1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id: gdevdrop.c 10497 2009-12-12 23:05:18Z ray $ */
/* Default and device-independent RasterOp algorithms */
#include "memory_.h"
#include "gx.h"
#include "gsbittab.h"
#include "gserrors.h"
#include "gsropt.h"
#include "gxcindex.h"
#include "gxdcolor.h"
#include "gxdevice.h"
#include "gxdevmem.h"
#include "gxdevrop.h"
#include "gxgetbit.h"
#include "gdevmem.h" /* for mem_default_strip_copy_rop prototype */
#include "gdevmrop.h"
/*
* Define the maximum amount of space we are willing to allocate for a
* multiple-row RasterOp buffer. (We are always willing to allocate
* one row, no matter how wide.)
*/
static const uint max_rop_bitmap = 1000;
/* ---------------- Debugging aids ---------------- */
#ifdef DEBUG
void
trace_copy_rop(const char *cname, gx_device * dev,
const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_strip_bitmap * textures,
const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y, gs_logical_operation_t lop)
{
dlprintf4("%s: dev=0x%lx(%s) depth=%d\n",
cname, (ulong) dev, dev->dname, dev->color_info.depth);
dlprintf4(" source data=0x%lx x=%d raster=%u id=%lu colors=",
(ulong) sdata, sourcex, sraster, (ulong) id);
if (scolors)
dprintf2("(%lu,%lu);\n", scolors[0], scolors[1]);
else
dputs("none;\n");
if (textures)
dlprintf8(" textures=0x%lx size=%dx%d(%dx%d) raster=%u shift=%d(%d)",
(ulong) textures, textures->size.x, textures->size.y,
textures->rep_width, textures->rep_height,
textures->raster, textures->shift, textures->rep_shift);
else
dlputs(" textures=none");
if (tcolors)
dprintf2(" colors=(%lu,%lu)\n", tcolors[0], tcolors[1]);
else
dputs(" colors=none\n");
dlprintf7(" rect=(%d,%d),(%d,%d) phase=(%d,%d) op=0x%x\n",
x, y, x + width, y + height, phase_x, phase_y,
(uint) lop);
if (gs_debug_c('B')) {
if (sdata)
debug_dump_bitmap(sdata, sraster, height, "source bits");
if (textures && textures->data)
debug_dump_bitmap(textures->data, textures->raster,
textures->size.y, "textures bits");
}
}
#endif
/* ---------------- Default copy_rop implementations ---------------- */
/*
* The default implementation for non-memory devices uses get_bits_rectangle
* to read out the pixels, the memory device implementation to do the
* operation, and copy_color to write the pixels back.
*/
int
gx_default_strip_copy_rop(gx_device * dev,
const byte * sdata, int sourcex,
uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_strip_bitmap * textures,
const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y,
gs_logical_operation_t lop)
{
int depth = dev->color_info.depth;
gs_memory_t *mem = dev->memory;
const gx_device_memory *mdproto = gdev_mem_device_for_bits(depth);
gx_device_memory *pmdev;
uint draster;
byte *row = 0;
gs_int_rect rect;
int max_height;
int block_height;
int code;
int py;
#ifdef DEBUG
if (gs_debug_c('b'))
trace_copy_rop("gx_default_strip_copy_rop",
dev, sdata, sourcex, sraster,
id, scolors, textures, tcolors,
x, y, width, height, phase_x, phase_y, lop);
#endif
if (mdproto == 0)
return_error(gs_error_rangecheck);
if (sdata == 0) {
fit_fill(dev, x, y, width, height);
} else {
fit_copy(dev, sdata, sourcex, sraster, id, x, y, width, height);
}
draster = bitmap_raster(width * depth);
max_height = max_rop_bitmap / draster;
if (max_height == 0)
max_height = 1;
block_height = min(height, max_height);
gs_make_mem_device_with_copydevice(&pmdev, mdproto, mem, -1, dev);
pmdev->width = width;
pmdev->height = block_height;
pmdev->bitmap_memory = mem;
pmdev->color_info = dev->color_info;
code = (*dev_proc(pmdev, open_device))((gx_device *)pmdev);
