1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
|
/* Copyright (C) 2001-2024 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
CA 94129, USA, for further information.
*/
/* Pure and null device color implementation */
#include "gx.h"
#include "memory_.h"
#include "gserrors.h"
#include "gsbittab.h"
#include "gxdcolor.h"
#include "gxpcolor.h"
#include "gxdevice.h"
#include "gxdevcli.h"
#include "gxclist.h"
/* Define the standard device color types. */
/* 'none' means the color is not defined. */
static dev_color_proc_save_dc(gx_dc_no_save_dc);
static dev_color_proc_get_dev_halftone(gx_dc_no_get_dev_halftone);
static dev_color_proc_load(gx_dc_no_load);
static dev_color_proc_fill_rectangle(gx_dc_no_fill_rectangle);
static dev_color_proc_fill_masked(gx_dc_no_fill_masked);
static dev_color_proc_equal(gx_dc_no_equal);
static dev_color_proc_write(gx_dc_no_write);
static dev_color_proc_read(gx_dc_no_read);
static dev_color_proc_get_nonzero_comps(gx_dc_no_get_nonzero_comps);
const gx_device_color_type_t gx_dc_type_data_none = {
&st_bytes,
gx_dc_no_save_dc, gx_dc_no_get_dev_halftone, gx_dc_no_get_phase,
gx_dc_no_load, gx_dc_no_fill_rectangle, gx_dc_no_fill_masked,
gx_dc_no_equal, gx_dc_no_write, gx_dc_no_read, gx_dc_no_get_nonzero_comps
};
#undef gx_dc_type_none
const gx_device_color_type_t *const gx_dc_type_none = &gx_dc_type_data_none;
#define gx_dc_type_none (&gx_dc_type_data_none)
/* 'null' means the color has no effect when used for drawing. */
static dev_color_proc_load(gx_dc_null_load);
static dev_color_proc_fill_rectangle(gx_dc_null_fill_rectangle);
static dev_color_proc_fill_masked(gx_dc_null_fill_masked);
static dev_color_proc_equal(gx_dc_null_equal);
static dev_color_proc_read(gx_dc_null_read);
const gx_device_color_type_t gx_dc_type_data_null = {
&st_bytes,
gx_dc_no_save_dc, gx_dc_no_get_dev_halftone, gx_dc_no_get_phase,
gx_dc_null_load, gx_dc_null_fill_rectangle, gx_dc_null_fill_masked,
gx_dc_null_equal, gx_dc_no_write, gx_dc_null_read, gx_dc_no_get_nonzero_comps
};
#undef gx_dc_type_null
const gx_device_color_type_t *const gx_dc_type_null = &gx_dc_type_data_null;
#define gx_dc_type_null (&gx_dc_type_data_null)
static dev_color_proc_save_dc(gx_dc_pure_save_dc);
static dev_color_proc_load(gx_dc_pure_load);
static dev_color_proc_fill_rectangle(gx_dc_pure_fill_rectangle);
static dev_color_proc_fill_masked(gx_dc_pure_fill_masked);
static dev_color_proc_equal(gx_dc_pure_equal);
static dev_color_proc_write(gx_dc_pure_write);
static dev_color_proc_read(gx_dc_pure_read);
const gx_device_color_type_t gx_dc_type_data_pure = {
&st_bytes,
gx_dc_pure_save_dc, gx_dc_no_get_dev_halftone, gx_dc_no_get_phase,
gx_dc_pure_load, gx_dc_pure_fill_rectangle, gx_dc_pure_fill_masked,
gx_dc_pure_equal, gx_dc_pure_write, gx_dc_pure_read,
gx_dc_pure_get_nonzero_comps
};
#undef gx_dc_type_pure
const gx_device_color_type_t *const gx_dc_type_pure = &gx_dc_type_data_pure;
#define gx_dc_type_pure (&gx_dc_type_data_pure)
/* This devn color type is used for handling the separation devices.
It essentially holds devicen and/or separation color values. */
static dev_color_proc_save_dc(gx_dc_devn_save_dc);
static dev_color_proc_load(gx_dc_devn_load);
static dev_color_proc_fill_rectangle(gx_dc_devn_fill_rectangle);
static dev_color_proc_equal(gx_dc_devn_equal);
static dev_color_proc_write(gx_dc_devn_write);
static dev_color_proc_read(gx_dc_devn_read);
const gx_device_color_type_t gx_dc_type_data_devn = {
&st_bytes,
gx_dc_devn_save_dc, gx_dc_no_get_dev_halftone, gx_dc_no_get_phase,
gx_dc_devn_load, gx_dc_devn_fill_rectangle, gx_dc_devn_fill_masked,
gx_dc_devn_equal, gx_dc_devn_write, gx_dc_devn_read,
gx_dc_devn_get_nonzero_comps
};
#undef gx_dc_type_devn
const gx_device_color_type_t *const gx_dc_type_devn = &gx_dc_type_data_devn;
#define gx_dc_type_devn (&gx_dc_type_data_devn)
/*
* Get the black and white pixel values of a device.
