1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
|
/* Copyright (C) 2001-2025 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
CA 94129, USA, for further information.
*/
/* Default device implementation */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gsstruct.h"
#include "gxobj.h"
#include "gserrors.h"
#include "gsropt.h"
#include "gxcomp.h"
#include "gxdevice.h"
#include "gxdevsop.h"
#include "gdevp14.h" /* Needed to patch up the procs after compositor creation */
#include "gstrans.h" /* For gs_pdf14trans_t */
#include "gxgstate.h" /* for gs_image_state_s */
/* defined in gsdpram.c */
int gx_default_get_param(gx_device *dev, char *Param, void *list);
/* ---------------- Default device procedures ---------------- */
/*
* Set a color model polarity to be additive or subtractive. In either
* case, indicate an error (and don't modify the polarity) if the current
* setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
*/
static void
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
{
#ifdef DEBUG
/* sanity check */
if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
return;
}
#endif
/*
* The meory devices assume that single color devices are gray.
* This may not be true if SeparationOrder is specified. Thus only
* change the value if the current value is unknown.
*/
if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
dev->color_info.polarity = new_polarity;
}
static gx_color_index
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
{
dev_proc_encode_color(*encode_proc);
/* use encode_color if it has been provided */
if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
if (dev->color_info.num_components == 1 &&
dev_proc(dev, map_rgb_color) != 0) {
set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
encode_proc = gx_backwards_compatible_gray_encode;
} else if ( (dev->color_info.num_components == 3 ) &&
(encode_proc = dev_proc(dev, map_rgb_color)) != 0 )
set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
else if ( dev->color_info.num_components == 4 &&
(encode_proc = dev_proc(dev, map_cmyk_color)) != 0 )
set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
}
/*
* If no encode_color procedure at this point, the color model had
* better be monochrome (though not necessarily bi-level). In this
* case, it is assumed to be additive, as that is consistent with
* the pre-DeviceN code.
*
* If this is not the case, then the color model had better be known
* to be separable and linear, for there is no other way to derive
* an encoding. This is the case even for weakly linear and separable
* color models with a known polarity.
*/
if (encode_proc == 0) {
if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
encode_proc = gx_default_gray_fast_encode;
else
encode_proc = gx_default_gray_encode;
dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
} else if (colors_are_separable_and_linear(&dev->color_info)) {
gx_color_value max_gray = dev->color_info.max_gray;
gx_color_value max_color = dev->color_info.max_color;
if ( (max_gray & (max_gray + 1)) == 0 &&
(max_color & (max_color + 1)) == 0 )
/* NB should be gx_default_fast_encode_color */
encode_proc = gx_default_encode_color;
else
encode_proc = gx_default_encode_color;
}
}
return encode_proc;
}
/*
* Determine if a color model has the properties of a DeviceRGB
* color model. This procedure is, in all likelihood, high-grade
* overkill, but since this is not a performance sensitive area
* no harm is done.
*
* Since there is little benefit to checking the values 0, 1, or
* 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
* compare the results to see if the intensities match to within
* a tolerance of .01, which is arbitrarily selected.
*/
static bool
is_like_DeviceRGB(gx_device * dev)
{
frac cm_comp_fracs[3];
int i;
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
if ( dev->color_info.num_components != 3 ||
dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE )
return false;
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
/* check the values 1/4, 1/3, and 3/4 */
cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
/* verify results to .01 */
cm_comp_fracs[0] -= frac_1 / 4;
cm_comp_fracs[1] -= frac_1 / 3;
cm_comp_fracs[2] -= 3 * frac_1 / 4;
for ( i = 0;
i < 3 &&
-frac_1 / 100 < cm_comp_fracs[i] &&
cm_comp_fracs[i] < frac_1 / 100;
i++ )
;
return i == 3;
}
/*
* Similar to is_like_DeviceRGB, but for DeviceCMYK.
*/
static bool
is_like_DeviceCMYK(gx_device * dev)
{
frac cm_comp_fracs[4];
int i;
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
if ( dev->color_info.num_components != 4 ||
dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE )
return false;
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
/* check the values 1/4, 1/3, 3/4, and 1/8 */
cmprocs->map_cmyk(cmdev,
frac_1 / 4,
frac_1 / 3,
3 * frac_1 / 4,
frac_1 / 8,
cm_comp_fracs);
/* verify results to .01 */
cm_comp_fracs[0] -= frac_1 / 4;
cm_comp_fracs[1] -= frac_1 / 3;
cm_comp_fracs[2] -= 3 * frac_1 / 4;
cm_comp_fracs[3] -= frac_1 / 8;
for ( i = 0;
i < 4 &&
-frac_1 / 100 < cm_comp_fracs[i] &&
cm_comp_fracs[i] < frac_1 / 100;
i++ )
;
return i == 4;
}
/*
* Two default decode_color procedures to use for monochrome devices.
* These will make use of the map_color_rgb routine, and use the first
* component of the returned value or its inverse.
*/
static int
gx_default_1_add_decode_color(
gx_device * dev,
gx_color_index color,
gx_color_value cv[1] )
{
gx_color_value rgb[3];
int code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
cv[0] = rgb[0];
return code;
}
static int
gx_default_1_sub_decode_color(
gx_device * dev,
gx_color_index color,
gx_color_value cv[1] )
{
gx_color_value rgb[3];
int code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
cv[0] = gx_max_color_value - rgb[0];
return code;
}
/*
* A default decode_color procedure for DeviceCMYK color models.
*
* There is no generally accurate way of decode a DeviceCMYK color using
* the map_color_rgb method. Unfortunately, there are many older devices
* employ the DeviceCMYK color model but don't provide a decode_color
* method. The code below works on the assumption of full undercolor
* removal and black generation. This may not be accurate, but is the
* best that can be done in the general case without other information.
*/
static int
gx_default_cmyk_decode_color(
gx_device * dev,
gx_color_index color,
gx_color_value cv[4] )
{
/* The device may have been determined to be 'separable'. */
if (colors_are_separable_and_linear(&dev->color_info))
return gx_default_decode_color(dev, color, cv);
else {
int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
gx_color_value min_val = gx_max_color_value;
for (i = 0; i < 3; i++) {
if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
min_val = cv[i];
}
for (i = 0; i < 3; i++)
cv[i] -= min_val;
cv[3] = min_val;
return code;
}
}
/*
* Special case default color decode routine for a canonical 1-bit per
* component DeviceCMYK color model.
*/
static int
gx_1bit_cmyk_decode_color(
gx_device * dev,
gx_color_index color,
gx_color_value cv[4] )
{
cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
return 0;
}
static int
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
{
/* if a method has already been provided, use it */
if (dev_proc(dev, decode_color) != 0)
return dev_proc(dev, decode_color);
/*
* If a map_color_rgb method has been provided, we may be able to use it.