pmdev->is_open = true; /* not sure why we need this, but we do. */
if (code < 0)
return code;
if (rop3_uses_D(gs_transparent_rop(lop))) {
row = gs_alloc_bytes(mem, draster * block_height, "copy_rop row");
if (row == 0) {
code = gs_note_error(gs_error_VMerror);
goto out;
}
}
rect.p.x = x;
rect.q.x = x + width;
for (py = y; py < y + height; py += block_height) {
if (block_height > y + height - py)
block_height = y + height - py;
rect.p.y = py;
rect.q.y = py + block_height;
if (row /*uses_d*/) {
gs_get_bits_params_t bit_params;
bit_params.options =
GB_COLORS_NATIVE | GB_ALPHA_NONE | GB_DEPTH_ALL |
GB_PACKING_CHUNKY | GB_RETURN_ALL | GB_ALIGN_STANDARD |
GB_OFFSET_0 | GB_OFFSET_ANY | GB_RASTER_STANDARD;
bit_params.data[0] = row;
bit_params.x_offset = 0;
code = (*dev_proc(dev, get_bits_rectangle))
(dev, &rect, &bit_params, NULL);
if (code < 0)
break;
code = (*dev_proc(pmdev, copy_color))
((gx_device *)pmdev, bit_params.data[0], bit_params.x_offset,
draster, gx_no_bitmap_id, 0, 0, width,
block_height);
if (code < 0)
return code;
}
code = (*dev_proc(pmdev, strip_copy_rop))
((gx_device *)pmdev,
sdata + (py - y) * sraster, sourcex, sraster,
gx_no_bitmap_id, scolors, textures, tcolors,
0, 0, width, block_height, phase_x + x, phase_y + py, lop);
if (code < 0)
break;
code = (*dev_proc(dev, copy_color))
(dev, scan_line_base(pmdev, 0), 0, draster, gx_no_bitmap_id,
x, py, width, block_height);
if (code < 0)
break;
}
out:
gs_free_object(mem, row, "copy_rop row");
gx_device_retain((gx_device *)pmdev, false);
return code;
}
/* ---------------- Default memory device copy_rop ---------------- */
/* Convert color constants to standard RGB representation. */
static void
unpack_colors_to_standard(gx_device * dev, gx_color_index real_colors[2],
const gx_color_index * colors, int depth)
{
int i;
for (i = 0; i < 2; ++i) {
gx_color_value rgb[3];
gx_color_index pixel;
(*dev_proc(dev, map_color_rgb)) (dev, colors[i], rgb);
pixel = gx_color_value_to_byte(rgb[0]);
if (depth > 8) {
pixel = (pixel << 16) +
(gx_color_value_to_byte(rgb[1]) << 8) +
gx_color_value_to_byte(rgb[2]);
}
real_colors[i] = pixel;
}
}
/*
* Convert RGB to the device's native format. We special-case this for
* 1-bit CMYK devices.
*/
static void
pack_cmyk_1bit_from_standard(gx_device * dev, byte * dest, int destx,
const byte * src, int width, int depth,
int src_depth)
{
/*
* This routine is only called if dev_proc(dev, map_cmyk_color) ==
* cmyk_1bit_map_cmyk_color (implying depth == 4) and src_depth == 24.
*/
int bit_x = destx * 4;
byte *dp = dest + (bit_x >> 3);
bool hi = (bit_x & 4) != 0; /* true if last nibble filled was hi */
byte buf = (hi ? *dp & 0xf0 : 0);
const byte *sp = src;
int x;
for (x = width; --x >= 0; sp += 3) {
byte r = sp[0], g = sp[1], b = sp[2];
byte pixel =
(r | g | b ?
(((r >> 4) & 8) | ((g >> 5) & 4) | ((b >> 6) & 2)) ^ 0xe : 1);
if ((hi = !hi))
buf = pixel << 4;
else
*dp++ = buf | pixel;
}
if (hi && width > 0)
*dp = buf | (*dp & 0xf);
}
static gx_color_index
map_rgb_to_color_via_cmyk(gx_device * dev, const gx_color_value rgbcv[])
{
gx_color_value cmykcv[4];
cmykcv[0] = gx_max_color_value - rgbcv[0];
cmykcv[1] = gx_max_color_value - rgbcv[1];
cmykcv[2] = gx_max_color_value - rgbcv[2];
cmykcv[3] = (cmykcv[0] < cmykcv[1] ? min(cmykcv[0], cmykcv[2]) : min(cmykcv[1], cmykcv[2]));
cmykcv[0] -= cmykcv[3];
cmykcv[1] -= cmykcv[3];
cmykcv[2] -= cmykcv[3];
return (*dev_proc(dev, map_cmyk_color)) (dev, cmykcv);
}
static void
pack_from_standard(gx_device * dev, byte * dest, int destx, const byte * src,
int width, int depth, int src_depth)
{
dev_proc_map_rgb_color((*map)) =
(dev->color_info.num_components == 4 ?