*/
gx_color_index
gx_device_black(gx_device *dev)
{
if (dev->cached_colors.black == gx_no_color_index) {
uchar i, nc, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
/* Get color components for black (gray = 0) */
cmprocs->map_gray(cmdev, frac_0, cm_comps);
nc = ncomps;
if (device_encodes_tags(dev))
nc--;
for (i = 0; i < nc; i++)
cv[i] = frac2cv(cm_comps[i]);
if (i < ncomps)
cv[i] = cm_comps[i];
dev->cached_colors.black = dev_proc(dev, encode_color)(dev, cv);
}
return dev->cached_colors.black;
}
gx_color_index
gx_device_white(gx_device *dev)
{
if (dev->cached_colors.white == gx_no_color_index) {
uchar i, nc, ncomps = dev->color_info.num_components;
frac cm_comps[GX_DEVICE_COLOR_MAX_COMPONENTS];
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
const gx_device *cmdev;
const gx_cm_color_map_procs *cmprocs;
cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
/* Get color components for white (gray = 1) */
cmprocs->map_gray(cmdev, frac_1, cm_comps);
nc = ncomps;
if (device_encodes_tags(dev))
nc--;
for (i = 0; i < nc; i++)
cv[i] = frac2cv(cm_comps[i]);
if (i < ncomps)
cv[i] = cm_comps[i];
dev->cached_colors.white = dev_proc(dev, encode_color)(dev, cv);
}
return dev->cached_colors.white;
}
/* Clear the color cache. */
void
gx_device_decache_colors(gx_device *dev)
{
dev->cached_colors.black = dev->cached_colors.white = gx_no_color_index;
}
/* Set a null RasterOp source. */
static const gx_rop_source_t gx_rop_no_source_0 = {gx_rop_no_source_body(0)};
static const gx_rop_source_t gx_rop_no_source_1 = {gx_rop_no_source_body(1)};
void
gx_set_rop_no_source(const gx_rop_source_t **psource,
gx_rop_source_t *pno_source, gx_device *dev)
{
gx_color_index black;
top:
black = dev->cached_colors.black;
if (black == 0)
*psource = &gx_rop_no_source_0;
else if (black == 1)
*psource = &gx_rop_no_source_1;
else if (black == gx_no_color_index) { /* cache not loaded */
discard(gx_device_black(dev));
goto top;
} else {
*pno_source = gx_rop_no_source_0;
gx_rop_source_set_color(pno_source, black);
*psource = pno_source;
}
}
/*
* Test device colors for equality. Testing for equality is done
* for determining when cache values, etc. can be used. Thus these
* routines should err toward false responses if there is any question
* about the equality of the two device colors.
*/
bool
gx_device_color_equal(const gx_device_color *pdevc1,
const gx_device_color *pdevc2)
{
return pdevc1->type->equal(pdevc1, pdevc2);
}
/*
* Return a device color type index. This index is used by the command
* list processor to identify a device color type, as the type pointer
* itself is meaningful only within a single address space.
*
* Currently, we ignore the pattern device colors as they cannot be
* passed through the command list.
*
* Returns gs_error_unknownerror for an unrecognized type.
