File: gsalphac.c

package info (click to toggle)
ghostscript 8.71~dfsg2-9+squeeze1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 79,896 kB
  • ctags: 80,654
  • sloc: ansic: 501,432; sh: 25,689; python: 4,853; cpp: 3,633; perl: 3,597; tcl: 1,480; makefile: 1,187; lisp: 407; asm: 284; xml: 263; awk: 66; csh: 17; yacc: 15
file content (833 lines) | stat: -rw-r--r-- 25,770 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id: gsalphac.c 8585 2008-03-03 16:01:12Z leonardo $ */
/* Alpha-compositing implementation */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsalphac.h"
#include "gsiparam.h"		/* for gs_image_alpha_t */
#include "gsutil.h"		/* for gs_next_ids */
#include "gxalpha.h"
#include "gxcomp.h"
#include "gxdevice.h"
#include "gxgetbit.h"
#include "gxlum.h"

/* ---------------- Internal definitions ---------------- */

/* Define the parameters for a compositing operation. */
typedef struct gs_composite_params_s {
    gs_composite_op_t cop;
    float delta;		/* only for dissolve */
    uint source_alpha;		/* only if !psource->alpha */
    uint source_values[4];	/* only if !psource->data */
} gs_composite_params_t;

/* Define the source or destination for a compositing operation. */
#define pixel_row_fields(elt_type)\
  elt_type *data;\
  int bits_per_value;	/* 1, 2, 4, 8, 12, 16 */\
  int initial_x;\
  gs_image_alpha_t alpha
typedef struct pixel_row_s {
    pixel_row_fields(byte);
} pixel_row_t;
typedef struct const_pixel_row_s {
    pixel_row_fields(const byte);
} const_pixel_row_t;

/*
 * Composite two arrays of (premultiplied) pixel values.  Legal values of
 * values_per_pixel are 1-4, not including alpha.  Note that if pdest->alpha
 * is "none", the alpha value for all destination pixels will be taken as
 * unity, and any operation that could generate alpha values other than
 * unity will return an error.  "Could generate" means that there are
 * possible values of the source and destination alpha values for which the
 * result has non-unity alpha: the error check does not scan the actual
 * alpha data to test whether there are any actual values that would
 * generate a non-unity alpha result.
 */
int composite_values(const pixel_row_t * pdest,
		     const const_pixel_row_t * psource,
		     int values_per_pixel, uint num_pixels,
		     const gs_composite_params_t * pcp);

/* ---------------- Alpha-compositing objects ---------------- */

/*
 * Define which operations can generate non-unity alpha values in 3 of the 4
 * cases of source and destination not having unity alphas.  (This is always
 * possible in the fourth case, both S & D non-unity, except for CLEAR.)  We
 * do this with a bit mask indexed by the operation, counting from the LSB.
 * The name indicates whether S and/or D has non-unity alphas.
 */
#define alpha_out_notS_notD\
  (1<<composite_Dissolve)
#define _alpha_out_either\
  (alpha_out_notS_notD|(1<<composite_Satop)|(1<<composite_Datop)|\
    (1<<composite_Xor)|(1<<composite_PlusD)|(1<<composite_PlusL))
#define alpha_out_S_notD\
  (_alpha_out_either|(1<<composite_Copy)|(1<<composite_Sover)|\
    (1<<composite_Din)|(1<<composite_Dout))
#define alpha_out_notS_D\
  (_alpha_out_either|(1<<composite_Sin)|(1<<composite_Sout)|\
    (1<<composite_Dover)|(1<<composite_Highlight))

/* ------ Object definition and creation ------ */

/* Define alpha-compositing objects. */
static composite_create_default_compositor_proc(c_alpha_create_default_compositor);
static composite_equal_proc(c_alpha_equal);
static composite_write_proc(c_alpha_write);
static composite_read_proc(c_alpha_read);
const gs_composite_type_t gs_composite_alpha_type =
{
    GX_COMPOSITOR_ALPHA,
    {
	c_alpha_create_default_compositor,
	c_alpha_equal,
	c_alpha_write,
	c_alpha_read,
	gx_default_composite_adjust_ctm,
	gx_default_composite_is_closing,
	gx_default_composite_is_friendly,
	gx_default_composite_clist_write_update,
	gx_default_composite_clist_read_update,
	gx_default_composite_get_cropping
    }
};
typedef struct gs_composite_alpha_s {
    gs_composite_common;
    gs_composite_alpha_params_t params;
} gs_composite_alpha_t;

gs_private_st_simple(st_composite_alpha, gs_composite_alpha_t,
		     "gs_composite_alpha_t");

