File: zcie.c

package info (click to toggle)
ghostscript 8.71~dfsg2-9+squeeze1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 79,896 kB
  • ctags: 80,654
  • sloc: ansic: 501,432; sh: 25,689; python: 4,853; cpp: 3,633; perl: 3,597; tcl: 1,480; makefile: 1,187; lisp: 407; asm: 284; xml: 263; awk: 66; csh: 17; yacc: 15
file content (657 lines) | stat: -rw-r--r-- 20,580 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id: zcie.c 9043 2008-08-28 22:48:19Z giles $ */
/* CIE color operators */
#include "math_.h"
#include "memory_.h"
#include "ghost.h"
#include "oper.h"
#include "gsstruct.h"
#include "gxcspace.h"		/* gscolor2.h requires gscspace.h */
#include "gscolor2.h"
#include "gscie.h"
#include "estack.h"
#include "ialloc.h"
#include "idict.h"
#include "idparam.h"
#include "igstate.h"
#include "icie.h"
#include "isave.h"
#include "ivmspace.h"
#include "store.h"		/* for make_null */
#include "zcie.h"

/* Empty procedures */
static const ref empty_procs[4] =
{
    empty_ref_data(t_array, a_readonly | a_executable),
    empty_ref_data(t_array, a_readonly | a_executable),
    empty_ref_data(t_array, a_readonly | a_executable),
    empty_ref_data(t_array, a_readonly | a_executable)
};

/* ------ Parameter extraction utilities ------ */

/* Get a range array parameter from a dictionary. */
/* We know that count <= 4. */
int
dict_ranges_param(const gs_memory_t *mem,
		  const ref * pdref, const char *kstr, int count,
		  gs_range * prange)
{
    int code = dict_floats_param(mem, pdref, kstr, count * 2,
				 (float *)prange, NULL);

    if (code < 0)
	return code;
    else if (code == 0)
	memcpy(prange, Range4_default.ranges, count * sizeof(gs_range));
    return 0;
}

/* Get an array of procedures from a dictionary. */
/* We know count <= countof(empty_procs). */
int
dict_proc_array_param(const gs_memory_t *mem,
		      const ref *pdict, const char *kstr,
		      uint count, ref *pparray)
{
    ref *pvalue;

    if (dict_find_string(pdict, kstr, &pvalue) > 0) {
	uint i;

	check_array_only(*pvalue);
	if (r_size(pvalue) != count)
	    return_error(e_rangecheck);
	for (i = 0; i < count; i++) {
	    ref proc;

	    array_get(mem, pvalue, (long)i, &proc);
	    check_proc_only(proc);
	}
	*pparray = *pvalue;
        return 0;
    } else {
	make_const_array(pparray, a_readonly | avm_foreign,
			 count, &empty_procs[0]);
        return 1;
    }
}

/* Get 3 ranges from a dictionary. */
int
dict_range3_param(const gs_memory_t *mem,
		  const ref *pdref, const char *kstr, 
		  gs_range3 *prange3)
{
    return dict_ranges_param(mem, pdref, kstr, 3, prange3->ranges);
}

/* Get a 3x3 matrix from a dictionary. */
int
dict_matrix3_param(const gs_memory_t *mem,
		   const ref *pdref, const char *kstr, gs_matrix3 *pmat3)
{
    /*
     * We can't simply call dict_float_array_param with the matrix
     * cast to a 9-element float array, because compilers may insert
     * padding elements after each of the vectors.  However, we can be
     * confident that there is no padding within a single vector.
     */
    float values[9], defaults[9];
    int code;

    memcpy(&defaults[0], &Matrix3_default.cu, 3 * sizeof(float));
    memcpy(&defaults[3], &Matrix3_default.cv, 3 * sizeof(float));
    memcpy(&defaults[6], &Matrix3_default.cw, 3 * sizeof(float));
    code = dict_floats_param(mem, pdref, kstr, 9, values, defaults);
    if (code < 0)
	return code;
    memcpy(&pmat3->cu, &values[0], 3 * sizeof(float));
    memcpy(&pmat3->cv, &values[3], 3 * sizeof(float));
    memcpy(&pmat3->cw, &values[6], 3 * sizeof(float));
    return 0;
}