*/
static const gx_device_color_type_t * dc_color_type_table[] = {
gx_dc_type_none, /* unset device color */
gx_dc_type_null, /* blank (transparent) device color */
gx_dc_type_pure, /* pure device color */
gx_dc_type_pattern, /* patterns */
gx_dc_type_ht_binary, /* binary halftone device colors */
gx_dc_type_ht_colored, /* general halftone device colors */
gx_dc_type_devn /* DeviceN color for planar sep devices */
};
int
gx_get_dc_type_index(const gx_device_color * pdevc)
{
const gx_device_color_type_t * type = pdevc->type;
int num_types, i;
num_types = sizeof(dc_color_type_table) / sizeof(dc_color_type_table[0]);
for (i = 0; i < num_types && type != dc_color_type_table[i]; i++)
;
return i < num_types ? i : gs_error_unknownerror;
}
/* map a device color type index into the associated method vector */
const gx_device_color_type_t *
gx_get_dc_type_from_index(int i)
{
if ( i >= 0 &&
i < sizeof(dc_color_type_table) / sizeof(dc_color_type_table[0]) )
return dc_color_type_table[i];
else
return 0;
}
/* ------ Canonical get_phase methods ------ */
bool
gx_dc_no_get_phase(const gx_device_color * pdevc, gs_int_point * pphase)
{
return false;
}
bool
gx_dc_ht_get_phase(const gx_device_color * pdevc, gs_int_point * pphase)
{
*pphase = pdevc->phase;
return true;
}
/* ------ Undefined color ------ */
static void
gx_dc_no_save_dc(const gx_device_color * pdevc, gx_device_color_saved * psdc)
{
psdc->type = pdevc->type;
}
static const gx_device_halftone *
gx_dc_no_get_dev_halftone(const gx_device_color * pdevc)
{
return 0;
}
static int
gx_dc_no_load(gx_device_color *pdevc, const gs_gstate *ignore_pgs,
gx_device *ignore_dev, gs_color_select_t ignore_select)
{
return 0;
}
static int
gx_dc_no_fill_rectangle(const gx_device_color *pdevc, int x, int y,
int w, int h, gx_device *dev,
gs_logical_operation_t lop,
const gx_rop_source_t *source)
{
gx_device_color filler;
if (w <= 0 || h <= 0)
return 0;
if (lop_uses_T(lop))
return_error(gs_error_Fatal);
set_nonclient_dev_color(&filler, 0); /* any valid value for dev will do */
return gx_dc_pure_fill_rectangle(&filler, x, y, w, h, dev, lop, source);
}
static int
gx_dc_no_fill_masked(const gx_device_color *pdevc, const byte *data,
int data_x, int raster, gx_bitmap_id id,
int x, int y, int w, int h, gx_device *dev,
gs_logical_operation_t lop, bool invert)
{
if (w <= 0 || h <= 0)
return 0;
return_error(gs_error_Fatal);
}
static bool
gx_dc_no_equal(const gx_device_color *pdevc1, const gx_device_color *pdevc2)
{
return false;
}
static int
gx_dc_no_write(
const gx_device_color * pdevc, /* ignored */
const gx_device_color_saved * psdc, /* ignored */
const gx_device * dev, /* ignored */
int64_t offset, /* ignored */
byte * data, /* ignored */
uint * psize )
{
*psize = 0;
return psdc != 0 && psdc->type == pdevc->type ? 1 : 0;
}
static int
gx_dc_no_read(
gx_device_color * pdevc,
const gs_gstate * pgs, /* ignored */
const gx_device_color * prior_devc, /* ignored */
const gx_device * dev, /* ignored */
int64_t offset, /* ignored */
const byte * pdata, /* ignored */
uint size, /* ignored */
gs_memory_t * mem, /* ignored */
int x0, /* ignored */
int y0) /* ignored */
{
pdevc->type = gx_dc_type_none;
return 0;
}
int
gx_dc_cannot_write(
const gx_device_color * pdevc, /* ignored */
const gx_device_color_saved * psdc, /* ignored */
const gx_device * dev, /* ignored */
int64_t offset, /* ignored */
byte * data, /* ignored */
uint * psize )
{
return_error(gs_error_unknownerror);
}
int
gx_dc_cannot_read(
gx_device_color * pdevc,
const gs_gstate * pgs, /* ignored */
const gx_device_color * prior_devc, /* ignored */
const gx_device * dev, /* ignored */
int64_t offset, /* ignored */
const byte * pdata, /* ignored */
uint size, /* ignored */
gs_memory_t * mem, /* ignored */
int x0, /* ignored */
int y0) /* ignored */
{
return_error(gs_error_unknownerror);
}
static int
gx_dc_no_get_nonzero_comps(
const gx_device_color * pdevc_ignored,
const gx_device * dev_ignored,
gx_color_index * pcomp_bits_ignored )
{
return 0;
}
/* ------ Null color ------ */
static int
gx_dc_null_load(gx_device_color *pdevc, const gs_gstate *ignore_pgs,
gx_device *ignore_dev, gs_color_select_t ignore_select)
{
return 0;
}
static int
gx_dc_null_fill_rectangle(const gx_device_color * pdevc, int x, int y,
int w, int h, gx_device * dev,