/* Create an alpha-compositing object. */
int
gs_create_composite_alpha(gs_composite_t ** ppcte,
	      const gs_composite_alpha_params_t * params, gs_memory_t * mem)
{
    gs_composite_alpha_t *pcte;

    pcte = gs_alloc_struct(mem, gs_composite_alpha_t, &st_composite_alpha,
			     "gs_create_composite_alpha");
    if (pcte == NULL)
	return_error(gs_error_VMerror);
    pcte->type = &gs_composite_alpha_type;
    pcte->id = gs_next_ids(mem, 1);
    pcte->params = *params;
    pcte->idle = false;
    *ppcte = (gs_composite_t *) pcte;
    return 0;
}

/* ------ Object implementation ------ */

#define pacte ((const gs_composite_alpha_t *)pcte)

static bool
c_alpha_equal(const gs_composite_t * pcte, const gs_composite_t * pcte2)
{
    return (pcte2->type == pcte->type &&
#define pacte2 ((const gs_composite_alpha_t *)pcte2)
	    pacte2->params.op == pacte->params.op &&
	    (pacte->params.op != composite_Dissolve ||
	     pacte2->params.delta == pacte->params.delta));
#undef pacte2
}

static int
c_alpha_write(const gs_composite_t * pcte, byte * data, uint * psize, gx_device_clist_writer *cdev)
{
    uint size = *psize;
    uint used;

    if_debug1('v', "[v]c_alpha_write(%d)\n", pacte->params.op);
    if (pacte->params.op == composite_Dissolve) {
	used = 1 + sizeof(pacte->params.delta);
	if (size < used) {
	    *psize = used;
	    return_error(gs_error_rangecheck);
	}
	memcpy(data + 1, &pacte->params.delta, sizeof(pacte->params.delta));
    } else {
	used = 1;
	if (size < used) {
	    *psize = used;
	    return_error(gs_error_rangecheck);
	}
    }
    *data = (byte) pacte->params.op;
    *psize = used;
    return 0;
}

static int
c_alpha_read(gs_composite_t ** ppcte, const byte * data, uint size,
	     gs_memory_t * mem)
{
    gs_composite_alpha_params_t params;
    int code, nbytes = 1;

    if (size < 1 || *data > composite_op_last)
	return_error(gs_error_rangecheck);
    params.op = *data;
    if_debug1('v', "[v]c_alpha_read(%d)\n", params.op);
    if (params.op == composite_Dissolve) {
	if (size < 1 + sizeof(params.delta))
	    return_error(gs_error_rangecheck);
	memcpy(&params.delta, data + 1, sizeof(params.delta));
	nbytes += sizeof(params.delta);
    }
    code = gs_create_composite_alpha(ppcte, &params, mem);
    return code < 0 ? code : nbytes;
}

/* ---------------- Alpha-compositing device ---------------- */

/* Define the default alpha-compositing device. */
typedef struct gx_device_composite_alpha_s {
    gx_device_forward_common;
    gs_composite_alpha_params_t params;
} gx_device_composite_alpha;