* Currently this will always be the case, as a default value will be
* provided this method. While this default may not be correct, we are not
* introducing any new errors by using it.
*/
if (dev_proc(dev, map_color_rgb) != 0) {
/* if the device has a DeviceRGB color model, use map_color_rgb */
if (is_like_DeviceRGB(dev))
return dev_proc(dev, map_color_rgb);
/* If separable ande linear then use default */
if (colors_are_separable_and_linear(&dev->color_info))
return &gx_default_decode_color;
/* gray devices can be handled based on their polarity */
if ( dev->color_info.num_components == 1 &&
dev->color_info.gray_index == 0 )
return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
? &gx_default_1_add_decode_color
: &gx_default_1_sub_decode_color;
/*
* There is no accurate way to decode colors for cmyk devices
* using the map_color_rgb procedure. Unfortunately, this cases
* arises with some frequency, so it is useful not to generate an
* error in this case. The mechanism below assumes full undercolor
* removal and black generation, which may not be accurate but are
* the best that can be done in the general case in the absence of
* other information.
*
* As a hack to handle certain common devices, if the map_rgb_color
* routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
* decoder.
*/
if (is_like_DeviceCMYK(dev)) {
if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
return &gx_1bit_cmyk_decode_color;
else
return &gx_default_cmyk_decode_color;
}
}
/*
* The separable and linear case will already have been handled by
* code in gx_device_fill_in_procs, so at this point we can only hope
* the device doesn't use the decode_color method.
*/
if (colors_are_separable_and_linear(&dev->color_info))
return &gx_default_decode_color;
else
return &gx_error_decode_color;
}
/*
* If a device has a linear and separable encode color function then
* set up the comp_bits, comp_mask, and comp_shift fields. Note: This
* routine assumes that the colorant shift factor decreases with the
* component number. See check_device_separable() for a general routine.
*/
void
set_linear_color_bits_mask_shift(gx_device * dev)
{
int i;
byte gray_index = dev->color_info.gray_index;
gx_color_value max_gray = dev->color_info.max_gray;
gx_color_value max_color = dev->color_info.max_color;
int num_components = dev->color_info.num_components;
#define comp_bits (dev->color_info.comp_bits)
#define comp_mask (dev->color_info.comp_mask)
#define comp_shift (dev->color_info.comp_shift)
comp_shift[num_components - 1] = 0;
for ( i = num_components - 1 - 1; i >= 0; i-- ) {
comp_shift[i] = comp_shift[i + 1] +
( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
}
for ( i = 0; i < num_components; i++ ) {
comp_bits[i] = ( i == gray_index ?
ilog2(max_gray + 1) :
ilog2(max_color + 1) );
comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
<< comp_shift[i];
}
#undef comp_bits
#undef comp_mask
#undef comp_shift
}
/* Determine if a number is a power of two. Works only for integers. */
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
/* A brutish way to check if we are a HT device */
bool
device_is_contone(gx_device* pdev)
{
if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
return true;
return false;
}
/*
* This routine attempts to determine if a device's encode_color procedure
* produces gx_color_index values which are 'separable'. A 'separable' value
* means two things. Each colorant has a group of bits in the gx_color_index
* value which is associated with the colorant. These bits are separate.
* I.e. no bit is associated with more than one colorant. If a colorant has
* a value of zero then the bits associated with that colorant are zero.
* These criteria allows the graphics library to build gx_color_index values
* from the colorant values and not using the encode_color routine. This is
* useful and necessary for overprinting, halftoning more
* than four colorants, and the fast shading logic. However this information
* is not setup by the default device macros. Thus we attempt to derive this
* information.
*
* This routine can be fooled. However it usually errors on the side of
* assuing that a device is not separable. In this case it does not create
* any new problems. In theory it can be fooled into believing that a device
* is separable when it is not. However we do not know of any real cases that
* will fool it.
*/
void
check_device_separable(gx_device * dev)
{
int i, j;
gx_device_color_info * pinfo = &(dev->color_info);
int num_components = pinfo->num_components;
byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_index color_index;
gx_color_index current_bits = 0;
gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
/* If this is already known then we do not need to do anything. */
if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
return;
/* If there is not an encode_color_routine then we cannot proceed. */
if (dev_proc(dev, encode_color) == NULL)
return;
/*
* If these values do not check then we should have an error. However
* we do not know what to do so we are simply exitting and hoping that
* the device will clean up its values.
*/
if (pinfo->gray_index < num_components &&
(!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
return;
if ((num_components > 1 || pinfo->gray_index != 0) &&
(!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
return;
/*
* If dither_grays or dither_colors is not a power of two then we assume
* that the device is not separable. In theory this not a requirement
* but it has been true for all of the devices that we have seen so far.
* This assumption also makes the logic in the next section easier.
*/
if (!is_power_of_two(pinfo->dither_grays)
|| !is_power_of_two(pinfo->dither_colors))
return;
/*
* Use the encode_color routine to try to verify that the device is
* separable and to determine the shift count, etc. for each colorant.
*/
color_index = dev_proc(dev, encode_color)(dev, colorants);
if (color_index != 0)
return; /* Exit if zero colorants produce a non zero index */
for (i = 0; i < num_components; i++) {
/* Check this colorant = max with all others = 0 */
for (j = 0; j < num_components; j++)
colorants[j] = 0;
colorants[i] = gx_max_color_value;
color_index = dev_proc(dev, encode_color)(dev, colorants);
if (color_index == 0) /* If no bits then we have a problem */
return;
if (color_index & current_bits) /* Check for overlapping bits */
return;
current_bits |= color_index;
comp_mask[i] = color_index;
/* Determine the shift count for the colorant */
for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
color_index >>= 1;
comp_shift[i] = j;
/* Determine the bit count for the colorant */
for (j = 0; color_index != 0; j++) {
if ((color_index & 1) == 0) /* check for non-consecutive bits */
return;
color_index >>= 1;
}
comp_bits[i] = j;
/*
* We could verify that the bit count matches the dither_grays or
* dither_colors values, but this is not really required unless we
* are halftoning. Thus we are allowing for non equal colorant sizes.