gs_logical_operation_t lop,
const gx_rop_source_t * source)
{
return 0;
}
static int
gx_dc_null_fill_masked(const gx_device_color * pdevc, const byte * data,
int data_x, int raster, gx_bitmap_id id,
int x, int y, int w, int h, gx_device * dev,
gs_logical_operation_t lop, bool invert)
{
return 0;
}
static bool
gx_dc_null_equal(const gx_device_color * pdevc1, const gx_device_color * pdevc2)
{
return pdevc2->type == pdevc1->type;
}
static int
gx_dc_null_read(
gx_device_color * pdevc,
const gs_gstate * pgs, /* ignored */
const gx_device_color * prior_devc, /* ignored */
const gx_device * dev, /* ignored */
int64_t offset, /* ignored */
const byte * pdata, /* ignored */
uint size, /* ignored */
gs_memory_t * mem, /* ignored */
int x0, /* ignored */
int y0) /* ignored */
{
pdevc->type = gx_dc_type_null;
return 0;
}
/* ------ DeviceN high level colors for sep devices ------ */
static void
gx_dc_devn_save_dc(const gx_device_color * pdevc, gx_device_color_saved * psdc)
{
psdc->type = pdevc->type;
memcpy(&(psdc->colors.devn.values[0]), &(pdevc->colors.devn.values[0]),
GX_DEVICE_COLOR_MAX_COMPONENTS*sizeof(ushort));
}
static int
gx_dc_devn_load(gx_device_color * pdevc, const gs_gstate * ignore_pgs,
gx_device * ignore_dev, gs_color_select_t ignore_select)
{
return 0;
}
/* Fill a rectangle with a devicen color. */
static int
gx_dc_devn_fill_rectangle(const gx_device_color * pdevc, int x, int y,
int w, int h, gx_device * dev,
gs_logical_operation_t lop,
const gx_rop_source_t * source)
{
gs_fixed_rect rect;
rect.p.x = int2fixed(x);
rect.p.y = int2fixed(y);
rect.q.x = int2fixed(w + x);
rect.q.y = int2fixed(h + y);
return (*dev_proc(dev, fill_rectangle_hl_color)) (dev, &rect, NULL, pdevc, NULL);
}
/* Fill a mask with a DeviceN color. */
/* Note that there is no source in this case: the mask is the source.
I would like to add a device proc that was fill_masked_hl for
handling this instead of breaking this down to hl rect fills */
int
gx_dc_devn_fill_masked(const gx_device_color * pdevc, const byte * data,
int data_x, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_device * dev, gs_logical_operation_t lop, bool invert)
{
int lbit = data_x & 7;
const byte *row = data + (data_x >> 3);
uint one = (invert ? 0 : 0xff);
uint zero = one ^ 0xff;
int iy;
for (iy = 0; iy < h; ++iy, row += raster) {
const byte *p = row;
int bit = lbit;
int left = w;
int l0;
while (left) {
int run, code;
/* Skip a run of zeros. */
run = byte_bit_run_length[bit][*p ^ one];
if (run) {
if (run < 8) {
if (run >= left)
break; /* end of row while skipping */
bit += run, left -= run;
} else if ((run -= 8) >= left)
break; /* end of row while skipping */
else {
left -= run;
++p;
while (left > 8 && *p == zero)
left -= 8, ++p;
run = byte_bit_run_length_0[*p ^ one];
if (run >= left) /* run < 8 unless very last byte */
break; /* end of row while skipping */
else
bit = run & 7, left -= run;
}
}
l0 = left;
/* Scan a run of ones, and then paint it. */
run = byte_bit_run_length[bit][*p ^ zero];
if (run < 8) {
if (run >= left)
left = 0;
else
bit += run, left -= run;
} else if ((run -= 8) >= left)
left = 0;
else {
left -= run;
++p;
while (left > 8 && *p == one)
left -= 8, ++p;
run = byte_bit_run_length_0[*p ^ zero];
if (run >= left) /* run < 8 unless very last byte */
left = 0;
else
bit = run & 7, left -= run;
}
code = gx_device_color_fill_rectangle(pdevc,
x + w - l0, y + iy, l0 - left, 1, dev, lop, NULL);
if (code < 0)
return code;
}
}
return 0;
}
static bool
gx_dc_devn_equal(const gx_device_color * pdevc1, const gx_device_color * pdevc2)
{
int k;
if (pdevc1->type == gx_dc_type_devn && pdevc2->type == gx_dc_type_devn) {
for (k = 0; k < GX_DEVICE_COLOR_MAX_COMPONENTS; k++) {
if (pdevc1->colors.devn.values[k] != pdevc2->colors.devn.values[k]) {
return false;
}
}
return true;
} else {
return false;
}
}
/*
* Utility to write a devn color into the clist. We should only be here
* if the device can handle these colors (e.g. a separation device like
* tiffsep). We can also be here if we are doing simulated overprint
* and the source document has spot colors in which case pdf14cmykspot
* device has been pushed and will handle devn colors. Because the target
* could be bitrgbtags we need to send the tag information along.
* TODO: Reduce the size of this by removing leading zeros in
* the mask.