/* Get 3 procedures from a dictionary. */
int
dict_proc3_param(const gs_memory_t *mem, const ref *pdref, const char *kstr, ref proc3[3])
{
    return dict_proc_array_param(mem, pdref, kstr, 3, proc3);
}

/* Get WhitePoint and BlackPoint values. */
int
cie_points_param(const gs_memory_t *mem, 
		 const ref * pdref, gs_cie_wb * pwb)
{
    int code;

    if ((code = dict_floats_param(mem, pdref, "WhitePoint", 3, (float *)&pwb->WhitePoint, NULL)) < 0 ||
	(code = dict_floats_param(mem, pdref, "BlackPoint", 3, (float *)&pwb->BlackPoint, (const float *)&BlackPoint_default)) < 0
	)
	return code;
    if (pwb->WhitePoint.u <= 0 ||
	pwb->WhitePoint.v != 1 ||
	pwb->WhitePoint.w <= 0 ||
	pwb->BlackPoint.u < 0 ||
	pwb->BlackPoint.v < 0 ||
	pwb->BlackPoint.w < 0
	)
	return_error(e_rangecheck);
    return 0;
}

/* Process a 3- or 4-dimensional lookup table from a dictionary. */
/* The caller has set pclt->n and pclt->m. */
/* ptref is known to be a readable array of size at least n+1. */
static int cie_3d_table_param(const ref * ptable, uint count, uint nbytes,
			       gs_const_string * strings);
int
cie_table_param(const ref * ptref, gx_color_lookup_table * pclt,
		gs_memory_t * mem)
{
    int n = pclt->n, m = pclt->m;
    const ref *pta = ptref->value.const_refs;
    int i;
    uint nbytes;
    int code;
    gs_const_string *table;

    for (i = 0; i < n; ++i) {
	check_type_only(pta[i], t_integer);
	if (pta[i].value.intval <= 1 || pta[i].value.intval > max_ushort)
	    return_error(e_rangecheck);
	pclt->dims[i] = (int)pta[i].value.intval;
    }
    nbytes = m * pclt->dims[n - 2] * pclt->dims[n - 1];
    if (n == 3) {
	table =
	    gs_alloc_struct_array(mem, pclt->dims[0], gs_const_string,
				  &st_const_string_element, "cie_table_param");
	if (table == 0)
	    return_error(e_VMerror);
	code = cie_3d_table_param(pta + 3, pclt->dims[0], nbytes, table);
    } else {			/* n == 4 */
	int d0 = pclt->dims[0], d1 = pclt->dims[1];
	uint ntables = d0 * d1;
	const ref *psuba;

	check_read_type(pta[4], t_array);
	if (r_size(pta + 4) != d0)
	    return_error(e_rangecheck);
	table =
	    gs_alloc_struct_array(mem, ntables, gs_const_string,
				  &st_const_string_element, "cie_table_param");
	if (table == 0)
	    return_error(e_VMerror);
	psuba = pta[4].value.const_refs;
	/*
	 * We know that d0 > 0, so code will always be set in the loop:
	 * we initialize code to 0 here solely to pacify stupid compilers.
	 */
	for (code = 0, i = 0; i < d0; ++i) {
	    code = cie_3d_table_param(psuba + i, d1, nbytes, table + d1 * i);
	    if (code < 0)
		break;
	}
    }
    if (code < 0) {
	gs_free_object(mem, table, "cie_table_param");
	return code;
    }
    pclt->table = table;
    return 0;
}
static int
cie_3d_table_param(const ref * ptable, uint count, uint nbytes,
		   gs_const_string * strings)
{
    const ref *rstrings;
    uint i;

    check_read_type(*ptable, t_array);
    if (r_size(ptable) != count)
	return_error(e_rangecheck);
    rstrings = ptable->value.const_refs;
    for (i = 0; i < count; ++i) {
	const ref *const prt2 = rstrings + i;

	check_read_type(*prt2, t_string);
	if (r_size(prt2) != nbytes)
	    return_error(e_rangecheck);
	strings[i].data = prt2->value.const_bytes;
	strings[i].size = nbytes;
    }
    return 0;
}

