17: 18: 11: 13: 19:
* x xx xx xx xxx xxx xxx xxx
* x x xx xx xx xx xxx xxx
* x x x xx xx x xx xxx
*
* Note that the duplicated indices for duplicated patterns are
* for clarity. Also, some patterns are intentionally omitted e.g.,
* x xx xxx
* x xx
* x xx xxx
*
* -p#.## power for exponential bias of random choice. Default 2.0
*
* -q Quiet mode (default verbose).
*
* -rWxH allows for horizontal / vertical resolution, e.g. -r2x1
* values are used for aspect ratio -- actual values arbitrary
*
* -s# Initial seed for random number generation. Useful to generate
* decorrelated threshold arrays to be used with different colors.
*
* -t# sets the choice value threshold in 0.1% units (default 10 = 1%)
*
* -v verbose mode. Details to stdout about choices. Default OFF
*
*/
/*
* Outline.
* 1. Clear the array.
* 2. Generate array of positions ordered by increasing density.
* The density is determined as a result of the "ValFunction"
* function. This function determines the weighting of pixels.
* 3. Choose the next array element using random variable index
* into the "Val".
*
* Rev A. Rather than re-compute the entire array "Val" from scratch
* at every level, since densities only increase due to the
* previous point, simply add the incremental value due to
* the latest point to every "Val".
*
* NOTE that if more involved "Val" functions are used to
* try to detect "lines" in the array and increase the value
* for points that would form lines, then it will probably
* be necessary to recalculate values for the entire array.
* (but maybe not even then -- just keep it in mind)
*
* Rev B. Add support for differing horizontal and vertical resolutions
* and make the 'threshold' for including values in the 'choice'
* set a parameter. Also support threshold arrays of differing
* width and height.
*
* Rev C. Add support for 'minimum dot' (-m option)
*
* Rev D. Add support for multi-bit threshold arrays (-n#)
*/
#define MAX_ARRAY_WIDTH 512
#define MAX_ARRAY_HEIGHT 512
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifdef __WIN32__
# include <conio.h>
#endif /* __WIN32__ */
#define BIG_FLOAT 999999999.0
/******** GLOBALS ********/
int array_width, array_height, resolution[2];
int ThresholdArray[MAX_ARRAY_WIDTH][MAX_ARRAY_HEIGHT];
int quiet = 0;
FILE *fp;
double Val[MAX_ARRAY_WIDTH * MAX_ARRAY_HEIGHT];
double MinVal, MaxVal, ValRange;
typedef struct Order_t {
int X;
int Y;
} Order_s;
Order_s Order[MAX_ARRAY_WIDTH * MAX_ARRAY_HEIGHT];
/* Forward references */
int do_dot(int choice_X, int choice_Y, int level, int last);
int CompareOrder(const void *, const void *);
double ValFunction(int thisX, int thisY, int refX, int refY, double rx_sq, double ry_sq);
/* Definition of the minimum dot patterns */
static struct min_dot_edge {
int num_rows;
int left[3];
int right[3];
} min_dot_edges[20] = {
/* 0: 1: 2: 3: 4: 5:
* x xx x xx x xx
* x x x xx
*/
{ 1, { 0, 0, 0 }, { 0, 0, 0 } }, /* 0: x */
{ 1, { 0, 0, 0 }, { 1, 0, 0 } }, /* 1: xx */
{ 2, { 0, 0, 0 }, { 0, 0, 0 } }, /* 2: x */
/* x */
{ 2, { 0, 0, 0 }, { 1, 0, 0 } }, /* 3: xx */
/* x */
{ 2, { 0, 1, 0 }, { 0, 1, 0 } }, /* 4: x */
/* x */
{ 2, { 0, 0, 0 }, { 1, 1, 0 } }, /* 5: xx */
/* xx */
/* 6: 7: 8: 9: 10: 11: 12:
* xxx xxx xxx xxx xxx xxx xxx
* x xx xxx x xx xxx
* x x x
*/
{ 1, { 0, 0, 0 }, { 2, 0, 0 } }, /* 6: xxx */
{ 2, { 0, 0, 0 }, { 2, 0, 0 } }, /* 7: xxx */
/* x */
{ 2, { 0, 0, 0 }, { 2, 1, 0 } }, /* 8: xxx */
/* xx */
{ 2, { 0, 0, 0 }, { 2, 2, 0 } }, /* 9: xxx */
/* xxx */
{ 3, { 0, 0, 0 }, { 2, 0, 0 } }, /* 10: xxx */
/* x */
/* x */
{ 3, { 0, 0, 0 }, { 2, 1, 0 } }, /* 11: xxx */