*
*/
static int
gx_devn_write_color(
const gx_device_color *pdevc,
const gx_device * dev,
byte * pdata,
uint * psize )
{
int num_bytes1, num_bytes_temp, num_bytes;
gx_color_index mask_temp;
int count = 0;
uchar i;
gx_device_clist_writer* const cdev = &((gx_device_clist *)dev)->writer;
uchar ncomps = cdev->clist_color_info.num_components; /* Could be different than target if 1.4 device */
gx_color_index mask = 0x1, comp_bits = 0;
if_debug1m(gs_debug_flag_clist_color, dev->memory,
"[clist_color] Writing devn color, %d components [ ", ncomps);
/* First find the number of non zero values */
for (i = 0; i < ncomps; i++, mask <<= 1) {
if_debug1m(gs_debug_flag_clist_color, dev->memory,
"%d ", pdevc->colors.devn.values[i]);
if (pdevc->colors.devn.values[i] != 0) {
comp_bits |= mask;
count++;
}
}
mask = comp_bits;
if_debug0m(gs_debug_flag_clist_color, dev->memory, "]\n");
num_bytes1 = sizeof(gx_color_index);
num_bytes = num_bytes1 + count * 2 + 1; /* One for the tag byte */
num_bytes_temp = num_bytes1 + 1;
/* check for adequate space */
if (*psize < num_bytes) {
*psize = num_bytes;
return_error(gs_error_rangecheck);
}
*psize = num_bytes;
/* write out the mask */
mask_temp = mask;
while (--num_bytes1 >= 0) {
pdata[num_bytes1] = mask_temp & 0xff;
mask_temp >>= 8;
}
/* Now the tag */
pdata[num_bytes_temp - 1] = device_current_tag(dev);
/* Now the data */
for (i = 0; i < ncomps; i++) {
if (mask & 1) {
pdata[num_bytes_temp] = pdevc->colors.devn.values[i] & 0xff;
num_bytes_temp++;
pdata[num_bytes_temp] = (pdevc->colors.devn.values[i] >> 8) & 0xff;
num_bytes_temp++;
}
mask >>= 1;
}
return 0;
}
/*
* Serialize a DeviceN color.
*
* Operands:
*
* pdevc pointer to device color to be serialized
*
* psdc pointer ot saved version of last serialized color (for
* this band); this is ignored
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to buffer in which to write the data
*
* psize pointer to a location that, on entry, contains the size of
* the buffer pointed to by pdata; on return, the size of
* the data required or actually used will be written here.
*
* Returns:
*
* 1, with *psize set to 0, if *pdevc and *psdc represent the same color
*
* 0, with *psize set to the amount of data written, if everything OK
*
* gs_error_rangecheck, with *psize set to the size of buffer required,
* if *psize was not large enough
*
* < 0, != gs_error_rangecheck, in the event of some other error; in this
* case *psize is not changed.
*/
int
gx_dc_devn_write(
const gx_device_color * pdevc,
const gx_device_color_saved * psdc, /* ignored */
const gx_device * dev,
int64_t offset, /* ignored */
byte * pdata,
uint * psize )
{
/* Due to the fact that the devn color type can vary
being cmd_opv_ext_put_drawing_color, cmd_opv_ext_put_tile_devn_color0,
cmd_opv_ext_put_tile_devn_color1, or cmd_opv_ext_put_drawing_color
and these are stored in different locations during clist playback
(&set_dev_colors[0] &set_dev_colors[1] &dev_color) we will not check
if there is a change here */
return gx_devn_write_color(pdevc, dev, pdata, psize);
}
/*
* Utility to reconstruct deviceN color from its serial representation.
*
* Operands:
*
* pcolor pointer to the location in which to write the
* reconstucted color
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to the buffer to be read
*
* size size of the buffer to be read; this is expected to be
* large enough for the full color
*
* Returns: # of bytes read, or < 0 in the event of an error
*/
static int
gx_devn_read_color(
ushort values[],
gs_graphics_type_tag_t * tag,
const gx_device * dev,
const byte * pdata,
int size )
{
gx_color_index mask = 0;
uchar i;
uchar ncomps = dev->color_info.num_components;
int pos;
int num_bytes;
/* check that enough data has been provided */
if (size < 1)
return_error(gs_error_rangecheck);
/* First get the mask. */
for (i = 0; i < sizeof(gx_color_index); i++)
mask = (mask << 8) | pdata[i];
pos = i;
num_bytes = i;
/* Now the tag */
*tag = pdata[pos];
pos++;
num_bytes++;
if_debug1m(gs_debug_flag_clist_color, dev->memory,
"[clist_color] Reading devn color, %d components [ ", ncomps);
/* Now the data */
for (i = 0; i < ncomps; i++) {
if (mask & 1) {
values[i] = pdata[pos];
pos++;
values[i] += (pdata[pos]<<8);
pos++;
num_bytes += 2;
} else {
values[i] = 0;
}
if_debug1m(gs_debug_flag_clist_color, dev->memory,
"%d ", values[i]);
mask >>= 1;
}
if_debug0m(gs_debug_flag_clist_color, dev->memory, "]\n");
return num_bytes;
}
/*
* Reconstruct a deviceN device color from its serial representation.