*/
/* Check for overlap with other colorant if they are all maxed */
for (j = 0; j < num_components; j++)
colorants[j] = gx_max_color_value;
colorants[i] = 0;
color_index = dev_proc(dev, encode_color)(dev, colorants);
if (color_index & comp_mask[i]) /* Check for overlapping bits */
return;
}
/* If we get to here then the device is very likely to be separable. */
pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
for (i = 0; i < num_components; i++) {
pinfo->comp_shift[i] = comp_shift[i];
pinfo->comp_bits[i] = comp_bits[i];
pinfo->comp_mask[i] = comp_mask[i];
}
/*
* The 'gray_index' value allows one colorant to have a different number
* of shades from the remainder. Since the default macros only guess at
* an appropriate value, we are setting its value based upon the data that
* we just determined. Note: In some cases the macros set max_gray to 0
* and dither_grays to 1. This is not valid so ignore this case.
*/
for (i = 0; i < num_components; i++) {
int dither = 1 << comp_bits[i];
if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
pinfo->gray_index = i;
break;
}
}
}
#undef is_power_of_two
/*
* This routine attempts to determine if a device's encode_color procedure
* produces values that are in keeping with "the standard encoding".
* i.e. that given by pdf14_encode_color.
*
* It works by first checking to see if we are separable_and_linear. If not
* we cannot hope to be the standard encoding.
*
* Then, we check to see if we are a dev device - if so, we must be
* compatible.
*
* Failing that it checks to see if the encoding uses the appropriate
* bit ranges for each individual color.
*
* If those (quick) tests pass, then we try the slower test of checking
* the encodings. We can do this far faster than an exhaustive check, by
* relying on the separability and linearity - we only need to check 256
* possible values.
*
* The one tricky section there is to avoid the special case for
* gx_no_color_index_value (which can occur when we have a 32bit
* gx_color_index type, and a 4 component device, such as cmyk).
* We allow the encoding to be off in the lower bits for that case.
*/
void check_device_compatible_encoding(gx_device *dev)
{
gx_device_color_info * pinfo = &(dev->color_info);
int num_components = pinfo->num_components;
gx_color_index mul, color_index;
int i, j;
gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
bool deep = device_is_deep(dev);
if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
check_device_separable(dev);
if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
return;
if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
/* We know all devn devices are compatible. */
pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
return;
}
/* Do the superficial quick checks */
for (i = 0; i < num_components; i++) {
int shift = (num_components-1-i)*(8<<deep);
if (pinfo->comp_shift[i] != shift)
goto bad;
if (pinfo->comp_bits[i] != 8<<deep)
goto bad;
if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
goto bad;
}
/* OK, now we are going to be slower. */
mul = 0;
for (i = 0; i < num_components; i++) {
mul = (mul<<(8<<deep)) | 1;
}
/* In the deep case, we don't exhaustively test */
for (i = 0; i < 255; i++) {
for (j = 0; j < num_components; j++)
colorants[j] = i*257;
color_index = dev_proc(dev, encode_color)(dev, colorants);
if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
goto bad;
}
/* If we reach here, then every value matched, except possibly the last one.
* We'll allow that to differ just in the lowest bits. */
if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
goto bad;
pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
return;
bad:
pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
}
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
/* Fill in NULL procedures in a device procedure record. */
void
gx_device_fill_in_procs(register gx_device * dev)
{
fill_dev_proc(dev, open_device, gx_default_open_device);
fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
fill_dev_proc(dev, sync_output, gx_default_sync_output);
fill_dev_proc(dev, output_page, gx_default_output_page);
fill_dev_proc(dev, close_device, gx_default_close_device);
/* see below for map_rgb_color */
fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
/* NOT fill_rectangle */
fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
fill_dev_proc(dev, copy_color, gx_default_copy_color);
fill_dev_proc(dev, get_params, gx_default_get_params);
fill_dev_proc(dev, put_params, gx_default_put_params);
/* see below for map_cmyk_color */
fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
fill_dev_proc(dev, fill_path, gx_default_fill_path);
fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
fill_dev_proc(dev, composite, gx_default_composite);
fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
fill_dev_proc(dev, text_begin, gx_default_text_begin);
set_dev_proc(dev, encode_color, get_encode_color(dev));
if (dev->color_info.num_components == 3)
set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
if (dev->color_info.num_components == 4)
set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
if (colors_are_separable_and_linear(&dev->color_info)) {
fill_dev_proc(dev, encode_color, gx_default_encode_color);
fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
} else {
/* if it isn't set now punt */
fill_dev_proc(dev, encode_color, gx_error_encode_color);
fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
}
/*
* Fill in the color mapping procedures and the component index
* assignment procedure if they have not been provided by the client.
*
* Because it is difficult to provide default encoding procedures
* that handle level inversion, this code needs to check both
* the number of components and the polarity of color model.
*/
switch (dev->color_info.num_components) {
case 1: /* DeviceGray or DeviceInvertGray */
/*
* If not gray then the device must provide the color
* mapping procs.
*/
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
fill_dev_proc( dev,
get_color_mapping_procs,
gx_default_DevGray_get_color_mapping_procs );
} else
fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
fill_dev_proc( dev,
get_color_comp_index,
gx_default_DevGray_get_color_comp_index );
break;
case 3:
if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
fill_dev_proc( dev,
get_color_mapping_procs,
gx_default_DevRGB_get_color_mapping_procs );
fill_dev_proc( dev,
get_color_comp_index,
gx_default_DevRGB_get_color_comp_index );
} else {
fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
}
break;
case 4:
fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
break;
default: /* Unknown color model - set error handlers */
if (dev_proc(dev, get_color_mapping_procs) == NULL) {
fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
}
}
set_dev_proc(dev, decode_color, get_decode_color(dev));
fill_dev_proc(dev, get_profile, gx_default_get_profile);
fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
fill_dev_proc(dev, fillpage, gx_default_fillpage);
fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
fill_dev_proc(dev, put_image, gx_default_put_image);
fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
fill_dev_proc(dev, process_page, gx_default_process_page);
fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
}
int
gx_default_open_device(gx_device * dev)
{
/* Initialize the separable status if not known. */
check_device_separable(dev);
return 0;
}
/* Get the initial matrix for a device with inverted Y. */
/* This includes essentially all printers and displays. */
/* Supports LeadingEdge, but no margins or viewports */
void
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
{
/* NB this device has no paper margins */
double fs_res = dev->HWResolution[0] / 72.0;
double ss_res = dev->HWResolution[1] / 72.0;
switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
case 1: /* 90 degrees */
pmat->xx = 0;
pmat->xy = -ss_res;
pmat->yx = -fs_res;
pmat->yy = 0;
pmat->tx = (float)dev->width;
pmat->ty = (float)dev->height;
break;
case 2: /* 180 degrees */
pmat->xx = -fs_res;
pmat->xy = 0;
pmat->yx = 0;
pmat->yy = ss_res;
pmat->tx = (float)dev->width;
pmat->ty = 0;
break;
case 3: /* 270 degrees */
pmat->xx = 0;
pmat->xy = ss_res;
pmat->yx = fs_res;
pmat->yy = 0;
pmat->tx = 0;
pmat->ty = 0;
break;
default:
case 0:
pmat->xx = fs_res;
pmat->xy = 0;
pmat->yx = 0;
pmat->yy = -ss_res;
pmat->tx = 0;
pmat->ty = (float)dev->height;
/****** tx/y is WRONG for devices with ******/
/****** arbitrary initial matrix ******/
break;
}
}
/* Get the initial matrix for a device with upright Y. */
/* This includes just a few printers and window systems. */
void
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
{
pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
pmat->xy = 0;
pmat->yx = 0;
pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
/****** tx/y is WRONG for devices with ******/
/****** arbitrary initial matrix ******/
pmat->tx = 0;
pmat->ty = 0;
}
int
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
{
return 0;
}
int
gx_default_output_page(gx_device * dev, int num_copies, int flush)
{
int code = dev_proc(dev, sync_output)(dev);
if (code >= 0)
code = gx_finish_output_page(dev, num_copies, flush);
return code;
}
int
gx_default_close_device(gx_device * dev)
{
return 0;
}
gx_device *
gx_default_get_page_device(gx_device * dev)
{
return NULL;
}
gx_device *
gx_page_device_get_page_device(gx_device * dev)
{
return dev;
}
int
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
{
return (type == go_text ? dev->color_info.anti_alias.text_bits :
dev->color_info.anti_alias.graphics_bits);
}
void
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
{
pbox->p.x = 0;
pbox->p.y = 0;
pbox->q.x = int2fixed(dev->width);
pbox->q.y = int2fixed(dev->height);
}
void
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
{
pbox->p.x = min_fixed;
pbox->p.y = min_fixed;
pbox->q.x = max_fixed;
pbox->q.y = max_fixed;
}
int
gx_no_composite(gx_device * dev, gx_device ** pcdev,
const gs_composite_t * pcte,
gs_gstate * pgs, gs_memory_t * memory,
gx_device *cdev)
{
return_error(gs_error_unknownerror); /* not implemented */
}
int
gx_default_composite(gx_device * dev, gx_device ** pcdev,
const gs_composite_t * pcte,
gs_gstate * pgs, gs_memory_t * memory,
gx_device *cdev)
{
return pcte->type->procs.create_default_compositor
(pcte, pcdev, dev, pgs, memory);
}
int
gx_null_composite(gx_device * dev, gx_device ** pcdev,
const gs_composite_t * pcte,
gs_gstate * pgs, gs_memory_t * memory,
gx_device *cdev)
{
*pcdev = dev;
return 0;
}
/*
* Default handler for creating a compositor device when writing the clist. */
int
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
{
*pcdev = dev; /* Do nothing -> return the same device */
return 0;
}
/* Default handler for adjusting a compositor's CTM. */
int
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
{
return 0;
}
/*
* Default check for closing compositor.
*/
gs_compositor_closing_state
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
{
return COMP_ENQUEUE;
}
/*
* Default check whether a next operation is friendly to the compositor.
*/
bool
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
{
return false;
}
/*
* Default handler for updating the clist device when reading a compositing
* device.
*/
int
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
{
return 0; /* Do nothing */
}
/*
* Default handler for get_cropping returns no cropping.
*/
int
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
int cropping_min, int cropping_max)
{
return 0; /* No cropping. */
}
int
gx_default_initialize_device(gx_device *dev)
{
return 0;
}
int
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
{
switch(dev_spec_op) {
case gxdso_form_begin:
case gxdso_form_end:
case gxdso_pattern_can_accum:
case gxdso_pattern_start_accum:
case gxdso_pattern_finish_accum:
case gxdso_pattern_load:
case gxdso_pattern_shading_area:
case gxdso_pattern_is_cpath_accum:
case gxdso_pattern_handles_clip_path:
case gxdso_is_pdf14_device:
case gxdso_supports_devn:
case gxdso_supports_hlcolor:
case gxdso_supports_saved_pages:
case gxdso_needs_invariant_palette:
case gxdso_supports_iccpostrender:
case gxdso_supports_alpha:
case gxdso_pdf14_sep_device:
case gxdso_supports_pattern_transparency:
case gxdso_overprintsim_state:
case gxdso_skip_icc_component_validation:
return 0;
case gxdso_pattern_shfill_doesnt_need_path:
return (dev_proc(pdev, fill_path) == gx_default_fill_path);
case gxdso_is_std_cmyk_1bit:
return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
case gxdso_interpolate_antidropout:
return pdev->color_info.use_antidropout_downscaler;
case gxdso_interpolate_threshold:
if ((pdev->color_info.num_components == 1 &&
pdev->color_info.max_gray < 15) ||
(pdev->color_info.num_components > 1 &&
pdev->color_info.max_color < 15)) {
/* If we are a limited color device (i.e. we are halftoning)
* then only interpolate if we are upscaling by at least 4 */
return 4;
}
return 0; /* Otherwise no change */
case gxdso_get_dev_param:
{
dev_param_req_t *request = (dev_param_req_t *)data;
return gx_default_get_param(pdev, request->Param, request->list);
}
case gxdso_current_output_device:
{
*(gx_device **)data = pdev;
return 0;
}
case gxdso_copy_color_is_fast:
return (dev_proc(pdev, copy_color) != gx_default_copy_color);
case gxdso_is_encoding_direct:
if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
return 0;
return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
/* Just ignore information about events */
case gxdso_event_info:
return 0;
case gxdso_overprint_active:
return 0;
}
return_error(gs_error_undefined);
}
int
gx_default_fill_rectangle_hl_color(gx_device *pdev,
const gs_fixed_rect *rect,
const gs_gstate *pgs, const gx_drawing_color *pdcolor,
const gx_clip_path *pcpath)
{
return_error(gs_error_rangecheck);
}
int
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
const byte *res_name, int name_length)
{
return 0;
}
/*
* If a device wants to determine an equivalent color for its spot colors then
* it needs to implement this method. See comments at the start of
* src/gsequivc.c.
*/
int
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
{
return 0;
}
/*
* If a device wants to determine implement support for spot colors then
* it needs to implement this method.