/* x */
/* x */
{ 3, { 0, 0, 0 }, { 2, 2, 0 } }, /* 12: xxx */
/* xxx */
/* x */
/* 13: 14: 15: 16: 17: 18: 19:
* xxx x xx xx xx xxx xxx
* xxx x x xx xx xx xxx
* xx x x x xx xx xxx
*/
{ 3, { 0, 0, 0 }, { 2, 2, 1 } }, /* 13: xxx */
/* xxx */
/* xx */
{ 3, { 0, 0, 0 }, { 0, 0, 0 } }, /* 14: x */
/* x */
/* x */
{ 3, { 0, 0, 0 }, { 1, 0, 0 } }, /* 15: xx */
/* x */
/* x */
{ 3, { 0, 0, 0 }, { 1, 1, 0 } }, /* 16: xx */
/* xx */
/* x */
{ 3, { 0, 0, 0 }, { 1, 1, 1 } }, /* 17: xx */
/* xx */
/* xx */
{ 3, { 0, 0, 0 }, { 2, 1, 1 } }, /* 18: xxx */
/* xx */
/* xx */
{ 3, { 0, 0, 0 }, { 2, 2, 1 } } /* 19: xxx */
/* xxx */
/* xxx */
};
/**************************************************************************/
int
main(int argc, char *argv[])
{
/* Initialize master threshold array */
int i, j, k, m, level, level_up = 1;
int X, Y, choice_range, choice, choice_X, choice_Y;
int SortRange;
int min_dot_pattern = 0, do_min_dot;
double value, val_thresh = 0.01; /* default -t10 */
double rx_sq = 1.0, ry_sq = 1.0;
double rand_scaled, bias_power = 2.0;
float x;
int code = 0, at_arg;
resolution[0] = resolution[1] = 1;
/* process the optional arguments */
for (at_arg=1; at_arg<argc; at_arg++) {
if (argv[at_arg][0] != '-') {
break; /* next is SIZE */
} else if (argv[at_arg][1] == 'm') {
j = sscanf(&argv[at_arg][2], "%d", &m);
if (j < 1)
goto usage_exit;
min_dot_pattern = m;
} else if (argv[at_arg][1] == 'p') {
j = sscanf(&argv[at_arg][2], "%f", &x);
if (j < 1)
goto usage_exit;
bias_power = x;
} else if (argv[at_arg][1] == 'q') {
quiet = 1;
} else if (argv[at_arg][1] == 'r') {
/* resolution wwwxhhh */
j = sscanf(&argv[at_arg][2], "%dx%d", &k, &m);
if (j < 1)
goto usage_exit;
resolution[0] = k;
if (j > 1)
resolution[1] = m;
rx_sq = resolution[0] * resolution[0];
ry_sq = resolution[1] * resolution[1];
} else if (argv[at_arg][1] == 's') {
/* iseed value */
j = sscanf(&argv[at_arg][2], "%d", &k);
if (j != 0) {
srand(k);
}
} else if (argv[at_arg][1] == 't') {
/* threshold percent */
j = sscanf(&argv[at_arg][2], "%d", &k);
if (j < 1)
goto usage_exit;
val_thresh = (double)k / 1000.0;
}
}
/* Initialize array_width and height from the next command line arg */
/* format SSS (width and height equal or WWWxHHH for array */
if (at_arg == argc)
goto usage_exit;
j = sscanf(argv[at_arg++], "%dx%d", &k, &m);
if (j < 1)
goto usage_exit;
array_width = k;
array_height = k;
if (j > 1)
array_height = m;
if (array_width * array_height > MAX_ARRAY_WIDTH * MAX_ARRAY_HEIGHT) {
printf("Array size is too large, max width = %d, max height = %d\n",
MAX_ARRAY_WIDTH, MAX_ARRAY_HEIGHT);
return 1;
}
/* And finally open the output file from the next required parameter */
if (at_arg == argc)
goto usage_exit;
if ((fp = fopen(argv[at_arg++],"w")) == NULL)
goto usage_exit;
/* Write out the header line for the threshold array */
/* This should be compatible with 'thresh_remap.c' */
fprintf(fp,"# W=%d H=%d\n", array_width, array_height);
/* Initialize the ThresholdArray to -1 (an invalid value) for unfilled dots. */
/* Initialize the Order array */
for (Y=0; Y < array_height; Y++) {
for (X=0; X < array_width; X++) {
Order[ Y*array_width + X ].X = X;
Order[ Y*array_width + X ].Y = Y;
Val[ Y*array_width + X ] = 0.0;
ThresholdArray[X][Y] = -1;
}
}
/* Create an ordered list of values */
SortRange = (array_width*array_height);
MinVal = 0.0;
MaxVal = 0.0;
ValRange = 1.0;
for (level = 0; level < (array_width * array_height); level += level_up) {
/* We focus the processing on the first "SortRange" number of */
/* elements to speed up the processing. The SortRange starts */
