1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id: zdouble.c 9043 2008-08-28 22:48:19Z giles $ */
/* Double-precision floating point arithmetic operators */
#include "math_.h"
#include "memory_.h"
#include "string_.h"
#include "ctype_.h"
#include "ghost.h"
#include "gxfarith.h"
#include "oper.h"
#include "store.h"
/*
* Thanks to Jean-Pierre Demailly of the Institut Fourier of the
* Universit\'e de Grenoble I <demailly@fourier.grenet.fr> for proposing
* this package and for arranging the funding for its creation.
*
* These operators work with doubles represented as 8-byte strings. When
* applicable, they write their result into a string supplied as an argument.
* They also accept ints and reals as arguments.
*/
/* Forward references */
static int double_params_result(os_ptr, int, double *);
static int double_params(os_ptr, int, double *);
static int double_result(i_ctx_t *, int, double);
static int double_unary(i_ctx_t *, double (*)(double));
#define dbegin_unary()\
os_ptr op = osp;\
double num;\
int code = double_params_result(op, 1, &num);\
\
if ( code < 0 )\
return code
#define dbegin_binary()\
os_ptr op = osp;\
double num[2];\
int code = double_params_result(op, 2, num);\
\
if ( code < 0 )\
return code
/* ------ Arithmetic ------ */
/* <dnum1> <dnum2> <dresult> .dadd <dresult> */
static int
zdadd(i_ctx_t *i_ctx_p)
{
dbegin_binary();
return double_result(i_ctx_p, 2, num[0] + num[1]);
}
/* <dnum1> <dnum2> <dresult> .ddiv <dresult> */
static int
zddiv(i_ctx_t *i_ctx_p)
{
dbegin_binary();
if (num[1] == 0.0)
return_error(e_undefinedresult);
return double_result(i_ctx_p, 2, num[0] / num[1]);
}
/* <dnum1> <dnum2> <dresult> .dmul <dresult> */
static int
zdmul(i_ctx_t *i_ctx_p)
{
dbegin_binary();
return double_result(i_ctx_p, 2, num[0] * num[1]);
}
/* <dnum1> <dnum2> <dresult> .dsub <dresult> */
static int
zdsub(i_ctx_t *i_ctx_p)
{
dbegin_binary();
return double_result(i_ctx_p, 2, num[0] - num[1]);
}
/* ------ Simple functions ------ */
/* <dnum> <dresult> .dabs <dresult> */
static int
zdabs(i_ctx_t *i_ctx_p)
{
return double_unary(i_ctx_p, fabs);
}
/* <dnum> <dresult> .dceiling <dresult> */
static int
zdceiling(i_ctx_t *i_ctx_p)
{
return double_unary(i_ctx_p, ceil);
}
/* <dnum> <dresult> .dfloor <dresult> */
static int
zdfloor(i_ctx_t *i_ctx_p)
{
return double_unary(i_ctx_p, floor);
}
/* <dnum> <dresult> .dneg <dresult> */
static int
zdneg(i_ctx_t *i_ctx_p)
{
dbegin_unary();
return double_result(i_ctx_p, 1, -num);
}
/* <dnum> <dresult> .dround <dresult> */
static int
zdround(i_ctx_t *i_ctx_p)
{
dbegin_unary();
return double_result(i_ctx_p, 1, floor(num + 0.5));
}
/* <dnum> <dresult> .dsqrt <dresult> */
static int
zdsqrt(i_ctx_t *i_ctx_p)
{
dbegin_unary();
if (num < 0.0)
return_error(e_rangecheck);
return double_result(i_ctx_p, 1, sqrt(num));
}
/* <dnum> <dresult> .dtruncate <dresult> */
static int
zdtruncate(i_ctx_t *i_ctx_p)
{
dbegin_unary();
return double_result(i_ctx_p, 1, (num < 0 ? ceil(num) : floor(num)));
}
/* ------ Transcendental functions ------ */
static int
darc(i_ctx_t *i_ctx_p, double (*afunc)(double))
{
dbegin_unary();
return double_result(i_ctx_p, 1, (*afunc)(num) * radians_to_degrees);
}
/* <dnum> <dresult> .darccos <dresult> */
static int
zdarccos(i_ctx_t *i_ctx_p)
{
return darc(i_ctx_p, acos);