*
* Operands:
*
* pdevc pointer to the location in which to write the
* reconstructed device color
*
* pgs pointer to the current gs_gstate (ignored here)
*
* prior_devc pointer to the current device color (this is provided
* separately because the device color is not part of the
* gs_gstate; it is ignored here)
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to the buffer to be read
*
* size size of the buffer to be read; this should be large
* enough to hold the entire color description
*
* mem pointer to the memory to be used for allocations
* (ignored here)
*
* Returns:
*
* # of bytes read if everthing OK, < 0 in the event of an error
*/
static int
gx_dc_devn_read(
gx_device_color * pdevc,
const gs_gstate * pgs, /* ignored */
const gx_device_color * prior_devc, /* ignored */
const gx_device * dev,
int64_t offset, /* ignored */
const byte * pdata,
uint size,
gs_memory_t * mem, /* ignored */
int x0, /* ignored */
int y0) /* ignored */
{
pdevc->type = gx_dc_type_devn;
return gx_devn_read_color(&(pdevc->colors.devn.values[0]), &(pdevc->tag),
dev, pdata, size);
}
/* Remember these are 16 bit values. Also here we return the number of
nonzero entries so we can figure out the size for the clist more
easily. Hopefully that does not cause any confusion in overprint
situations where this operation is also used. */
int
gx_dc_devn_get_nonzero_comps(
const gx_device_color * pdevc,
const gx_device * dev,
gx_color_index * pcomp_bits )
{
uchar i, ncomps = dev->color_info.num_components;
gx_color_index mask = 0x1, comp_bits = 0;
int count = 0;
ushort white_value = (dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) ? 0 : 1;
for (i = 0; i < ncomps; i++, mask <<= 1) {
if (pdevc->colors.devn.values[i] != white_value) {
comp_bits |= mask;
count++;
}
}
*pcomp_bits = comp_bits;
return count;
}
/* ------ Pure color ------ */
static void
gx_dc_pure_save_dc(const gx_device_color * pdevc, gx_device_color_saved * psdc)
{
psdc->type = pdevc->type;
psdc->colors.pure = pdevc->colors.pure;
}
static int
gx_dc_pure_load(gx_device_color * pdevc, const gs_gstate * ignore_pgs,
gx_device * ignore_dev, gs_color_select_t ignore_select)
{
return 0;
}
/* Fill a rectangle with a pure color. */
/* Note that we treat this as "texture" for RasterOp. */
static int
gx_dc_pure_fill_rectangle(const gx_device_color * pdevc, int x, int y,
int w, int h, gx_device * dev, gs_logical_operation_t lop,
const gx_rop_source_t * source)
{
if (source == NULL && lop_no_S_is_T(lop))
return (*dev_proc(dev, fill_rectangle)) (dev, x, y, w, h,
pdevc->colors.pure);
{
gx_color_index colors[2];
gx_rop_source_t no_source;
colors[0] = colors[1] = pdevc->colors.pure;
if (source == NULL)
set_rop_no_source(source, no_source, dev);
return (*dev_proc(dev, strip_copy_rop2))
(dev, source->sdata, source->sourcex, source->sraster,
source->id, (source->use_scolors ? source->scolors : NULL),
NULL /*arbitrary */ , colors, x, y, w, h, 0, 0, lop, source->planar_height);
}
}
/* Fill a mask with a pure color. */
/* Note that there is no source in this case: the mask is the source. */
static int
gx_dc_pure_fill_masked(const gx_device_color * pdevc, const byte * data,
int data_x, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_device * dev, gs_logical_operation_t lop, bool invert)
{
if (lop_no_S_is_T(lop)) {
gx_color_index color0, color1;
if (invert)
color0 = pdevc->colors.pure, color1 = gx_no_color_index;
else
color1 = pdevc->colors.pure, color0 = gx_no_color_index;
return (*dev_proc(dev, copy_mono))
(dev, data, data_x, raster, id, x, y, w, h, color0, color1);
} {
gx_color_index scolors[2];
gx_color_index tcolors[2];
if ( lop != lop_default ) {
scolors[0] = gx_device_white(dev);
scolors[1] = gx_device_black(dev);
} else {
scolors[0] = gx_device_black(dev);
scolors[1] = gx_device_white(dev);
}
tcolors[0] = tcolors[1] = pdevc->colors.pure;
if (invert)
lop = rop3_invert_S(lop);
if (!rop3_uses_S(lop))
lop |= rop3_S;
return (*dev_proc(dev, strip_copy_rop2))
(dev, data, data_x, raster, id, scolors,
NULL, tcolors, x, y, w, h, 0, 0,
lop_sanitize(lop | lop_S_transparent), 0);
}
}
static bool
gx_dc_pure_equal(const gx_device_color * pdevc1, const gx_device_color * pdevc2)
{
return pdevc2->type == pdevc1->type &&
gx_dc_pure_color(pdevc1) == gx_dc_pure_color(pdevc2);
}
/*
* Serialize a pure color.