/* at the full array size, then is reduced to a smaller value */
/* Create an ordered list of values */
qsort((void *)Order, SortRange, sizeof(Order_s), CompareOrder);
SortRange = array_width * array_height - level;
if (! quiet) {
printf("MinVal = %f, MinX = %d, MinY = %d\n", MinVal, Order[0].X, Order[0].Y);
}
/* Print some statistics on the ordered array */
choice_range = 0;
for (i=0; i < (array_width * array_height) - level; i++) {
value = Val[ (Order[i].Y * array_width) + Order[i].X ];
value = (value-MinVal) / ValRange;
if (value > val_thresh)
break;
choice_range++;
}
if (! quiet)
printf("Number of points less than %5.3f = %d\n", val_thresh, choice_range);
/* Now select the next pixel using a random number */
/* Limit the choice to the 1/10 of the total number of points */
/* or those points less than "val_thresh" */
/* whichever is smaller */
if (choice_range > array_width*array_height/10)
choice_range = array_width*array_height/10;
/* Choose from among the 'acceptable' points */
rand_scaled = (double)rand() / (double)RAND_MAX;
choice = (int)((double)choice_range * pow(rand_scaled, bias_power));
choice_X = Order[choice].X;
choice_Y = Order[choice].Y;
/* if minimum dot size is set, modify the choice depending on the */
/* neighboring dots. If the edge of the expanded dot is adajcent */
/* to a dot aleady 'on', then increase the size of that dot instead */
do_min_dot = min_dot_pattern;
level_up = 1; /* set for the default, single dot case */
if (min_dot_pattern != 0) {
int row, dot, cX, cY;
int row_direction, dot_direction;
int userow;
/* Scan the area covered by this dot, including above and below by */
/* one row, and to the left and to the right by one dot. If one */
/* marked dot is found, choose a single dot adjacent to the marked */
/* dot. */
for (row=-1; row <= min_dot_edges[min_dot_pattern].num_rows; row++) {
/* for the left and right edges, we use a row within the num_rows range */
userow = row < 0 ? 0 : /* top row of the min_dot_pattern */
row < min_dot_edges[min_dot_pattern].num_rows ?
row: /* current row is within numrows */
row - 1; /* last row of min_dot_pattern */
cY = (choice_Y + row + array_height) % array_height;
for (dot=min_dot_edges[min_dot_pattern].left[userow] - 1;
dot <= min_dot_edges[min_dot_pattern].right[userow] + 1; dot++) {
cX = (choice_X + dot + array_height) % array_width;
if (ThresholdArray[cX][cY] != -1)
goto find_neighbor;
}
}
goto do_dot; /* we have room for a minimum dot, do it */
find_neighbor:
/* Found an adjacent dot that is already used, select an unused */
/* single dot contiguous to the dot that is used */
do_min_dot = 0; /* select a single dot */
if (!quiet)
printf("min_dot at [%d, %d] suppressed due to neighbor dot at: [%d, %d]\n",
choice_X, choice_Y, cX, cY);
/* Choose a white dot adjacent to this dot, closest to our initial */
/* choice position. */
if (row < min_dot_edges[min_dot_pattern].num_rows >> 1)
row_direction = 1; /* go down from the marked dot found */
else
row_direction = -1; /* go above the marked dot */
if (dot < min_dot_edges[min_dot_pattern].right[userow] >> 1)
dot_direction = 1; /* move right */
else
dot_direction = -1; /* move left */
if (!quiet)
printf("searching for unmarked dot %s and to the %s\n",
row_direction < 0 ? "above" : "below",
dot_direction < 0 ? "left" : "right");
if ((choice_X & 1) == 0) {
/* even columns are column major */
for (; (row >= -1) && (row <= min_dot_edges[min_dot_pattern].num_rows);
row += row_direction) {
userow = row < 0 ? 0 : /* top row of the min_dot_pattern */
row < min_dot_edges[min_dot_pattern].num_rows ?