map_rgb_to_color_via_cmyk : dev_proc(dev, map_rgb_color));
int bit_x = destx * depth;
byte *dp = dest + (bit_x >> 3);
int shift = (~bit_x & 7) + 1;
byte buf = (shift == 8 ? 0 : *dp & (0xff00 >> shift));
const byte *sp = src;
int x;
for (x = width; --x >= 0;) {
byte vr, vg, vb;
gx_color_index pixel;
byte chop = 0x1;
vr = *sp++;
if (src_depth > 8) {
vg = *sp++;
vb = *sp++;
} else
vb = vg = vr;
/*
* We have to map back to some pixel value, even if the color
* isn't accurate.
*/
for (;;) {
gx_color_value cv[3];
cv[0] = gx_color_value_from_byte(vr);
cv[1] = gx_color_value_from_byte(vg);
cv[2] = gx_color_value_from_byte(vb);
pixel = (*map) (dev, cv);
if (pixel != gx_no_color_index)
break;
/* Reduce the color accuracy and try again. */
vr = (vr >= 0x80 ? vr | chop : vr & ~chop);
vg = (vg >= 0x80 ? vg | chop : vg & ~chop);
vb = (vb >= 0x80 ? vb | chop : vb & ~chop);
chop <<= 1;
}
if ((shift -= depth) >= 0)
buf += (byte)(pixel << shift);
else {
switch (depth) {
default: /* 1, 2, 4, 8 */
*dp++ = buf;
shift += 8;
buf = (byte)(pixel << shift);
break;
case 32:
*dp++ = (byte)(pixel >> 24);
*dp++ = (byte)(pixel >> 16);
case 16:
*dp++ = (byte)(pixel >> 8);
*dp++ = (byte)pixel;
shift = 0;
}
}
}
if (width > 0 && depth <= 8)
*dp = (shift == 0 ? buf : buf + (*dp & ((1 << shift) - 1)));
}
/*
* The default implementation for memory devices uses get_bits_rectangle to
* read out the pixels and convert them to standard (8-bit gray or 24-bit
* RGB) representation, the standard memory device implementation to do the
* operation, pack_from_standard to convert them back to the device
* representation, and copy_color to write the pixels back.
*/
int
mem_default_strip_copy_rop(gx_device * dev,
const byte * sdata, int sourcex,
uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_strip_bitmap * textures,
const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y,
gs_logical_operation_t lop)
{
int depth = dev->color_info.depth;
int rop_depth = (gx_device_has_color(dev) ? 24 : 8);
void (*pack)(gx_device *, byte *, int, const byte *, int, int, int) =
(dev_proc(dev, map_cmyk_color) == cmyk_1bit_map_cmyk_color &&
rop_depth == 24 ? pack_cmyk_1bit_from_standard : pack_from_standard);
const gx_bitmap_format_t no_expand_options =
GB_COLORS_NATIVE | GB_ALPHA_NONE | GB_DEPTH_ALL |
GB_PACKING_CHUNKY | GB_RETURN_ALL | GB_ALIGN_STANDARD |
GB_OFFSET_0 | GB_OFFSET_ANY | GB_RASTER_STANDARD;
const gx_bitmap_format_t expand_options =
(rop_depth > 8 ? GB_COLORS_RGB : GB_COLORS_GRAY) |
GB_ALPHA_NONE | GB_DEPTH_8 |
GB_PACKING_CHUNKY | GB_RETURN_COPY | GB_ALIGN_STANDARD |
GB_OFFSET_0 | GB_RASTER_STANDARD;
gs_memory_t *mem = dev->memory;
const gx_device_memory *mdproto = gdev_mem_device_for_bits(rop_depth);
gx_device_memory mdev;
union { long l; void *p; } mdev_storage[20];
uint row_raster = bitmap_raster(width * depth);
ulong size_from_mem_device;
gs_rop3_t trans_rop = gs_transparent_rop(lop);
bool uses_d = rop3_uses_D(trans_rop);
bool uses_s = rop3_uses_S(trans_rop);
bool uses_t = rop3_uses_T(trans_rop);
bool expand_s, expand_t;
byte *row = 0;
union { long l; void *p; } dest_buffer[16];
byte *source_row = 0;
uint source_row_raster;
union { long l; void *p; } source_buffer[16];
byte *texture_row = 0;
uint texture_row_raster;
union { long l; void *p; } texture_buffer[16];
gx_color_index source_colors[2];
const gx_color_index *real_scolors = scolors;