*/
gs_devn_params *
gx_default_ret_devn_params(gx_device *pdev)
{
return NULL;
}
int
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
{
gs_int_rect rect;
int code = 0;
void *buffer = NULL;
/* Possible future improvements in here could be given by us dividing the
* page up into n chunks, and spawning a thread per chunk to do the
* process_fn call on. n could be given by NumRenderingThreads. This
* would give us multi-core advantages even without clist. */
if (options->init_buffer_fn) {
code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
if (code < 0)
return code;
}
rect.p.x = 0;
rect.p.y = 0;
rect.q.x = dev->width;
rect.q.y = dev->height;
if (options->process_fn)
code = options->process_fn(options->arg, dev, dev, &rect, buffer);
if (code >= 0 && options->output_fn)
code = options->output_fn(options->arg, dev, buffer);
if (options->free_buffer_fn)
options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
return code;
}
int
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
{
return 0;
}
int
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
{
return 0;
}
int
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
{
return 0;
}
int
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
{
return 0;
}
int
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
{
return 0;
}
int
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
{
return 0;
}
int
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
{
return 0;
}
int
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
{
return_error(gs_error_undefined);
}
int
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
{
return_error(gs_error_undefined);
}
int
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
{
return_error(gs_error_undefined);
}
/* ---------------- Default per-instance procedures ---------------- */
int
gx_default_install(gx_device * dev, gs_gstate * pgs)
{
return 0;
}
int
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
{
return 0;
}
int
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
{
return (reason != 2 ? 1 : 0);
}
void
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
{
/* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
}
/* ---------------- Device subclassing procedures ---------------- */
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
* 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
* original device (including the procs), prototype is the device structure prototype for the subclassing device.
* Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
* device had a NULL method, we make the new device procs have a NULL method too.
* The reason for ths is ugly, there are some places in the graphics library which explicitly check for
* a device having a NULL method and take different code paths depending on the result.
* Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
* over NULL methods present in the original source device then the code path could be inappropriate for
* that underlying (now subclassed) device.
*/
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
* Howwever, there are still places in the code which take different code paths if the device method is (now)
* the default device method, rather than a device-specific method.
* So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
* prototype (subclass device) method if the original device had the default implementation.
* I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
*/
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
{
gx_device prototype = *pprototype;
/* In the new (as of 2021) world, the prototype does not contain
* device procs. We need to call the 'initialize_device_procs'
* function to properly populate the procs array. We can't write to
* the const prototype pointer we are passed in, so copy it to a
* local block, and initialize that instead, */
prototype.initialize_device_procs(&prototype);
/* Fill in missing entries with the global defaults */
gx_device_fill_in_procs(&prototype);
if (dest->initialize_device_procs == NULL)
dest->initialize_device_procs = prototype.initialize_device_procs;
set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
set_dev_proc(dest, composite, dev_proc(&prototype, composite));
set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
/*
* We absolutely must set the 'set_graphics_type_tag' to the default subclass one
* even if the subclassed device is using the default. This is because the
* default implementation sets a flag in the device structure, and if we
* copy the default method, we'll end up setting the flag in the subclassing device
* instead of the subclassed device!
*/
set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
/* These are the routines whose existence is checked against the default at
* some point in the code. The code path differs when the device implements a
* method other than the default, so the subclassing device needs to ensure that
* if the subclassed device has one of these methods set to the default, we
* do not overwrite the default method.
*/
if (dev_proc(src, fill_mask) != gx_default_fill_mask)
set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
if (dev_proc(src, put_image) != gx_default_put_image)
set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
if (dev_proc(src, copy_planes) != gx_default_copy_planes)
set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
return 0;
}
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
{
gx_device *child_dev;
void *psubclass_data;
gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
int dynamic = dev_to_subclass->stype_is_dynamic;
char *ptr, *ptr1;
/* If this happens we are stuffed, as there is no way to get hold
* of the original device's stype structure, which means we cannot
* allocate a replacement structure. Abort if so.
* Also abort if the new_prototype device struct is too large.
*/
if (!dev_to_subclass->stype ||
dev_to_subclass->stype->ssize < new_prototype->params_size)
return_error(gs_error_VMerror);
/* We make a 'stype' structure for our new device, and copy the old stype into it
* This means our new device will always have the 'stype_is_dynamic' flag set
*/
a_std = (gs_memory_struct_type_t *)
gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
"gs_device_subclass(stype)");
if (!a_std)
return_error(gs_error_VMerror);
*a_std = *dev_to_subclass->stype;
a_std->ssize = dev_to_subclass->params_size;
if (!dynamic) {
b_std = (gs_memory_struct_type_t *)
gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
"gs_device_subclass(stype)");
if (!b_std) {
gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
return_error(gs_error_VMerror);
}
}
/* Allocate a device structure for the new child device */
child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
"gs_device_subclass(device)");
if (child_dev == 0) {
gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
return_error(gs_error_VMerror);
}
/* Make sure all methods are filled in, note this won't work for a forwarding device
* so forwarding devices will have to be filled in before being subclassed. This doesn't fill
* in the fill_rectangle proc, that gets done in the ultimate device's open proc.
*/
gx_device_fill_in_procs(dev_to_subclass);
memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
child_dev->stype = a_std;
child_dev->stype_is_dynamic = 1;
/* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
if (psubclass_data == 0){
gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
/* We *don't* want to run the finalize routine. This would free the stype and
* properly handle the icc_struct and PageList, but for devices with a custom
* finalize (eg psdcmyk) it might also free memory it had allocated, and we're
* still pointing at that memory in the parent.
*/
a_std->finalize = NULL;
gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
return_error(gs_error_VMerror);
}
memset(psubclass_data, 0x00, private_data_size);
gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
dev_to_subclass->finalize = new_prototype->finalize;
dev_to_subclass->dname = new_prototype->dname;
if (dev_to_subclass->icc_struct)
rc_increment(dev_to_subclass->icc_struct);
if (dev_to_subclass->PageList)
rc_increment(dev_to_subclass->PageList);
if (dev_to_subclass->NupControl)
rc_increment(dev_to_subclass->NupControl);
dev_to_subclass->page_procs = new_prototype->page_procs;
gx_subclass_fill_in_page_procs(dev_to_subclass);
/* In case the new device we're creating has already been initialised, copy
* its additional data.
*/
ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
ptr1 = ((char *)new_prototype) + sizeof(gx_device);
memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
/* If the original device's stype structure was dynamically allocated, we need
* to 'fixup' the contents, it's procs need to point to the new device's procs
* for instance.
*/
if (dynamic) {
if (new_prototype->stype) {
b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
*b_std = *new_prototype->stype;
b_std->ssize = a_std->ssize;
dev_to_subclass->stype_is_dynamic = 1;
} else {
gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
"unsubclass");
dev_to_subclass->stype = NULL;
b_std = (gs_memory_struct_type_t *)new_prototype->stype;
dev_to_subclass->stype_is_dynamic = 0;
}
}
else {
*b_std = *new_prototype->stype;
b_std->ssize = a_std->ssize;
dev_to_subclass->stype_is_dynamic = 1;
}
dev_to_subclass->stype = b_std;
/* We have to patch up the "type" parameters that the memory manage/garbage
* collector will use, as well.