gs_private_st_suffix_add0_final(st_device_composite_alpha,
		     gx_device_composite_alpha, "gx_device_composite_alpha",
    device_c_alpha_enum_ptrs, device_c_alpha_reloc_ptrs, gx_device_finalize,
				st_device_forward);
/* The device descriptor. */
static dev_proc_close_device(dca_close);
static dev_proc_fill_rectangle(dca_fill_rectangle);
static dev_proc_map_rgb_color(dca_map_rgb_color);
static dev_proc_map_color_rgb(dca_map_color_rgb);
static dev_proc_copy_mono(dca_copy_mono);
static dev_proc_copy_color(dca_copy_color);
static dev_proc_map_rgb_alpha_color(dca_map_rgb_alpha_color);
static dev_proc_map_color_rgb_alpha(dca_map_color_rgb_alpha);
static dev_proc_copy_alpha(dca_copy_alpha);
static const gx_device_composite_alpha gs_composite_alpha_device =
{std_device_std_body_open(gx_device_composite_alpha, 0,
			  "alpha compositor", 0, 0, 1, 1),
 {gx_default_open_device,
  gx_forward_get_initial_matrix,
  gx_default_sync_output,
  gx_default_output_page,
  dca_close,
  dca_map_rgb_color,
  dca_map_color_rgb,
  dca_fill_rectangle,
  gx_default_tile_rectangle,
  dca_copy_mono,
  dca_copy_color,
  gx_default_draw_line,
  gx_default_get_bits,
  gx_forward_get_params,
  gx_forward_put_params,
  gx_default_cmyk_map_cmyk_color,	/* only called for CMYK */
  gx_forward_get_xfont_procs,
  gx_forward_get_xfont_device,
  dca_map_rgb_alpha_color,
  gx_forward_get_page_device,
  gx_forward_get_alpha_bits,
  dca_copy_alpha,
  gx_forward_get_band,
  gx_default_copy_rop,
  gx_default_fill_path,
  gx_default_stroke_path,
  gx_default_fill_mask,
  gx_default_fill_trapezoid,
  gx_default_fill_parallelogram,
  gx_default_fill_triangle,
  gx_default_draw_thin_line,
  gx_default_begin_image,
  gx_default_image_data,
  gx_default_end_image,
  gx_default_strip_tile_rectangle,
  gx_default_strip_copy_rop,
  gx_forward_get_clipping_box,
  gx_default_begin_typed_image,
  gx_forward_get_bits_rectangle,
  dca_map_color_rgb_alpha,
  gx_no_create_compositor
 }
};

/* Create an alpha compositor. */
static int
c_alpha_create_default_compositor(const gs_composite_t * pcte,
	   gx_device ** pcdev, gx_device * dev, gs_imager_state * pis,
	   gs_memory_t * mem)
{
    gx_device_composite_alpha *cdev;

    if (pacte->params.op == composite_Copy) {
	/* Just use the original device. */
	*pcdev = dev;
	return 0;
    }
    cdev =
	gs_alloc_struct_immovable(mem, gx_device_composite_alpha,
				  &st_device_composite_alpha,
				  "create default alpha compositor");
    *pcdev = (gx_device *)cdev;
    if (cdev == 0)
	return_error(gs_error_VMerror);
    gx_device_init((gx_device *)cdev,
		   (const gx_device *)&gs_composite_alpha_device, mem, true);
    gx_device_copy_params((gx_device *)cdev, dev);
    /*
     * Set the color_info and depth to be compatible with the target,
     * but using standard chunky color storage, including alpha.
     ****** CURRENTLY ALWAYS USE 8-BIT COLOR ******
     */
    cdev->color_info.depth =
	(dev->color_info.num_components == 4 ? 32 /* CMYK, no alpha */ :
	 (dev->color_info.num_components + 1) * 8);
    cdev->color_info.max_gray = cdev->color_info.max_color = 255;
    /* No halftoning will occur, but we fill these in anyway.... */
    cdev->color_info.dither_grays = cdev->color_info.dither_colors = 256;
    /*
     * We could speed things up a little by tailoring the procedures in
     * the device to the specific num_components, but for simplicity,
     * we'll defer considering that until there is a demonstrated need.
     */
    gx_device_set_target((gx_device_forward *)cdev, dev);
    cdev->params = pacte->params;
    return 0;
}

/* Close the device and free its storage. */
static int
dca_close(gx_device * dev)
{				/*
				 * Finalization will call close again: avoid a recursion loop.
				 */
    set_dev_proc(dev, close_device, gx_default_close_device);
    gs_free_object(dev->memory, dev, "dca_close");
    return 0;
}

/* ------ (RGB) color mapping ------ */

static gx_color_index
dca_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
    return dca_map_rgb_alpha_color(dev, cv[0], cv[1], cv[2], gx_max_color_value);
}
static gx_color_index
dca_map_rgb_alpha_color(gx_device * dev,
	      gx_color_value red, gx_color_value green, gx_color_value blue,
			gx_color_value alpha)
{				/*
				 * We work exclusively with premultiplied color values, so we
				 * have to premultiply the color components by alpha here.
				 */
    byte a = gx_color_value_to_byte(alpha);