gx_color_index texture_colors[2];
const gx_color_index *real_tcolors = tcolors;
gx_strip_bitmap rop_texture;
const gx_strip_bitmap *real_texture = textures;
gs_int_rect rect;
gs_get_bits_params_t bit_params;
gs_get_bits_params_t expand_params;
gs_get_bits_params_t no_expand_params;
int max_height;
int block_height, loop_height;
int code;
int py;
/*
* Allocate a temporary row buffer. Free variables: mem, block_height.
* Labels used: out.
*/
#define ALLOC_BUF(buf, prebuf, size, cname)\
BEGIN\
uint num_bytes = (size) * block_height;\
\
if (num_bytes <= sizeof(prebuf))\
buf = (byte *)prebuf;\
else {\
buf = gs_alloc_bytes(mem, num_bytes, cname);\
if (buf == 0) {\
code = gs_note_error(gs_error_VMerror);\
goto out;\
}\
}\
END
#ifdef DEBUG
if (gs_debug_c('b'))
trace_copy_rop("mem_default_strip_copy_rop",
dev, sdata, sourcex, sraster,
id, scolors, textures, tcolors,
x, y, width, height, phase_x, phase_y, lop);
#endif
if (mdproto == 0)
return_error(gs_error_rangecheck);
if (sdata == 0) {
fit_fill(dev, x, y, width, height);
} else {
fit_copy(dev, sdata, sourcex, sraster, id, x, y, width, height);
}
/* Compute max_height conservatively. */
max_height = max_rop_bitmap / (width * rop_depth);
if (max_height == 0)
max_height = 1;
block_height = min(height, max_height);
expand_s = scolors == 0 && uses_s;
expand_t = tcolors == 0 && uses_t;
no_expand_params.options = no_expand_options;
if (expand_t) {
/*
* We don't want to wrap around more than once in Y when
* copying the texture to the intermediate buffer.
*/
if (textures->size.y < block_height)
block_height = textures->size.y;
}
gs_make_mem_device(&mdev, mdproto, mem, -1, NULL);
gx_device_retain((gx_device *)&mdev, true); /* prevent freeing */
mdev.width = width;
mdev.height = block_height;
mdev.color_info.num_components = rop_depth >> 3;
if (gdev_mem_data_size(&mdev, width, block_height, &size_from_mem_device) >= 0 &&
size_from_mem_device <= sizeof(mdev_storage)) {
/* Use the locally allocated storage. */
mdev.base = (byte *)mdev_storage;
if ((code = gdev_mem_bits_size(&mdev, mdev.width, mdev.height, &size_from_mem_device)) < 0)
return code;
mdev.line_ptrs = (byte **) (mdev.base + size_from_mem_device);
} else {
mdev.bitmap_memory = mem;
}
code = (*dev_proc(&mdev, open_device))((gx_device *)&mdev);
if (code < 0)
return code;
ALLOC_BUF(row, dest_buffer, row_raster, "copy_rop row");
/* We may need intermediate buffers for all 3 operands. */
if (expand_s) {
source_row_raster = bitmap_raster(width * rop_depth);
ALLOC_BUF(source_row, source_buffer, source_row_raster,
"copy_rop source_row");
}
if (scolors && uses_s) {
unpack_colors_to_standard(dev, source_colors, scolors, rop_depth);
real_scolors = source_colors;
}
if (expand_t) {
texture_row_raster = bitmap_raster(textures->rep_width * rop_depth);
ALLOC_BUF(texture_row, texture_buffer, texture_row_raster,
"copy_rop texture_row");
rop_texture = *textures;
rop_texture.data = texture_row;
rop_texture.raster = texture_row_raster;
rop_texture.size.x = rop_texture.rep_width;
rop_texture.id = gs_no_bitmap_id;
real_texture = &rop_texture;
if (rop_texture.size.y > rop_texture.rep_height)
rop_texture.size.y = rop_texture.rep_height; /* we only allocated one row_raster, no reps */
}
if (tcolors && uses_t) {
unpack_colors_to_standard(dev, texture_colors, tcolors, rop_depth);
real_tcolors = texture_colors;
}