*/
gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
dev_to_subclass->subclass_data = psubclass_data;
dev_to_subclass->child = child_dev;
if (child_dev->parent) {
dev_to_subclass->parent = child_dev->parent;
child_dev->parent->child = dev_to_subclass;
}
if (child_dev->child) {
child_dev->child->parent = child_dev;
}
child_dev->parent = dev_to_subclass;
return 0;
}
void gx_device_unsubclass(gx_device *dev)
{
generic_subclass_data *psubclass_data;
gx_device *parent, *child;
gs_memory_struct_type_t *a_std = 0, *b_std = 0;
int dynamic, ref_count;
gs_memory_t *rcmem;
/* This should not happen... */
if (!dev)
return;
ref_count = dev->rc.ref_count;
rcmem = dev->rc.memory;
child = dev->child;
psubclass_data = (generic_subclass_data *)dev->subclass_data;
parent = dev->parent;
dynamic = dev->stype_is_dynamic;
/* We need to account for the fact that we are removing ourselves from
* the device chain after a clist device has been pushed, due to a
* compositor action. Since we patched the clist 'composite'
* method (and target device) when it was pushed.
* A point to note; we *don't* want to change the forwarding device's
* 'target', because when we copy the child up to replace 'this' device
* we do still want the forwarding device to point here. NB its the *child*
* device that goes away.
*/
if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
/* If ths device's stype is dynamically allocated, keep a copy of it
* in case we might need it.
*/
if (dynamic) {
a_std = (gs_memory_struct_type_t *)dev->stype;
if (child)
*a_std = *child->stype;
}
/* If ths device has any private storage, free it now */
if (psubclass_data)
gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
/* Copy the child device into ths device's memory */
if (child) {
b_std = (gs_memory_struct_type_t *)dev->stype;
rc_decrement(dev->icc_struct, "unsubclass device");
rc_increment(child->icc_struct);
memcpy(dev, child, child->stype->ssize);
/* Patch back the 'stype' in the memory manager */
gs_set_object_type(child->memory, dev, b_std);
dev->stype = b_std;
/* The reference count of the subclassing device may have been
* changed (eg graphics states pointing to it) after we subclassed
* the device. We need to ensure that we do not overwrite this
* when we copy back the subclassed device.
*/
dev->rc.ref_count = ref_count;
dev->rc.memory = rcmem;
/* If we have a chain of devices, make sure the chain beyond the
* device we're unsubclassing doesn't get broken, we need to
* detach the lower chain and reattach it at the new highest level.
*/
if (child->child)
child->child->parent = dev;
child->parent->child = child->child;
}
/* How can we have a subclass device with no child ? Simples; when we
* hit the end of job restore, the devices are not freed in device
* chain order. To make sure we don't end up following stale pointers,
* when a device is freed we remove it from the chain and update
* any dangling pointers to NULL. When we later free the remaining
* devices it's possible that their child pointer can then be NULL.
*/
if (child) {
/* We cannot afford to free the child device if its stype is not
* dynamic because we can't 'null' the finalise routine, and we
* cannot permit the device to be finalised because we have copied
* it up one level, not discarded it. (This shouldn't happen! Child
* devices are always created with a dynamic stype.) If this ever
* happens garbage collecton will eventually clean up the memory.
*/
if (child->stype_is_dynamic) {
/* Make sure that nothing will try to follow the device chain,
* just security here. */
child->parent = NULL;
child->child = NULL;
/* We *don't* want to run the finalize routine. This would free
* the stype and properly handle the icc_struct and PageList,
* but for devices with a custom finalize (eg psdcmyk) it might
* also free memory it had allocated, and we're still pointing
* at that memory in the parent. The indirection through a
* variable is just to get rid of const warnings.
*/
b_std = (gs_memory_struct_type_t *)child->stype;
gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
/* Make this into a generic device */
child->stype = &st_device;
child->stype_is_dynamic = false;
/* We can't simply discard the child device, because there may be references to it elsewhere,
but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
*/
gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
/* Having changed the stype, we need to make sure the memory
* manager uses it. It keeps a copy in its own data structure,
* and would use that copy, which would mean it would call the
* finalize routine that we just patched out.
*/
gs_set_object_type(dev->memory->stable_memory, child, child->stype);
child->finalize = NULL;
/* Now (finally) free the child memory */
rc_decrement(child, "gx_device_unsubclass(device)");
}
}
dev->parent = parent;
/* If this device has a dynamic stype, we wnt to keep using it, but we copied
* the stype pointer from the child when we copied the rest of the device. So
* we update the stype pointer with the saved pointer to this device's stype.
*/
if (dynamic) {
dev->stype = a_std;
dev->stype_is_dynamic = 1;
} else {
dev->stype_is_dynamic = 0;
}
}
int gx_update_from_subclass(gx_device *dev)
{
if (!dev->child)
return 0;
memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
dev->max_fill_band = dev->child->max_fill_band;
dev->width = dev->child->width;
dev->height = dev->child->height;
dev->pad = dev->child->pad;
dev->log2_align_mod = dev->child->log2_align_mod;
dev->max_fill_band = dev->child->max_fill_band;
dev->num_planar_planes = dev->child->num_planar_planes;
dev->LeadingEdge = dev->child->LeadingEdge;
memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
dev->ImagingBBox_set = dev->child->ImagingBBox_set;
memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
dev->FirstPage = dev->child->FirstPage;
dev->LastPage = dev->child->LastPage;
dev->PageCount = dev->child->PageCount;
dev->ShowpageCount = dev->child->ShowpageCount;
dev->NumCopies = dev->child->NumCopies;
dev->NumCopies_set = dev->child->NumCopies_set;
dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
dev->UseCIEColor = dev->child->UseCIEColor;
dev->LockSafetyParams= dev->child->LockSafetyParams;
dev->band_offset_x = dev->child->band_offset_y;
dev->sgr = dev->child->sgr;
dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
dev->page_uses_transparency = dev->child->page_uses_transparency;
memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
dev->graphics_type_tag = dev->child->graphics_type_tag;
return 0;
}
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
{
pdf14_clist_device *p14dev;
generic_subclass_data *psubclass_data;
int code = 0;
p14dev = (pdf14_clist_device *)dev;
psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