/* ------ CIE setcolorspace ------ */

/* Common code for the CIEBased* cases of setcolorspace. */
static int
cie_lmnp_param(const gs_memory_t *mem, const ref * pdref, gs_cie_common * pcie, ref_cie_procs * pcprocs)
{
    int code;

    if ((code = dict_range3_param(mem, pdref, "RangeLMN", &pcie->RangeLMN)) < 0 ||
	(code = dict_proc3_param(mem, pdref, "DecodeLMN", &pcprocs->DecodeLMN)) < 0 ||
	(code = dict_matrix3_param(mem, pdref, "MatrixLMN", &pcie->MatrixLMN)) < 0 ||
	(code = cie_points_param(mem, pdref, &pcie->points)) < 0
	)
	return code;
    pcie->DecodeLMN = DecodeLMN_default;
    return 0;
}

/* Common code for the CIEBasedABC/DEF[G] cases of setcolorspace. */
static int
cie_abc_param(const gs_memory_t *mem, const ref * pdref, gs_cie_abc * pcie, ref_cie_procs * pcprocs)
{
    int code;

    if ((code = dict_range3_param(mem, pdref, "RangeABC", &pcie->RangeABC)) < 0 ||
	(code = dict_proc3_param(mem, pdref, "DecodeABC", &pcprocs->Decode.ABC)) < 0 ||
	(code = dict_matrix3_param(mem, pdref, "MatrixABC", &pcie->MatrixABC)) < 0 ||
	(code = cie_lmnp_param(mem, pdref, &pcie->common, pcprocs)) < 0
	)
	return code;
    pcie->DecodeABC = DecodeABC_default;
    return 0;
}

/* Finish setting a CIE space (successful or not). */
int
cie_set_finish(i_ctx_t *i_ctx_p, gs_color_space * pcs,
	       const ref_cie_procs * pcprocs, int edepth, int code)
{
    if (code >= 0)
	code = gs_setcolorspace(igs, pcs);
    /* Delete the extra reference to the parameter tables. */
    rc_decrement_only(pcs, "cie_set_finish");
    if (code < 0) {
	ref_stack_pop_to(&e_stack, edepth);
	return code;
    }
    istate->colorspace[0].procs.cie = *pcprocs;
    pop(1);
    return (ref_stack_count(&e_stack) == edepth ? 0 : o_push_estack);
}

/* Forward references */
static int cache_common(i_ctx_t *, gs_cie_common *, const ref_cie_procs *,
			 void *, gs_ref_memory_t *);
static int cache_abc_common(i_ctx_t *, gs_cie_abc *, const ref_cie_procs *,
			     void *, gs_ref_memory_t *);

static int cie_defg_finish(i_ctx_t *);
int
ciedefgspace(i_ctx_t *i_ctx_p, ref *CIEDict)
{
    os_ptr op = osp;
    int edepth = ref_stack_count(&e_stack);
    gs_memory_t *mem = gs_state_memory(igs);
    gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
    gs_color_space *pcs;
    ref_cie_procs procs;
    gs_cie_defg *pcie;
    int code;
    ref *ptref;