}
/* <dnum> <dresult> .darcsin <dresult> */
static int
zdarcsin(i_ctx_t *i_ctx_p)
{
return darc(i_ctx_p, asin);
}
/* <dnum> <ddenom> <dresult> .datan <dresult> */
static int
zdatan(i_ctx_t *i_ctx_p)
{
double result;
dbegin_binary();
if (num[0] == 0) { /* on X-axis, special case */
if (num[1] == 0)
return_error(e_undefinedresult);
result = (num[1] < 0 ? 180 : 0);
} else {
result = atan2(num[0], num[1]) * radians_to_degrees;
if (result < 0)
result += 360;
}
return double_result(i_ctx_p, 2, result);
}
/* <dnum> <dresult> .dcos <dresult> */
static int
zdcos(i_ctx_t *i_ctx_p)
{
return double_unary(i_ctx_p, gs_cos_degrees);
}
/* <dbase> <dexponent> <dresult> .dexp <dresult> */
static int
zdexp(i_ctx_t *i_ctx_p)
{
double ipart;
dbegin_binary();
if (num[0] == 0.0 && num[1] == 0.0)
return_error(e_undefinedresult);
if (num[0] < 0.0 && modf(num[1], &ipart) != 0.0)
return_error(e_undefinedresult);
return double_result(i_ctx_p, 2, pow(num[0], num[1]));
}
static int
dlog(i_ctx_t *i_ctx_p, double (*lfunc)(double))
{
dbegin_unary();
if (num <= 0.0)
return_error(e_rangecheck);
return double_result(i_ctx_p, 1, (*lfunc)(num));
}
/* <dposnum> <dresult> .dln <dresult> */
static int
zdln(i_ctx_t *i_ctx_p)
{
return dlog(i_ctx_p, log);
}
/* <dposnum> <dresult> .dlog <dresult> */
static int
zdlog(i_ctx_t *i_ctx_p)
{
return dlog(i_ctx_p, log10);
}
/* <dnum> <dresult> .dsin <dresult> */
static int
zdsin(i_ctx_t *i_ctx_p)
{
return double_unary(i_ctx_p, gs_sin_degrees);
}
/* ------ Comparison ------ */
static int
dcompare(i_ctx_t *i_ctx_p, int mask)
{
os_ptr op = osp;
double num[2];
int code = double_params(op, 2, num);
if (code < 0)
return code;
make_bool(op - 1,
(mask & (num[0] < num[1] ? 1 : num[0] > num[1] ? 4 : 2))
!= 0);
pop(1);
return 0;
}
/* <dnum1> <dnum2> .deq <bool> */
static int
zdeq(i_ctx_t *i_ctx_p)
{
return dcompare(i_ctx_p, 2);
}
/* <dnum1> <dnum2> .dge <bool> */
static int
zdge(i_ctx_t *i_ctx_p)
{
return dcompare(i_ctx_p, 6);
}
/* <dnum1> <dnum2> .dgt <bool> */
static int
zdgt(i_ctx_t *i_ctx_p)
{
return dcompare(i_ctx_p, 4);
}
/* <dnum1> <dnum2> .dle <bool> */
static int
zdle(i_ctx_t *i_ctx_p)
{
return dcompare(i_ctx_p, 3);
}
/* <dnum1> <dnum2> .dlt <bool> */
static int
zdlt(i_ctx_t *i_ctx_p)
{
return dcompare(i_ctx_p, 1);
}
/* <dnum1> <dnum2> .dne <bool> */
static int
zdne(i_ctx_t *i_ctx_p)
{
return dcompare(i_ctx_p, 5);
}
/* ------ Conversion ------ */
/* Take the easy way out.... */
#define MAX_CHARS 50
/* <dnum> <dresult> .cvd <dresult> */
static int
zcvd(i_ctx_t *i_ctx_p)
{
dbegin_unary();
return double_result(i_ctx_p, 1, num);
}
/* <string> <dresult> .cvsd <dresult> */
static int
zcvsd(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
int code = double_params_result(op, 0, NULL);
double num;
char dot, buf[MAX_CHARS + 2];
char *str = buf;
uint len;
char end;
if (code < 0)
return code;
check_read_type(op[-1], t_string);
len = r_size(op - 1);
if (len > MAX_CHARS)
return_error(e_limitcheck);
sprintf(buf, "%f", 1.5);
dot = buf[1]; /* locale-dependent */
memcpy(str, op[-1].value.bytes, len);
/*
* We check syntax in the following way: we remove whitespace,
* verify that the string contains only [0123456789+-.dDeE],
* then append a $ and then check that the next character after
* the scanned number is a $.