switch (pdf14pct->params.pdf14_op) {
case PDF14_POP_DEVICE:
{
pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
gx_device *subclass_device;
p14dev->target->color_info = p14dev->saved_target_color_info;
if (p14dev->target->child) {
p14dev->target->child->color_info = p14dev->saved_target_color_info;
set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
}
pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
gx_set_cmap_procs(pgs, p14dev->target);
subclass_device = p14dev->target;
p14dev->target = p14dev->target->child;
code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
p14dev->target = subclass_device;
/* We return 0, rather than 1, as we have not created
* a new compositor that wraps dev. */
if (code == 1)
code = 0;
return code;
}
break;
default:
code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
break;
}
} else {
code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
}
set_dev_proc(dev, composite, gx_subclass_composite);
return code;
}
typedef enum
{
transform_pixel_region_portrait,
transform_pixel_region_landscape,
transform_pixel_region_skew
} transform_pixel_region_posture;
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
struct gx_default_transform_pixel_region_state_s
{
gs_memory_t *mem;
gx_dda_fixed_point pixels;
gx_dda_fixed_point rows;
gs_int_rect clip;
int w;
int h;
int spp;
transform_pixel_region_posture posture;
gs_logical_operation_t lop;
byte *line;
gx_default_transform_pixel_region_render_fn *render;
};
static void
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
{
fixed y0, y1;
gx_dda_fixed row = state->rows.y;
y0 = dda_current(row);
dda_next(row);
y1 = dda_current(row);
if (y1 < y0) {
fixed t = y1; y1 = y0; y0 = t;
}
*iy = fixed2int_pixround_perfect(y0);
*ih = fixed2int_pixround_perfect(y1) - *iy;
}
static void
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
{
fixed x0, x1;
gx_dda_fixed row = state->rows.x;
x0 = dda_current(row);
dda_next(row);
x1 = dda_current(row);
if (x1 < x0) {
fixed t = x1; x1 = x0; x0 = t;
}
*ix = fixed2int_pixround_perfect(x0);
*iw = fixed2int_pixround_perfect(x1) - *ix;
}
static void
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
{
fixed x0, x1, y0, y1;
gx_dda_fixed_point row = state->rows;
x0 = dda_current(row.x);
y0 = dda_current(row.y);
dda_next(row.x);
dda_next(row.y);
x1 = dda_current(row.x);
y1 = dda_current(row.y);
*w = x1-x0;
*h = y1-y0;
}
static int
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
{
gs_logical_operation_t lop = state->lop;
gx_dda_fixed_point pnext;
int vci, vdi;
int irun; /* int x/rrun */
int w = state->w;
int h = state->h;
int spp = state->spp;
const byte *data = buffer[0] + data_x * spp;
const byte *bufend = NULL;
int code = 0;
const byte *run = NULL;
int k;
gx_color_value *conc = &cmapper->conc[0];
int to_rects;
gx_cmapper_fn *mapper = cmapper->set_color;
int minx, maxx;
if (h == 0)
return 0;
/* Clip on Y */
get_portrait_y_extent(state, &vci, &vdi);
if (vci < state->clip.p.y)
vdi += vci - state->clip.p.y, vci = state->clip.p.y;
if (vci+vdi > state->clip.q.y)
vdi = state->clip.q.y - vci;
if (vdi <= 0)
return 0;
pnext = state->pixels;
dda_translate(pnext.x, (-fixed_epsilon));
irun = fixed2int_var_rounded(dda_current(pnext.x));
if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
to_rects = (dev->color_info.depth != spp*8);
if (to_rects == 0) {
if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
to_rects = 1;
}
minx = state->clip.p.x;
maxx = state->clip.q.x;
bufend = data + w * spp;
if (to_rects) {
while (data < bufend) {
/* Find the length of the next run. It will either end when we hit
* the end of the source data, or when the pixel data differs. */
run = data + spp;
while (1) {
dda_next(pnext.x);
if (run >= bufend)
break;
if (memcmp(run, data, spp))
break;
run += spp;
}
/* So we have a run of pixels from data to run that are all the same. */
/* This needs to be sped up */
for (k = 0; k < spp; k++) {
conc[k] = gx_color_value_from_byte(data[k]);
}
mapper(cmapper);
/* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
{
int xi = irun;
int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
if (wi < 0)
xi += wi, wi = -wi;
if (xi < minx)
wi += xi - minx, xi = minx;
if (xi + wi > maxx)
wi = maxx - xi;
if (wi > 0)
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
&cmapper->devc, dev, lop);
}
if (code < 0)
goto err;
data = run;
}
} else {
int pending_left = irun;
int pending_right;
byte *out;
int depth = spp;
if (state->line == NULL) {
state->line = gs_alloc_bytes(state->mem,
(size_t)dev->width * depth,
"image line");
if (state->line == NULL)
return gs_error_VMerror;
}
out = state->line;
if (minx < 0)
minx = 0;
if (maxx > dev->width)
maxx = dev->width;
if (pending_left < minx)
pending_left = minx;
else if (pending_left > maxx)
pending_left = maxx;
pending_right = pending_left;
while (data < bufend) {
/* Find the length of the next run. It will either end when we hit
* the end of the source data, or when the pixel data differs. */
run = data + spp;
while (1) {
dda_next(pnext.x);
if (run >= bufend)
break;
if (memcmp(run, data, spp))
break;
run += spp;
}
/* So we have a run of pixels from data to run that are all the same. */
/* This needs to be sped up */
for (k = 0; k < spp; k++) {
conc[k] = gx_color_value_from_byte(data[k]);
}
mapper(cmapper);
/* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
{
int xi = irun;
int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
if (wi < 0)
xi += wi, wi = -wi;
if (xi < minx)
wi += xi - minx, xi = minx;
if (xi + wi > maxx)
wi = maxx - xi;
if (wi > 0) {
if (color_is_pure(&cmapper->devc)) {
gx_color_index color = cmapper->devc.colors.pure;
int xii = xi * spp;
if (pending_left > xi)
pending_left = xi;
else
pending_right = xi + wi;
do {
/* Excuse the double shifts below, that's to stop the
* C compiler complaining if the color index type is
* 32 bits. */
switch(depth)
{
case 8: out[xii++] = ((color>>28)>>28) & 0xff;
case 7: out[xii++] = ((color>>24)>>24) & 0xff;
case 6: out[xii++] = ((color>>24)>>16) & 0xff;
case 5: out[xii++] = ((color>>24)>>8) & 0xff;
case 4: out[xii++] = (color>>24) & 0xff;
case 3: out[xii++] = (color>>16) & 0xff;
case 2: out[xii++] = (color>>8) & 0xff;
case 1: out[xii++] = color & 0xff;
}
} while (--wi != 0);
} else {
if (pending_left != pending_right) {
code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
if (code < 0)
goto err;
}
pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
&cmapper->devc, dev, lop);
}
}
if (code < 0)
goto err;
}
data = run;
}
if (pending_left != pending_right) {
code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
if (code < 0)
goto err;
}
}
return 1;
/* Save position if error, in case we resume. */
err:
buffer[0] = run;
return code;
}
static int
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