expand_params.options = expand_options;
expand_params.x_offset = 0;
rect.p.x = x;
rect.q.x = x + width;
for (py = y; py < y + height; py += loop_height) {
int sx = sourcex;
const byte *source_data = sdata + (py - y) * sraster;
uint source_raster = sraster;
if (block_height > y + height - py)
block_height = y + height - py;
rect.p.y = py;
if (expand_t) {
int rep_y = (phase_y + py) % rop_texture.rep_height;
loop_height = min(block_height, rop_texture.size.y - rep_y);
rect.q.y = py + loop_height;
expand_params.data[0] = texture_row;
gx_get_bits_copy(dev, 0, textures->rep_width, loop_height,
&expand_params, &no_expand_params,
textures->data + rep_y * textures->raster,
textures->raster);
/*
* Compensate for the addition of rep_y * raster
* in the subsidiary strip_copy_rop call.
*/
rop_texture.data = texture_row - rep_y * rop_texture.raster;
} else {
loop_height = block_height;
rect.q.y = py + block_height;
}
if (uses_d) {
bit_params.options = expand_options;
bit_params.data[0] = scan_line_base(&mdev, 0);
bit_params.x_offset = 0;
code = (*dev_proc(dev, get_bits_rectangle))
(dev, &rect, &bit_params, NULL);
if (code < 0)
break;
}
/* Convert the source and texture to standard format. */
if (expand_s) {
expand_params.data[0] = source_row;
gx_get_bits_copy(dev, sx, width, loop_height, &expand_params,
&no_expand_params, source_data, sraster);
sx = 0;
source_data = source_row;
source_raster = source_row_raster;
}
code = (*dev_proc(&mdev, strip_copy_rop))
((gx_device *)&mdev, source_data, sx, source_raster,
gx_no_bitmap_id, real_scolors, real_texture, real_tcolors,
0, 0, width, loop_height, phase_x + x, phase_y + py, lop);
if (code < 0)
break;
{
/*
* Convert the result back to the device's format. We know
* the device is a memory device, so we can store the result
* directly into its scan lines.
*/
int i;
const byte *unpacked = scan_line_base(&mdev, 0);
for (i = 0; i < loop_height; unpacked += mdev.raster, ++i) {
byte *packed = scan_line_base((gx_device_memory *)dev, py + i);
pack(dev, packed, x, unpacked, width, depth, rop_depth);
}
}
}
out:
if (texture_row != 0 && texture_row != (byte *)texture_buffer)
gs_free_object(mem, texture_row, "copy_rop texture_row");
if (source_row != 0 && source_row != (byte *)source_buffer)
gs_free_object(mem, source_row, "copy_rop source_row");
if (row != 0 && row != (byte *)dest_buffer)
gs_free_object(mem, row, "copy_rop row");
(*dev_proc(&mdev, close_device)) ((gx_device *) & mdev);
return code;
}
/* ------ Implementation of related functions ------ */
int
gx_default_copy_rop(gx_device * dev,
const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_tile_bitmap * texture, const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y, gs_logical_operation_t lop)
{
const gx_strip_bitmap *textures;
gx_strip_bitmap tiles;
if (texture == 0)
textures = 0;
else {
*(gx_tile_bitmap *) & tiles = *texture;
tiles.rep_shift = tiles.shift = 0;
textures = &tiles;
}
return (*dev_proc(dev, strip_copy_rop))
(dev, sdata, sourcex, sraster, id, scolors, textures, tcolors,
x, y, width, height, phase_x, phase_y, lop);
}
int
gx_copy_rop_unaligned(gx_device * dev,
const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_tile_bitmap * texture, const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y, gs_logical_operation_t lop)
{
const gx_strip_bitmap *textures;
gx_strip_bitmap tiles;
if (texture == 0)
textures = 0;
