File: gdevdsha.c

package info (click to toggle)
ghostscript 8.71~dfsg2-9%2Bsqueeze2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 79,924 kB
  • ctags: 80,691
  • sloc: ansic: 501,432; sh: 25,689; python: 4,853; cpp: 3,633; perl: 3,597; tcl: 1,480; makefile: 1,187; lisp: 407; asm: 284; xml: 263; awk: 66; csh: 17; yacc: 15
file content (162 lines) | stat: -rw-r--r-- 5,006 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id: gdevdsha.c 9062 2008-09-03 11:42:35Z leonardo $ */
/* Default shading drawing device procedures. */

#include "gx.h"
#include "gserrors.h"
#include "gxdevice.h"
#include "gxcindex.h"
#include "vdtrace.h"

int 
gx_default_fill_linear_color_scanline(gx_device *dev, const gs_fill_attributes *fa,
	int i0, int j, int w,
	const frac31 *c0, const int32_t *c0f, const int32_t *cg_num, int32_t cg_den)
{
    /* This default implementation decomposes the area into constant color rectangles.
       Devices may supply optimized implementations with
       the inversed nesting of the i,k cicles,
       i.e. with enumerating planes first, with a direct writing to the raster,
       and with a fixed bits per component.
     */
    frac31 c[GX_DEVICE_COLOR_MAX_COMPONENTS];
    ulong f[GX_DEVICE_COLOR_MAX_COMPONENTS];
    int i, i1 = i0 + w, bi = i0, k;
    gx_color_index ci0 = 0, ci1;
    const gx_device_color_info *cinfo = &dev->color_info;
    int n = cinfo->num_components;
    int si, ei, di, code;

    if (j < fixed2int(fa->clip->p.y) ||
	    j > fixed2int_ceiling(fa->clip->q.y)) /* Must be compatible to the clipping logic. */
	return 0;
    for (k = 0; k < n; k++) {
	int shift = cinfo->comp_shift[k];
	int bits = cinfo->comp_bits[k];

	c[k] = c0[k];
	f[k] = c0f[k];
	ci0 |= (gx_color_index)(c[k] >> (sizeof(c[k]) * 8 - 1 - bits)) << shift;
    }
    for (i = i0 + 1, di = 1; i < i1; i += di) {
	if (di == 1) {
	    /* Advance colors by 1 pixel. */
	    ci1 = 0;
	    for (k = 0; k < n; k++) {
		int shift = cinfo->comp_shift[k];
		int bits = cinfo->comp_bits[k];

		if (cg_num[k]) {
		    int32_t m = f[k] + cg_num[k];

		    c[k] += m / cg_den;
		    m -= m / cg_den * cg_den;
		    if (m < 0) {
			c[k]--;
			m += cg_den;
		    }
		    f[k] = m;
		}
		ci1 |= (gx_color_index)(c[k] >> (sizeof(c[k]) * 8 - 1 - bits)) << shift;
	    }
	} else {
	    /* Advance colors by di pixels. */
	    ci1 = 0;
	    for (k = 0; k < n; k++) {
		int shift = cinfo->comp_shift[k];
		int bits = cinfo->comp_bits[k];

		if (cg_num[k]) {
		    int64_t M = f[k] + (int64_t)cg_num[k] * di;
		    int32_t m;

		    c[k] += (frac31)(M / cg_den);
		    m = (int32_t)(M - M / cg_den * cg_den);
		    if (m < 0) {
			c[k]--;
			m += cg_den;
		    }
		    f[k] = m;
		}
		ci1 |= (gx_color_index)(c[k] >> (sizeof(c[k]) * 8 - 1 - bits)) << shift;
	    }
	}
	if (ci1 != ci0) {
	    si = max(bi, fixed2int(fa->clip->p.x));	    /* Must be compatible to the clipping logic. */
	    ei = min(i, fixed2int_ceiling(fa->clip->q.x));  /* Must be compatible to the clipping logic. */
	    if (si < ei) {
		if (fa->swap_axes) {
		    vd_rect(int2fixed(j), int2fixed(si), int2fixed(j + 1), int2fixed(ei), 1, (ulong)ci0);
		    code = dev_proc(dev, fill_rectangle)(dev, j, si, 1, ei - si, ci0);
		} else {
		    vd_rect(int2fixed(si), int2fixed(j), int2fixed(ei), int2fixed(j + 1), 1, (ulong)ci0);
		    code = dev_proc(dev, fill_rectangle)(dev, si, j, ei - si, 1, ci0);
		}
		if (code < 0)
		    return code;
	    }
	    bi = i;
	    ci0 = ci1;
	    di = 1;
	} else if (i == i1) {
	    i++;
	    break;
	} else {
	    /* Compute a color change pixel analitically. */
	    di = i1 - i;
	    for (k = 0; k < n; k++) {
		int32_t a;
		int64_t x;
		frac31 v = 1 << (31 - cinfo->comp_bits[k]); /* Color index precision in frac31. */
		frac31 u = c[k] & (v - 1);

		if (cg_num[k] == 0) {
		    /* No change. */
		    continue;
		} if (cg_num[k] > 0) {
		    /* Solve[(f[k] + cg_num[k]*x)/cg_den == v - u, x]  */
		    a = v - u;
		} else {
		    /* Solve[(f[k] + cg_num[k]*x)/cg_den == - u - 1, x]  */
		    a = -u - 1;
		}
		x = ((int64_t)a * cg_den - f[k]) / cg_num[k];
		if (i + x >= i1)
		    continue;
		else if (x < 0)
		    return_error(gs_error_unregistered); /* Must not happen. */
		else if (di > (int)x) {
		    di = (int)x;
		    if (di <= 1) {
			di = 1;
			break;
		    }
		}
	    }
	}
    }
    si = max(bi, fixed2int(fa->clip->p.x));	    /* Must be compatible to the clipping logic. */
    ei = min(i, fixed2int_ceiling(fa->clip->q.x));  /* Must be compatible to the clipping logic. */
    if (si < ei) {
	if (fa->swap_axes) {
	    vd_rect(int2fixed(j), int2fixed(si), int2fixed(j + 1), int2fixed(ei), 1, (ulong)ci0);
	    return dev_proc(dev, fill_rectangle)(dev, j, si, 1, ei - si, ci0);
	} else {
	    vd_rect(int2fixed(si), int2fixed(j), int2fixed(ei), int2fixed(j + 1), 1, (ulong)ci0);
	    return dev_proc(dev, fill_rectangle)(dev, si, j, ei - si, 1, ci0);
	}
    }
    return 0;
}