{
gs_logical_operation_t lop = state->lop;
gx_dda_fixed_point pnext;
int vci, vdi;
int irun; /* int x/rrun */
int w = state->w;
int h = state->h;
int spp = state->spp;
const byte *data = buffer[0] + data_x * spp;
const byte *bufend = NULL;
int code = 0;
const byte *run;
int k;
gx_color_value *conc = &cmapper->conc[0];
int to_rects;
gx_cmapper_fn *mapper = cmapper->set_color;
int miny, maxy;
if (h == 0)
return 0;
/* Clip on X */
get_landscape_x_extent(state, &vci, &vdi);
if (vci < state->clip.p.x)
vdi += vci - state->clip.p.x, vci = state->clip.p.x;
if (vci+vdi > state->clip.q.x)
vdi = state->clip.q.x - vci;
if (vdi <= 0)
return 0;
pnext = state->pixels;
dda_translate(pnext.x, (-fixed_epsilon));
irun = fixed2int_var_rounded(dda_current(pnext.y));
if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
to_rects = (dev->color_info.depth != spp*8);
if (to_rects == 0) {
if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
to_rects = 1;
}
miny = state->clip.p.y;
maxy = state->clip.q.y;
bufend = data + w * spp;
while (data < bufend) {
/* Find the length of the next run. It will either end when we hit
* the end of the source data, or when the pixel data differs. */
run = data + spp;
while (1) {
dda_next(pnext.y);
if (run >= bufend)
break;
if (memcmp(run, data, spp))
break;
run += spp;
}
/* So we have a run of pixels from data to run that are all the same. */
/* This needs to be sped up */
for (k = 0; k < spp; k++) {
conc[k] = gx_color_value_from_byte(data[k]);
}
mapper(cmapper);
/* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
{ /* 90 degree rotated rectangle */
int yi = irun;
int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
if (hi < 0)
yi += hi, hi = -hi;
if (yi < miny)
hi += yi - miny, yi = miny;
if (yi + hi > maxy)
hi = maxy - yi;
if (hi > 0)
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
&cmapper->devc, dev, lop);
}
if (code < 0)
goto err;
data = run;
}
return 1;
/* Save position if error, in case we resume. */
err:
buffer[0] = run;
return code;
}
static int
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
{
gs_logical_operation_t lop = state->lop;
gx_dda_fixed_point pnext;
fixed xprev, yprev;
fixed pdyx, pdyy; /* edge of parallelogram */
int w = state->w;
int h = state->h;
int spp = state->spp;
const byte *data = buffer[0] + data_x * spp;
fixed xpos; /* x ditto */
fixed ypos; /* y ditto */
const byte *bufend = data + w * spp;
int code = 0;
int k;
byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
const byte *prev = &initial_run[0];
gx_cmapper_fn *mapper = cmapper->set_color;
gx_color_value *conc = &cmapper->conc[0];
if (h == 0)
return 0;
pnext = state->pixels;
get_skew_extents(state, &pdyx, &pdyy);
dda_translate(pnext.x, (-fixed_epsilon));
xprev = dda_current(pnext.x);
yprev = dda_current(pnext.y);
if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
data_x, w, fixed2float(xprev), fixed2float(yprev));
initial_run[0] = ~data[0]; /* Force intial setting */
while (data < bufend) {
dda_next(pnext.x);
dda_next(pnext.y);
xpos = dda_current(pnext.x);
ypos = dda_current(pnext.y);
if (memcmp(prev, data, spp) != 0)
{
/* This needs to be sped up */
for (k = 0; k < spp; k++) {
conc[k] = gx_color_value_from_byte(data[k]);
}
mapper(cmapper);
}
/* Fill the region between */
/* xprev/yprev and xpos/ypos */
/* Parallelogram */
code = (*dev_proc(dev, fill_parallelogram))
(dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
&cmapper->devc, lop);
xprev = xpos;
yprev = ypos;
if (code < 0)
goto err;
prev = data;
data += spp;
}
return 1;
/* Save position if error, in case we resume. */
err:
/* Only set buffer[0] if we've managed to set prev to something valid. */
if (prev != &initial_run[0]) buffer[0] = prev;
return code;
}
static int
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
const gs_int_rect *clip, gs_logical_operation_t lop,
gx_default_transform_pixel_region_state_t **statep)
{
gx_default_transform_pixel_region_state_t *state;
gs_memory_t *mem = dev->memory->non_gc_memory;
*statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
if (state == NULL)
return gs_error_VMerror;
state->mem = mem;
state->rows = *rows;
state->pixels = *pixels;
state->clip = *clip;
state->w = w;
state->h = h;
state->spp = spp;
state->lop = lop;
state->line = NULL;
/* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
state->posture = transform_pixel_region_portrait;
else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
state->posture = transform_pixel_region_landscape;
else
state->posture = transform_pixel_region_skew;
if (state->posture == transform_pixel_region_portrait)
state->render = transform_pixel_region_render_portrait;
else if (state->posture == transform_pixel_region_landscape)
state->render = transform_pixel_region_render_landscape;
else
state->render = transform_pixel_region_render_skew;
return 0;
}
static void
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
{
fixed x = dda_current(state->rows.x);
fixed y = dda_current(state->rows.y);
dda_next(state->rows.x);
dda_next(state->rows.y);
x = dda_current(state->rows.x) - x;
y = dda_current(state->rows.y) - y;
dda_translate(state->pixels.x, x);
dda_translate(state->pixels.y, y);
}
static int
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
{
if (state->posture == transform_pixel_region_portrait) {
int iy, ih;
get_portrait_y_extent(state, &iy, &ih);
if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
/* Skip this line. */
step_to_next_line(state);
return 0;
}
} else if (state->posture == transform_pixel_region_landscape) {
int ix, iw;
get_landscape_x_extent(state, &ix, &iw);
if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
/* Skip this line. */
step_to_next_line(state);
return 0;
}
}
return 1;
}
static int
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
{
int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
step_to_next_line(state);
return ret;
}
static int
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
{
if (state) {
gs_free_object(state->mem, state->line, "image line");
gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
}
return 0;
}
int
gx_default_transform_pixel_region(gx_device *dev,
transform_pixel_region_reason reason,
transform_pixel_region_data *data)
{
gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
switch (reason)
{
case transform_pixel_region_begin:
return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
case transform_pixel_region_data_needed:
return gx_default_transform_pixel_region_data_needed(dev, state);
case transform_pixel_region_process_data:
return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
case transform_pixel_region_end:
data->state = NULL;
return gx_default_transform_pixel_region_end(dev, state);
default:
return gs_error_unknownerror;
}
}
|