*
* Operands:
*
* pdevc pointer to device color to be serialized
*
* psdc pointer ot saved version of last serialized color (for
* this band); this is ignored
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to buffer in which to write the data
*
* psize pointer to a location that, on entry, contains the size of
* the buffer pointed to by pdata; on return, the size of
* the data required or actually used will be written here.
*
* Returns:
*
* 1, with *psize set to 0, if *pdevc and *psdc represent the same color
*
* 0, with *psize set to the amount of data written, if everything OK
*
* gs_error_rangecheck, with *psize set to the size of buffer required,
* if *psize was not large enough
*
* < 0, != gs_error_rangecheck, in the event of some other error; in this
* case *psize is not changed.
*/
static int
gx_dc_pure_write(
const gx_device_color * pdevc,
const gx_device_color_saved * psdc, /* ignored */
const gx_device * dev,
int64_t offset, /* ignored */
byte * pdata,
uint * psize )
{
if ( psdc != 0 &&
psdc->type == pdevc->type &&
psdc->colors.pure == pdevc->colors.pure ) {
*psize = 0;
return 1;
} else
return gx_dc_write_color(pdevc->colors.pure, dev, pdata, psize);
}
/*
* Reconstruct a pure device color from its serial representation.
*
* Operands:
*
* pdevc pointer to the location in which to write the
* reconstructed device color
*
* pgs pointer to the current gs_gstate (ignored here)
*
* prior_devc pointer to the current device color (this is provided
* separately because the device color is not part of the
* gs_gstate; it is ignored here)
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to the buffer to be read
*
* size size of the buffer to be read; this should be large
* enough to hold the entire color description
*
* mem pointer to the memory to be used for allocations
* (ignored here)
*
* Returns:
*
* # of bytes read if everthing OK, < 0 in the event of an error
*/
static int
gx_dc_pure_read(
gx_device_color * pdevc,
const gs_gstate * pgs, /* ignored */
const gx_device_color * prior_devc, /* ignored */
const gx_device * dev,
int64_t offset, /* ignored */
const byte * pdata,
uint size,
gs_memory_t * mem, /* ignored */
int x0, /* ignored */
int y0) /* ignored */
{
pdevc->type = gx_dc_type_pure;
return gx_dc_read_color(&pdevc->colors.pure, dev, pdata, size);
}
int
gx_dc_pure_get_nonzero_comps(
const gx_device_color * pdevc,
const gx_device * dev,
gx_color_index * pcomp_bits )
{
int code;
gx_color_value cvals[GX_DEVICE_COLOR_MAX_COMPONENTS];
code = dev_proc(dev, decode_color)( (gx_device *)dev,
pdevc->colors.pure,
cvals );
if (code >= 0) {
uchar i, ncomps = dev->color_info.num_components;
gx_color_index mask = 0x1, comp_bits = 0;
for (i = 0; i < ncomps; i++, mask <<= 1) {
if (cvals[i] != 0)
comp_bits |= mask;
}
*pcomp_bits = comp_bits;
code = 0;
}
return code;
}
/* ------ Halftone color initialization ------ */
void
gx_complete_halftone(gx_device_color *pdevc, int num_comps, gx_device_halftone *pdht)
{
int i, mask = 0;
pdevc->type = gx_dc_type_ht_colored;
pdevc->colors.colored.c_ht = pdht;
pdevc->colors.colored.num_components = num_comps;
for (i = 0; i < num_comps; i++)
mask |= ((pdevc->colors.colored.c_level[i] != 0 ? 1 : 0) << i);
pdevc->colors.colored.plane_mask = mask;
}
/* ------ Default implementations ------ */
/* Fill a mask with a color by parsing the mask into rectangles. */
int
gx_dc_default_fill_masked(const gx_device_color * pdevc, const byte * data,
int data_x, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_device * dev, gs_logical_operation_t lop, bool invert)
{
int lbit = data_x & 7;
const byte *row = data + (data_x >> 3);
uint one = (invert ? 0 : 0xff);
uint zero = one ^ 0xff;
int iy;
for (iy = 0; iy < h; ++iy, row += raster) {
const byte *p = row;