    push(1);
    if ((code = dict_find_string(CIEDict, "Table", &ptref)) <= 0)
	return (code < 0 ? code : gs_note_error(e_rangecheck));
    check_read_type(*ptref, t_array);
    if (r_size(ptref) != 5)
	return_error(e_rangecheck);
    procs = istate->colorspace[0].procs.cie;
    code = gs_cspace_build_CIEDEFG(&pcs, NULL, mem);
    if (code < 0)
	return code;
    pcie = pcs->params.defg;
    pcie->Table.n = 4;
    pcie->Table.m = 3;
    if ((code = dict_ranges_param(mem, CIEDict, "RangeDEFG", 4, pcie->RangeDEFG.ranges)) < 0 ||
	(code = dict_proc_array_param(mem, CIEDict, "DecodeDEFG", 4, &procs.PreDecode.DEFG)) < 0 ||
	(code = dict_ranges_param(mem, CIEDict, "RangeHIJK", 4, pcie->RangeHIJK.ranges)) < 0 ||
	(code = cie_table_param(ptref, &pcie->Table, mem)) < 0 ||
	(code = cie_abc_param(imemory, CIEDict, (gs_cie_abc *) pcie, &procs)) < 0 ||
	(code = cie_cache_joint(i_ctx_p, &istate->colorrendering.procs, (gs_cie_common *)pcie, igs)) < 0 ||	/* do this last */
	(code = cie_cache_push_finish(i_ctx_p, cie_defg_finish, imem, pcie)) < 0 ||
	(code = cie_prepare_cache4(i_ctx_p, &pcie->RangeDEFG,
				   procs.PreDecode.DEFG.value.const_refs,
				   &pcie->caches_defg.DecodeDEFG[0],
				   pcie, imem, "Decode.DEFG")) < 0 ||
	(code = cache_abc_common(i_ctx_p, (gs_cie_abc *)pcie, &procs, pcie, imem)) < 0
	)
	DO_NOTHING;
    return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_defg_finish(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_cie_defg *pcie = r_ptr(op, gs_cie_defg);

    pcie->DecodeDEFG = DecodeDEFG_from_cache;
    pcie->DecodeABC = DecodeABC_from_cache;
    pcie->common.DecodeLMN = DecodeLMN_from_cache;
    gs_cie_defg_complete(pcie);
    pop(1);
    return 0;
}

static int cie_def_finish(i_ctx_t *);
int
ciedefspace(i_ctx_t *i_ctx_p, ref *CIEDict)
{
    os_ptr op = osp;
    int edepth = ref_stack_count(&e_stack);
    gs_memory_t *mem = gs_state_memory(igs);
    gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
    gs_color_space *pcs;
    ref_cie_procs procs;
    gs_cie_def *pcie;
    int code;
    ref *ptref;

    push(1);
    if ((code = dict_find_string(CIEDict, "Table", &ptref)) <= 0)
	return (code < 0 ? code : gs_note_error(e_rangecheck));
    check_read_type(*ptref, t_array);
    if (r_size(ptref) != 4)
	return_error(e_rangecheck);
    procs = istate->colorspace[0].procs.cie;
    code = gs_cspace_build_CIEDEF(&pcs, NULL, mem);
    if (code < 0)
	return code;
    pcie = pcs->params.def;
    pcie->Table.n = 3;
    pcie->Table.m = 3;
    if ((code = dict_range3_param(mem, CIEDict, "RangeDEF", &pcie->RangeDEF)) < 0 ||
	(code = dict_proc3_param(mem, CIEDict, "DecodeDEF", &procs.PreDecode.DEF)) < 0 ||
	(code = dict_range3_param(mem, CIEDict, "RangeHIJ", &pcie->RangeHIJ)) < 0 ||
	(code = cie_table_param(ptref, &pcie->Table, mem)) < 0 ||
	(code = cie_abc_param(imemory, CIEDict, (gs_cie_abc *) pcie, &procs)) < 0 ||
	(code = cie_cache_joint(i_ctx_p, &istate->colorrendering.procs, (gs_cie_common *)pcie, igs)) < 0 ||	/* do this last */
	(code = cie_cache_push_finish(i_ctx_p, cie_def_finish, imem, pcie)) < 0 ||
	(code = cie_prepare_cache3(i_ctx_p, &pcie->RangeDEF,
				   procs.PreDecode.DEF.value.const_refs,
				   &pcie->caches_def.DecodeDEF[0],
				   pcie, imem, "Decode.DEF")) < 0 ||
	(code = cache_abc_common(i_ctx_p, (gs_cie_abc *)pcie, &procs, pcie, imem)) < 0
	)
	DO_NOTHING;
    return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_def_finish(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_cie_def *pcie = r_ptr(op, gs_cie_def);