else {
*(gx_tile_bitmap *) & tiles = *texture;
tiles.rep_shift = tiles.shift = 0;
textures = &tiles;
}
return gx_strip_copy_rop_unaligned
(dev, sdata, sourcex, sraster, id, scolors, textures, tcolors,
x, y, width, height, phase_x, phase_y, lop);
}
int
gx_strip_copy_rop_unaligned(gx_device * dev,
const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id,
const gx_color_index * scolors,
const gx_strip_bitmap * textures, const gx_color_index * tcolors,
int x, int y, int width, int height,
int phase_x, int phase_y, gs_logical_operation_t lop)
{
dev_proc_strip_copy_rop((*copy_rop)) = dev_proc(dev, strip_copy_rop);
int depth = (scolors == 0 ? dev->color_info.depth : 1);
int step = sraster & (align_bitmap_mod - 1);
/* Adjust the origin. */
if (sdata != 0) {
uint offset =
(uint) (sdata - (const byte *)0) & (align_bitmap_mod - 1);
/* See copy_color above re the following statement. */
if (depth == 24)
offset += (offset % 3) *
(align_bitmap_mod * (3 - (align_bitmap_mod % 3)));
sdata -= offset;
sourcex += (offset << 3) / depth;
}
/* Adjust the raster. */
if (!step || sdata == 0 ||
(scolors != 0 && scolors[0] == scolors[1])
) { /* No adjustment needed. */
return (*copy_rop) (dev, sdata, sourcex, sraster, id, scolors,
textures, tcolors, x, y, width, height,
phase_x, phase_y, lop);
}
/* Do the transfer one scan line at a time. */
{
const byte *p = sdata;
int d = sourcex;
int dstep = (step << 3) / depth;
int code = 0;
int i;
for (i = 0; i < height && code >= 0;
++i, p += sraster - step, d += dstep
)
code = (*copy_rop) (dev, p, d, sraster, gx_no_bitmap_id, scolors,
textures, tcolors, x, y + i, width, 1,
phase_x, phase_y, lop);
return code;
}
}
/* ---------------- Internal routines ---------------- */
/* Compute the effective RasterOp for the 1-bit case, */
/* taking transparency into account. */
gs_rop3_t
gs_transparent_rop(gs_logical_operation_t lop)
{
gs_rop3_t rop = lop_rop(lop);
/*
* The algorithm for computing an effective RasterOp is presented,
* albeit obfuscated, in the H-P PCL5 technical documentation.
* Define So ("source opaque") and Po ("pattern opaque") as masks
* that have 1-bits precisely where the source or pattern
* respectively are not white (transparent).
* One applies the original RasterOp to compute an intermediate
* result R, and then computes the final result as
* (R & M) | (D & ~M) where M depends on transparencies as follows:
* s_tr p_tr M
* 0 0 1
* 0 1 ~So | Po (? Po ?)
* 1 0 So
* 1 1 So & Po
* The s_tr = 0, p_tr = 1 case seems wrong, but it's clearly
* specified that way in the "PCL 5 Color Technical Reference
* Manual."
*
* In the 1-bit case, So = ~S and Po = ~P, so we can apply the
* above table directly.
*/
#define So rop3_not(rop3_S)
#define Po rop3_not(rop3_T)
#ifdef TRANSPARENCY_PER_H_P
/*
* Believe it or not, MPo depends on S in this case even if the original
* RasterOp didn't depend on S.
*/
# define MPo (rop3_not(So) | Po)
#else
# define MPo Po
#endif
/*
* If the operation doesn't use S or T, we must disregard the
* corresponding transparency flag.
*/
#define source_transparent ((lop & lop_S_transparent) && rop3_uses_S(rop))
#define pattern_transparent ((lop & lop_T_transparent) && rop3_uses_T(rop))
gs_rop3_t mask =
(source_transparent ?
(pattern_transparent ? So & Po : So) :
(pattern_transparent ? MPo : rop3_1));
#undef MPo
return (rop & mask) | (rop3_D & ~mask);
}
|