#define premult_(c)\
  (((c) * a + gx_max_color_value / 2) / gx_max_color_value)
#ifdef PREMULTIPLY_TOWARDS_WHITE
    byte bias = ~a;

#  define premult(c) (premult_(c) + bias)
#else
#  define premult(c) premult_(c)
#endif
    gx_color_index color;

    if (dev->color_info.num_components == 1) {
	uint lum =
	(red * lum_red_weight + green * lum_green_weight +
	 blue * lum_blue_weight + lum_all_weights / 2) /
	lum_all_weights;

	if (a == 0xff)
	    color = gx_color_value_to_byte(lum);
	else			/* Premultiplication is necessary. */
	    color = premult(lum);
    } else {
	if (a == 0xff)
	    color =
		((uint) gx_color_value_to_byte(red) << 16) +
		((uint) gx_color_value_to_byte(green) << 8) +
		gx_color_value_to_byte(blue);
	else			/* Premultiplication is necessary. */
	    color =
		(premult(red) << 16) + (premult(green) << 8) + premult(blue);
    }
#undef premult
    return (color << 8) + a;
}
static int
dca_map_color_rgb(gx_device * dev, gx_color_index color,
		  gx_color_value prgb[3])
{
    gx_color_value red = gx_color_value_from_byte((byte) (color >> 24));
    byte a = (byte) color;

#define postdiv_(c)\
  (((c) * 0xff + a / 2) / a)
#ifdef PREMULTIPLY_TOWARDS_WHITE
    byte bias = ~a;

#  define postdiv(c) postdiv_(c - bias)
#else
#  define postdiv(c) postdiv_(c)
#endif

    if (dev->color_info.num_components == 1) {
	if (a != 0xff) {
	    /* Undo premultiplication. */
	    if (a == 0)
		red = 0;
	    else
		red = postdiv(red);
	}
	prgb[0] = prgb[1] = prgb[2] = red;
    } else {
	gx_color_value
	    green = gx_color_value_from_byte((byte) (color >> 16)),
	    blue = gx_color_value_from_byte((byte) (color >> 8));

	if (a != 0xff) {
	    /* Undo premultiplication. */
/****** WHAT TO DO ABOUT BIG LOSS OF PRECISION? ******/
	    if (a == 0)
		red = green = blue = 0;
	    else {
		red = postdiv(red);
		green = postdiv(green);
		blue = postdiv(blue);
	    }
	}
	prgb[0] = red, prgb[1] = green, prgb[2] = blue;
    }
#undef postdiv
    return 0;
}
static int
dca_map_color_rgb_alpha(gx_device * dev, gx_color_index color,
			gx_color_value prgba[4])
{
    prgba[3] = gx_color_value_from_byte((byte) color);
    return dca_map_color_rgb(dev, color, prgba);
}

/* ------ Imaging ------ */

static int
dca_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
		   gx_color_index color)
{				/* This is where all the real work gets done! */
    gx_device_composite_alpha *adev = (gx_device_composite_alpha *) dev;
    gx_device *target = adev->target;
    byte *std_row;
    byte *native_row;
    gs_int_rect rect;
    gs_get_bits_params_t std_params, native_params;
    int code = 0;
    int yi;
    gs_composite_params_t cp;
    const_pixel_row_t source;
    pixel_row_t dest;

    fit_fill(dev, x, y, w, h);
    std_row = gs_alloc_bytes(dev->memory,
			     (dev->color_info.depth * w + 7) >> 3,
			     "dca_fill_rectangle(std)");
    native_row = gs_alloc_bytes(dev->memory,
				(target->color_info.depth * w + 7) >> 3,
				"dca_fill_rectangle(native)");
    if (std_row == 0 || native_row == 0) {
	code = gs_note_error(gs_error_VMerror);
	goto out;
    }
    rect.p.x = x, rect.q.x = x + w;
    std_params.options =
	GB_COLORS_NATIVE |
	(GB_ALPHA_LAST | GB_DEPTH_8 | GB_PACKING_CHUNKY |
	 GB_RETURN_COPY | GB_RETURN_POINTER | GB_ALIGN_ANY |
	 GB_OFFSET_0 | GB_OFFSET_ANY | GB_RASTER_STANDARD |
	 GB_RASTER_ANY);
    cp.cop = adev->params.op;
    if (cp.cop == composite_Dissolve)
	cp.delta = adev->params.delta;
    {
	gx_color_value rgba[4];