row: /* current row is within numrows */
row - 1; /* last row of min_dot_pattern */
cY = (choice_Y + row + array_height) % array_height;
dot = dot_direction > 0 ? min_dot_edges[min_dot_pattern].left[userow] - 1 :
min_dot_edges[min_dot_pattern].right[userow] + 1;
for (; (dot >= -1) && (dot <= min_dot_edges[min_dot_pattern].right[userow] + 1);
dot += dot_direction) {
cX = (choice_X + dot + array_height) % array_width;
if (!quiet)
printf("dot at %d, %d is %s\n", cX, cY, ThresholdArray[cX][cY] == -1 ?
"unmarked" : "marked");
if (ThresholdArray[cX][cY] == -1) {
choice_X = cX;
choice_Y = cY;
goto do_dot;
}
}
}
} else {
/* odd columns are row major */
for (dot = dot_direction > 0 ? -1 : 3;
dot >= -1 && dot <= 3;
dot += dot_direction) {
/* actual dot constrained below */
for (row = row_direction > 0 ? -1 : min_dot_edges[min_dot_pattern].num_rows;
(row <= min_dot_edges[min_dot_pattern].num_rows);
row += row_direction) {
userow = row < 0 ? 0 : /* top row of the min_dot_pattern */
row < min_dot_edges[min_dot_pattern].num_rows ?
row: /* current row is within numrows */
row - 1; /* last row of min_dot_pattern */
cY = (choice_Y + row + array_height) % array_height;
if (dot > min_dot_edges[min_dot_pattern].right[userow] + 1)
break; /* don't need this dot row */
cX = (choice_X + dot + array_height) % array_width;
if (!quiet)
printf("dot at %d, %d is %s\n", cX, cY, ThresholdArray[cX][cY] == -1 ?
"unmarked" : "marked");
if (ThresholdArray[cX][cY] == -1) {
choice_X = cX;
choice_Y = cY;
goto do_dot;
}
}
}
}
printf("what now?\n");
} /* end min_dot_pattern != 0 */
do_dot:
if (!quiet)
printf("choice: %d, choice_range: %d, do_min_dot: %d\n", choice,
choice_range, do_min_dot); /* if do_min_dot is 0 and min_dot_pattern is not */
/* that means we are doing a single adjacent dot */
if (!quiet)
printf("Threshold Level %4d is depth %d, val = %5.3f at (%4d, %4d)\n",
level, choice, Val[ (choice_Y * array_width) + choice_X ], choice_X, choice_Y);
if (do_min_dot != 0) {
int row, dot, cX, cY;
/* First, loop through marking the dots, then loop adjusting array density values */
for (row=0; row < min_dot_edges[min_dot_pattern].num_rows; row++) {
cY = (choice_Y + row) % array_height;
for (dot=min_dot_edges[min_dot_pattern].left[row];
dot <= min_dot_edges[min_dot_pattern].right[row]; dot++) {
cX = (choice_X + dot) % array_width;
if ((row >= 0) || (dot >= 0))
ThresholdArray[cX][cY] = level; }
}
for (row=0; row < min_dot_edges[min_dot_pattern].num_rows; row++) {
cY = (choice_Y + row) % array_height;
for (dot=min_dot_edges[min_dot_pattern].left[row];
dot <= min_dot_edges[min_dot_pattern].right[row]; dot++) {
cX = (choice_X + dot) % array_width;
if ((row > 0) || (dot > 0)) {
/* The 'choice' dot will be done outside this block as the 'last' */
do_dot(cX, cY, level, 0);
level_up++;
}
}
}
}
do_dot(choice_X, choice_Y, level, 1); /* last dot in group */
} /* end for level... */
/* print out final threshold array */
if (! quiet) {
for (Y=0; Y < array_height; Y++) {
for (X=0; X < array_width; X++) {
printf(" %6d", ThresholdArray[X][Y]);
if ((X & 15) == 15)
printf("\n");
} /* end for X -- rows */
if ((X & 15) != 0)
printf("\n");
} /* end for Y -- columns */
}
code = 0; /* normal return */
fclose(fp);
return code;
/* print out usage and exit */
usage_exit:
printf("\nUsage:\tgen_stochastic [-m#] [-p#.##] [-q] [-rWxH] [-s#] [-t#] SIZEWxSIZEH outfile\n");
printf("\n\t-m#\tset the minimum dot size/shape pattern. This is an index to a specific \n");
printf("\t\tsize/shape table as follows (default 0):\n");
printf("\n");
printf("\t\t\t0:\t1:\t2:\t3:\t4:\t5:\n");
printf("\t\t\tx\txx\tx\txx\tx\txx\n");
printf("\t\t\t\t\tx\tx\t x\txx\n");
printf("\n");
printf("\t\t\t6:\t7:\t8:\t9:\t10:\t11:\t12:\t13:\n");
printf("\t\t\txxx\txxx\txxx\txxx\txxx\txxx\txxx\txxx\n");
printf("\t\t\t \tx \txx \txxx\tx \txx \txxx\txxx\n");
printf("\t\t \t \t \t \tx \tx \tx \txx\n");
printf("\n");
printf("\t\t\t14:\t15:\t16:\t17:\t18:\t19:\n");
printf("\t\t\tx \txx \txx \txx \txxx\txxx\n");
printf("\t\t\tx \tx \txx \txx \txx \txxx\n");
printf("\t\t\tx \tx \tx \txx \txx\txxx\n");
printf("\n\t-p#.##\texponenttial bias of random choice -- higher values are less random.\n");
printf("\n\t-q\tquiet mode -- only error messages.\n");
printf("\n\t-rWxH\tallows for horizontal / vertical resolution, e.g. -r2x1\n");
printf("\t\tvalues are used for aspect ratio -- actual values arbitrary\n");
printf("\n\t-s#\tInitial seed for random number generation. Useful to generate");
printf("\n\t\tdecorrelated threshold arrays to be used with different colors.");
printf("\n\t-t#\tsets the choice value threshold in 0.1%% units (default 10 = 1%%)\n");
printf("\n");
return 1;
} /* end main */
double
ValFunction(int thisX, int thisY, int refX, int refY, double rx_sq, double ry_sq)
{
int dx, dy;
double distance;
dx = abs(refX - thisX);
if (dx > array_width/2)
dx = array_width - dx;
dy = abs(refY - thisY);
if (dy > array_height/2)
dy = array_height - dy;
distance = ((double)(dx*dx)/rx_sq) + ((double)(dy*dy)/ry_sq);
#ifdef FUDGE_DIAG_ONAXIS
/* Now decrease the distance (increasing the value returned for */
/* on-axis and diagonal positions. */
if ((dx == 0) || (dy == 0) || (dx == dy) || ((dx+dy) < 10))
distance *= 0.7;
#endif
return(1.0 / distance);
}
int
CompareOrder(const void *vp, const void *vq)
{
const Order_s *p = (const Order_s *)vp;
const Order_s *q = (const Order_s *)vq;
int retval = 0;
if (Val[ p->Y*array_width + p->X ] < Val[ q->Y*array_width + q->X ])
retval = -1;
else if (Val[ p->Y*array_width + p->X ] > Val[ q->Y*array_width + q->X ])
retval = 1;
return retval;
}
int
do_dot(int choice_X, int choice_Y, int level, int last)
{
int code = 0, X, Y;
double value;
ThresholdArray[choice_X][choice_Y] = level;
value = Val[ choice_Y * array_width + choice_X ];
value = (value-MinVal) / ValRange;
fprintf(fp,"%d\t%d\n",choice_X,choice_Y);
Val[ choice_Y*array_width + choice_X ] = BIG_FLOAT; /* value for dot already painted */
/* accumulate the value contribution of this new pixel */
/* While we do, also recalculate the MinVal and MaxVal and ValRange */
MinVal = BIG_FLOAT;
MaxVal = 0.0;
for (Y=0; Y < array_height; Y++) {
for (X=0; X < array_width; X++) {
if (ThresholdArray[X][Y] == -1) {
double rx_sq = resolution[0] * resolution[0];
double ry_sq = resolution[1] * resolution[1];
double vtmp = Val[ Y*array_width + X ] +
ValFunction(X, Y, choice_X, choice_Y, rx_sq, ry_sq);
Val[ Y*array_width + X ] = vtmp;
if (vtmp < MinVal)
MinVal = vtmp;
if (vtmp > MaxVal)
MaxVal = vtmp;
}
} /* end for X -- columns */
} /* end for Y -- rows */
ValRange = MaxVal - MinVal;
if (ValRange == 0.0)
ValRange = 1.0;
return code;
}
|