*/
while (len > 0 && isspace(*str))
++str, --len;
while (len > 0 && isspace(str[len - 1]))
--len;
str[len] = 0;
if (strspn(str, "0123456789+-.dDeE") != len)
return_error(e_syntaxerror);
strcat(str, "$");
if (dot != '.') {
char *pdot = strchr(str, '.');
if (pdot)
*pdot = dot;
}
if (sscanf(str, "%lf%c", &num, &end) != 2 || end != '$')
return_error(e_syntaxerror);
return double_result(i_ctx_p, 1, num);
}
/* <dnum> .dcvi <int> */
static int
zdcvi(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
#define alt_min_long (-1L << (arch_sizeof_long * 8 - 1))
#define alt_max_long (~(alt_min_long))
static const double min_int_real = (alt_min_long * 1.0 - 1);
static const double max_int_real = (alt_max_long * 1.0 + 1);
double num;
int code = double_params(op, 1, &num);
if (code < 0)
return code;
if (num < min_int_real || num > max_int_real)
return_error(e_rangecheck);
make_int(op, (long)num); /* truncates toward 0 */
return 0;
}
/* <dnum> .dcvr <real> */
static int
zdcvr(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
#define b30 (0x40000000L * 1.0)
#define max_mag (0xffffff * b30 * b30 * b30 * 0x4000)
static const float min_real = -max_mag;
static const float max_real = max_mag;
#undef b30
#undef max_mag
double num;
int code = double_params(op, 1, &num);
if (code < 0)
return code;
if (num < min_real || num > max_real)
return_error(e_rangecheck);
make_real(op, (float)num);
return 0;
}
/* <dnum> <string> .dcvs <substring> */
static int
zdcvs(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
double num;
int code = double_params(op - 1, 1, &num);
char dot, str[MAX_CHARS + 1];
int len;
if (code < 0)
return code;
check_write_type(*op, t_string);
sprintf(str, "%f", 1.5);
dot = str[1]; /* locale-dependent */
/*
* To get fully accurate output results for IEEE double-
* precision floats (53 bits of mantissa), the ANSI
* %g default of 6 digits is not enough; 16 are needed.
* Unfortunately, using %.16g produces unfortunate artifacts such as
* 1.2 printing as 1.200000000000005. Therefore, we print using %g,
* and if the result isn't accurate enough, print again
* using %.16g.
*/
{
double scanned;
sprintf(str, "%g", num);
sscanf(str, "%lf", &scanned);
if (scanned != num)
sprintf(str, "%.16g", num);
}
len = strlen(str);
if (len > r_size(op))
return_error(e_rangecheck);
/* Juggling locales isn't thread-safe. Posix me harder. */
if (dot != '.') {
char *pdot = strchr(str, dot);
if (pdot)
*pdot = '.';
}
memcpy(op->value.bytes, str, len);
op[-1] = *op;
r_set_size(op - 1, len);
pop(1);
return 0;
}
/* ------ Initialization table ------ */
/* We need to split the table because of the 16-element limit. */
const op_def zdouble1_op_defs[] = {
/* Arithmetic */
{"3.dadd", zdadd},
{"3.ddiv", zddiv},
{"3.dmul", zdmul},
{"3.dsub", zdsub},
/* Comparison */
{"2.deq", zdeq},
{"2.dge", zdge},
{"2.dgt", zdgt},
{"2.dle", zdle},
{"2.dlt", zdlt},
{"2.dne", zdne},
/* Conversion */
{"2.cvd", zcvd},
{"2.cvsd", zcvsd},
{"1.dcvi", zdcvi},
{"1.dcvr", zdcvr},
{"2.dcvs", zdcvs},
op_def_end(0)
};
const op_def zdouble2_op_defs[] = {
/* Simple functions */
{"2.dabs", zdabs},
{"2.dceiling", zdceiling},
{"2.dfloor", zdfloor},
{"2.dneg", zdneg},
{"2.dround", zdround},
{"2.dsqrt", zdsqrt},
{"2.dtruncate", zdtruncate},
/* Transcendental functions */
{"2.darccos", zdarccos},
{"2.darcsin", zdarcsin},
{"3.datan", zdatan},
{"2.dcos", zdcos},
{"3.dexp", zdexp},
{"2.dln", zdln},
{"2.dlog", zdlog},
{"2.dsin", zdsin},
op_def_end(0)
};
/* ------ Internal procedures ------ */
/* Get some double arguments. */
static int
double_params(os_ptr op, int count, double *pval)
{
pval += count;
while (--count >= 0) {
switch (r_type(op)) {
case t_real:
*--pval = op->value.realval;
break;
case t_integer:
*--pval = op->value.intval;
break;
case t_string:
if (!r_has_attr(op, a_read) ||
r_size(op) != sizeof(double)
)
return_error(e_typecheck);
--pval;
memcpy(pval, op->value.bytes, sizeof(double));
break;
case t__invalid:
return_error(e_stackunderflow);
default:
return_error(e_typecheck);
}
op--;
}
return 0;
}
/* Get some double arguments, and check for a double result. */
static int
double_params_result(os_ptr op, int count, double *pval)
{
check_write_type(*op, t_string);
if (r_size(op) != sizeof(double))
return_error(e_typecheck);
return double_params(op - 1, count, pval);
}
/* Return a double result. */
static int
double_result(i_ctx_t *i_ctx_p, int count, double result)
{
os_ptr op = osp;
os_ptr op1 = op - count;
ref_assign_inline(op1, op);
memcpy(op1->value.bytes, &result, sizeof(double));
pop(count);
return 0;
}
/* Apply a unary function to a double operand. */
static int
double_unary(i_ctx_t *i_ctx_p, double (*func)(double))
{
dbegin_unary();
return double_result(i_ctx_p, 1, (*func)(num));
}
|