/****** DOESN'T HANDLE CMYK ******/
	(*dev_proc(dev, map_color_rgb_alpha)) (dev, color, rgba);
	cp.source_values[0] = gx_color_value_to_byte(rgba[0]);
	cp.source_values[1] = gx_color_value_to_byte(rgba[1]);
	cp.source_values[2] = gx_color_value_to_byte(rgba[2]);
	cp.source_alpha = gx_color_value_to_byte(rgba[3]);
    }
    source.data = 0;
    source.bits_per_value = 8;
    source.alpha = gs_image_alpha_none;
    for (yi = y; yi < y + h; ++yi) {
	/* Read a row in standard representation. */
	rect.p.y = yi, rect.q.y = yi + 1;
	std_params.data[0] = std_row;
	code = (*dev_proc(target, get_bits_rectangle))
	    (target, &rect, &std_params, NULL);
	if (code < 0)
	    break;
	/* Do the work. */
	dest.data = std_params.data[0];
	dest.bits_per_value = 8;
	dest.initial_x =
	    (std_params.options & GB_OFFSET_ANY ? std_params.x_offset : 0);
	dest.alpha =
	    (std_params.options & GB_ALPHA_FIRST ? gs_image_alpha_first :
	     std_params.options & GB_ALPHA_LAST ? gs_image_alpha_last :
	     gs_image_alpha_none);
	code = composite_values(&dest, &source,
				dev->color_info.num_components, w, &cp);
	if (code < 0)
	    break;
	if (std_params.data[0] == std_row) {
	    /* Convert the row back to native representation. */
	    /* (Otherwise, we had a direct pointer to device data.) */
	    native_params.options =
		(GB_COLORS_NATIVE | GB_PACKING_CHUNKY | GB_RETURN_COPY |
		 GB_OFFSET_0 | GB_RASTER_ALL | GB_ALIGN_STANDARD);
	    native_params.data[0] = native_row;
	    code = gx_get_bits_copy(target, 0, w, 1, &native_params,
				    &std_params, std_row,
				    0 /* raster is irrelevant */ );
	    if (code < 0)
		break;
	    code = (*dev_proc(target, copy_color))
		(target, native_row, 0, 0 /* raster is irrelevant */ ,
		 gx_no_bitmap_id, x, yi, w, 1);
	    if (code < 0)
		break;
	}
    }
  out:gs_free_object(dev->memory, native_row, "dca_fill_rectangle(native)");
    gs_free_object(dev->memory, std_row, "dca_fill_rectangle(std)");
    return code;
}

static int
dca_copy_mono(gx_device * dev, const byte * data,
	    int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
	      gx_color_index zero, gx_color_index one)
{
/****** TEMPORARY ******/
    return gx_default_copy_mono(dev, data, dx, raster, id, x, y, w, h,
				zero, one);
}

static int
dca_copy_color(gx_device * dev, const byte * data,
	       int dx, int raster, gx_bitmap_id id,
	       int x, int y, int w, int h)
{
/****** TEMPORARY ******/
    return gx_default_copy_color(dev, data, dx, raster, id, x, y, w, h);
}

static int
dca_copy_alpha(gx_device * dev, const byte * data, int data_x,
	   int raster, gx_bitmap_id id, int x, int y, int width, int height,
	       gx_color_index color, int depth)
{
/****** TEMPORARY ******/
    return gx_default_copy_alpha(dev, data, data_x, raster, id, x, y,
				 width, height, color, depth);
}

/*
 * Composite two arrays of (premultiplied) pixel values.
 * See gsdpnext.h for the specification.
 *
 * The current implementation is simple but inefficient.  We'll speed it up
 * later if necessary.
 */
int
composite_values(const pixel_row_t * pdest, const const_pixel_row_t * psource,
   int values_per_pixel, uint num_pixels, const gs_composite_params_t * pcp)
{
    int dest_bpv = pdest->bits_per_value;
    int source_bpv = psource->bits_per_value;

    /*
     * source_alpha_j gives the source component index for the alpha value,
     * if the source has alpha.
     */
    int source_alpha_j =
    (psource->alpha == gs_image_alpha_last ? values_per_pixel :
     psource->alpha == gs_image_alpha_first ? 0 : -1);