int bit = lbit;
int left = w;
int l0;
while (left) {
int run, code;
/* Skip a run of zeros. */
run = byte_bit_run_length[bit][*p ^ one];
if (run) {
if (run < 8) {
if (run >= left)
break; /* end of row while skipping */
bit += run, left -= run;
} else if ((run -= 8) >= left)
break; /* end of row while skipping */
else {
left -= run;
++p;
while (left > 8 && *p == zero)
left -= 8, ++p;
run = byte_bit_run_length_0[*p ^ one];
if (run >= left) /* run < 8 unless very last byte */
break; /* end of row while skipping */
else
bit = run & 7, left -= run;
}
}
l0 = left;
/* Scan a run of ones, and then paint it. */
run = byte_bit_run_length[bit][*p ^ zero];
if (run < 8) {
if (run >= left)
left = 0;
else
bit += run, left -= run;
} else if ((run -= 8) >= left)
left = 0;
else {
left -= run;
++p;
while (left > 8 && *p == one)
left -= 8, ++p;
run = byte_bit_run_length_0[*p ^ zero];
if (run >= left) /* run < 8 unless very last byte */
left = 0;
else
bit = run & 7, left -= run;
}
code = gx_device_color_fill_rectangle(pdevc,
x + w - l0, y + iy, l0 - left, 1, dev, lop, NULL);
if (code < 0)
return code;
}
}
return 0;
}
/* ------ Serialization identification support ------ */
/*
* Utility to write a color index. Currently, a very simple mechanism
* is used, much simpler than that used by other command-list writers. This
* should be sufficient for most situations.
*
* Operands:
*
* color color to be serialized.
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to buffer in which to write the data
*
* psize pointer to a location that, on entry, contains the size of
* the buffer pointed to by pdata; on return, the size of
* the data required or actually used will be written here.
*
* Returns:
*
* 0, with *psize set to the amount of data written, if everything OK
*
* gs_error_rangecheck, with *psize set to the size of buffer required,
* if *psize was not large enough
*
* < 0, != gs_error_rangecheck, in the event of some other error; in this
* case *psize is not changed.
*/
int
gx_dc_write_color(
gx_color_index color,
const gx_device * dev,
byte * pdata,
uint * psize )
{
int num_bytes; /* NB: +8, not +7 */
/* gx_no_color_index is encoded as a single byte */
if (color == gx_no_color_index) {
num_bytes = 1;
} else {
num_bytes = sizeof(gx_color_index) + 1;
}
/* check for adequate space */
if (*psize < num_bytes) {
uint x = *psize;
*psize = num_bytes;
if (x != 0)
return_error(gs_error_rangecheck);
return gs_error_rangecheck;
}
*psize = num_bytes;
/* gx_no_color_index is a single byte of 0xff */
if (color == gx_no_color_index) {
*psize = 1;
*pdata = 0xff;
} else {
while (--num_bytes >= 0) {
pdata[num_bytes] = color & 0xff;
color >>= 8;
}
}
return 0;
}
/*
* Utility to reconstruct device color from its serial representation.
*
* Operands:
*
* pcolor pointer to the location in which to write the
* reconstucted color
*
* dev pointer to the current device, used to retrieve process
* color model information
*
* pdata pointer to the buffer to be read
*
* size size of the buffer to be read; this is expected to be
* large enough for the full color
*
* Returns: # of bytes read, or < 0 in the event of an error
*/
int
gx_dc_read_color(
gx_color_index * pcolor,
const gx_device * dev,
const byte * pdata,
int size )
{
gx_color_index color = 0;
int i, num_bytes;
/* check that enough data has been provided */
if (size < 1 || (pdata[0] != 0xff && size < sizeof(gx_color_index)))
return_error(gs_error_rangecheck);
/* check of gx_no_color_index */
if (pdata[0] == 0xff) {
*pcolor = gx_no_color_index;
return 1;
} else {
num_bytes = sizeof(gx_color_index) + 1;
}
/* num_bytes > ARCH_SIZEOF_COLOR_INDEX, discard first byte */
for (i = 0; i < num_bytes; i++)
color = (color << 8) | pdata[i];
*pcolor = color;
return num_bytes;
}
|