    /* dest_alpha_j does the same for the destination. */
    int dest_alpha_j =
    (pdest->alpha == gs_image_alpha_last ? values_per_pixel :
     pdest->alpha == gs_image_alpha_first ? 0 : -1);

    /* dest_vpp is the number of stored destination values. */
    int dest_vpp = values_per_pixel + (dest_alpha_j >= 0);

    /* source_vpp is the number of stored source values. */
    int source_vpp = values_per_pixel + (source_alpha_j >= 0);

    bool constant_colors = psource->data == 0;
    uint highlight_value = (1 << dest_bpv) - 1;

    sample_load_declare(sptr, sbit);
    sample_store_declare(dptr, dbit, dbyte);

    {
	uint xbit = pdest->initial_x * dest_bpv * dest_vpp;

	sample_store_setup(dbit, xbit & 7, dest_bpv);
	dptr = pdest->data + (xbit >> 3);
    }
    {
	uint xbit = psource->initial_x * source_bpv * source_vpp;

	sbit = xbit & 7;
	sptr = psource->data + (xbit >> 3);
    }
    {
	uint source_max = (1 << source_bpv) - 1;
	uint dest_max = (1 << dest_bpv) - 1;

	/*
	 * We could save a little work by only setting up source_delta
	 * and dest_delta if the operation is Dissolve.
	 */
	float source_delta = pcp->delta * dest_max / source_max;
	float dest_delta = 1.0 - pcp->delta;
	uint source_alpha = pcp->source_alpha;
	uint dest_alpha = dest_max;

#ifdef PREMULTIPLY_TOWARDS_WHITE
	uint source_bias = source_max - source_alpha;
	uint dest_bias = 0;
	uint result_bias = 0;

#endif
	uint x;

	if (!pdest->alpha) {
	    uint mask =
	    (psource->alpha || source_alpha != source_max ?
	     alpha_out_S_notD : alpha_out_notS_notD);

	    if ((mask >> pcp->cop) & 1) {
		/*
		 * The operation could produce non-unity alpha values, but
		 * the destination can't store them.  Return an error.
		 */
		return_error(gs_error_rangecheck);
	    }
	}
	/* Preload the output byte buffer if necessary. */
	sample_store_preload(dbyte, dptr, dbit, dest_bpv);

	for (x = 0; x < num_pixels; ++x) {
	    int j;
	    uint result_alpha = dest_alpha;

/* get_value does not increment the source pointer. */
#define get_value(v, ptr, bit, bpv, vmax)\
  sample_load16(v, ptr, bit, bpv)

/* put_value increments the destination pointer. */
#define put_value(v, ptr, bit, bpv, bbyte)\
  sample_store_next16(v, ptr, bit, bpv, bbyte)

#define advance(ptr, bit, bpv)\
  sample_next(ptr, bit, bpv)

	    /* Get destination alpha value. */
	    if (dest_alpha_j >= 0) {
		int dabit = dbit + dest_bpv * dest_alpha_j;
		const byte *daptr = dptr + (dabit >> 3);

		get_value(dest_alpha, daptr, dabit & 7, dest_bpv, dest_max);
#ifdef PREMULTIPLY_TOWARDS_WHITE
		dest_bias = dest_max - dest_alpha;
#endif
	    }
	    /* Get source alpha value. */
	    if (source_alpha_j >= 0) {
		int sabit = sbit;
		const byte *saptr = sptr;

		if (source_alpha_j == 0)
		    advance(sptr, sbit, source_bpv);
		else
		    advance(saptr, sabit, source_bpv * source_alpha_j);
		get_value(source_alpha, saptr, sabit, source_bpv, source_max);
#ifdef PREMULTIPLY_TOWARDS_WHITE
		source_bias = source_max - source_alpha;
#endif
	    }
/*
 * We are always multiplying a dest value by a source value to compute a
 * dest value, so the denominator is always source_max.  (Dissolve is the
 * one exception.)
 */
#define fr(v, a) ((v) * (a) / source_max)
#define nfr(v, a, maxv) ((v) * (maxv - (a)) / source_max)

	    /*
	     * Iterate over the components of a single pixel.
	     * j = 0 for alpha, 1 .. values_per_pixel for color
	     * components, regardless of the actual storage order;
	     * we arrange things so that sptr/sbit and dptr/dbit
	     * always point to the right place.
	     */
	    for (j = 0; j <= values_per_pixel; ++j) {
		uint dest_v, source_v, result;

#define set_clamped(r, v)\
  BEGIN if ( (r = (v)) > dest_max ) r = dest_max; END

		if (j == 0) {
		    source_v = source_alpha;
		    dest_v = dest_alpha;
		} else {
		    if (constant_colors)
			source_v = pcp->source_values[j - 1];
		    else {
			get_value(source_v, sptr, sbit, source_bpv, source_max);
			advance(sptr, sbit, source_bpv);
		    }
		    get_value(dest_v, dptr, dbit, dest_bpv, dest_max);
#ifdef PREMULTIPLY_TOWARDS_WHITE
		    source_v -= source_bias;
		    dest_v -= dest_bias;
#endif
		}

		switch (pcp->cop) {
		    case composite_Clear:
			/*
			 * The NeXT documentation doesn't say this, but the CLEAR
			 * operation sets not only alpha but also all the color
			 * values to 0.
			 */
			result = 0;
			break;
		    case composite_Copy:
			result = source_v;
			break;
		    case composite_PlusD:
			/*
			 * This is the only case where we have to worry about
			 * clamping a possibly negative result.
			 */
			result = source_v + dest_v;
			result = (result < dest_max ? 0 : result - dest_max);
			break;
		    case composite_PlusL:
			set_clamped(result, source_v + dest_v);
			break;
		    case composite_Sover:
			set_clamped(result, source_v + nfr(dest_v, source_alpha, source_max));
			break;
		    case composite_Dover:
			set_clamped(result, nfr(source_v, dest_alpha, dest_max) + dest_v);
			break;
		    case composite_Sin:
			result = fr(source_v, dest_alpha);
			break;
		    case composite_Din:
			result = fr(dest_v, source_alpha);
			break;
		    case composite_Sout:
			result = nfr(source_v, dest_alpha, dest_max);
			break;
		    case composite_Dout:
			result = nfr(dest_v, source_alpha, source_max);
			break;
		    case composite_Satop:
			set_clamped(result, fr(source_v, dest_alpha) +
				    nfr(dest_v, source_alpha, source_max));
			break;
		    case composite_Datop:
			set_clamped(result, nfr(source_v, dest_alpha, dest_max) +
				    fr(dest_v, source_alpha));
			break;
		    case composite_Xor:
			set_clamped(result, nfr(source_v, dest_alpha, dest_max) +
				    nfr(dest_v, source_alpha, source_max));
			break;
		    case composite_Highlight:
			/*
			 * Bizarre but true: this operation converts white and
			 * light gray into each other, and leaves all other values
			 * unchanged.  We only implement it properly for gray-scale
			 * devices.
			 */
			if (j != 0 && !((source_v ^ highlight_value) & ~1))
			    result = source_v ^ 1;
			else
			    result = source_v;
			break;
		    case composite_Dissolve:
			/*
			 * In this case, and only this case, we need to worry about
			 * source and dest having different bpv values.  For the
			 * moment, we wimp out and do everything in floating point.
			 */
			result = (uint) (source_v * source_delta + dest_v * dest_delta);
			break;
		    default:
			return_error(gs_error_rangecheck);
		}
		/*
		 * Store the result.  We don't have to worry about
		 * destinations that don't store alpha, because we don't
		 * even compute an alpha value in that case.
		 */
#ifdef PREMULTIPLY_TOWARDS_WHITE
		if (j == 0) {
		    result_alpha = result;
		    result_bias = dest_max - result_alpha;
		    if (dest_alpha_j != 0)
			continue;
		} else {
		    result += result_bias;
		}
#else
		if (j == 0 && dest_alpha_j != 0) {
		    result_alpha = result;
		    continue;
		}
#endif
		put_value(result, dptr, dbit, dest_bpv, dbyte);
	    }
	    /* Skip a trailing source alpha value. */
	    if (source_alpha_j > 0)
		advance(sptr, sbit, source_bpv);
	    /* Store a trailing destination alpha value. */
	    if (dest_alpha_j > 0)
		put_value(result_alpha, dptr, dbit, dest_bpv, dbyte);
#undef get_value
#undef put_value
#undef advance
	}
	/* Store any partial output byte. */
	sample_store_flush(dptr, dbit, dest_bpv, dbyte);
    }
    return 0;
}