    pcie->DecodeDEF = DecodeDEF_from_cache;
    pcie->DecodeABC = DecodeABC_from_cache;
    pcie->common.DecodeLMN = DecodeLMN_from_cache;
    gs_cie_def_complete(pcie);
    pop(1);
    return 0;
}

static int cie_abc_finish(i_ctx_t *);

int
cieabcspace(i_ctx_t *i_ctx_p, ref *CIEDict)
{
    os_ptr op = osp;
    int edepth = ref_stack_count(&e_stack);
    gs_memory_t *mem = gs_state_memory(igs);
    gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
    gs_color_space *pcs;
    ref_cie_procs procs;
    gs_cie_abc *pcie;
    int code;

    push(1); /* Sacrificial */
    procs = istate->colorspace[0].procs.cie;
    code = gs_cspace_build_CIEABC(&pcs, NULL, mem);
    if (code < 0)
	return code;
    pcie = pcs->params.abc;
    code = cie_abc_param(imemory, CIEDict, pcie, &procs);
    if (code < 0 ||
	(code = cie_cache_joint(i_ctx_p, &istate->colorrendering.procs, (gs_cie_common *)pcie, igs)) < 0 ||	/* do this last */
	(code = cie_cache_push_finish(i_ctx_p, cie_abc_finish, imem, pcie)) < 0 ||
	(code = cache_abc_common(i_ctx_p, pcie, &procs, pcie, imem)) < 0
	)
	DO_NOTHING;
    return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_abc_finish(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_cie_abc *pcie = r_ptr(op, gs_cie_abc);

    pcie->DecodeABC = DecodeABC_from_cache;
    pcie->common.DecodeLMN = DecodeLMN_from_cache;
    gs_cie_abc_complete(pcie);
    pop(1);
    return 0;
}

static int cie_a_finish(i_ctx_t *);

int
cieaspace(i_ctx_t *i_ctx_p, ref *CIEdict)
{
    os_ptr op = osp;
    int edepth = ref_stack_count(&e_stack);
    gs_memory_t *mem = gs_state_memory(igs);
    gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
    gs_color_space *pcs;
    ref_cie_procs procs;
    gs_cie_a *pcie;
    int code;

    push(1); /* Sacrificial. cie_a_finish does a pop... */
    procs = istate->colorspace[0].procs.cie;
    if ((code = dict_proc_param(CIEdict, "DecodeA", &procs.Decode.A, true)) < 0)
	return code;
    code = gs_cspace_build_CIEA(&pcs, NULL, mem);
    if (code < 0)
	return code;
    pcie = pcs->params.a;
    if ((code = dict_floats_param(imemory, CIEdict, "RangeA", 2, (float *)&pcie->RangeA, (const float *)&RangeA_default)) < 0 ||
	(code = dict_floats_param(imemory, CIEdict, "MatrixA", 3, (float *)&pcie->MatrixA, (const float *)&MatrixA_default)) < 0 ||
	(code = cie_lmnp_param(imemory, CIEdict, &pcie->common, &procs)) < 0 ||
	(code = cie_cache_joint(i_ctx_p, &istate->colorrendering.procs, (gs_cie_common *)pcie, igs)) < 0 ||	/* do this last */
	(code = cie_cache_push_finish(i_ctx_p, cie_a_finish, imem, pcie)) < 0 ||
	(code = cie_prepare_cache(i_ctx_p, &pcie->RangeA, &procs.Decode.A, &pcie->caches.DecodeA.floats, pcie, imem, "Decode.A")) < 0 ||
	(code = cache_common(i_ctx_p, &pcie->common, &procs, pcie, imem)) < 0
	)
	DO_NOTHING;
    pcie->DecodeA = DecodeA_default;
    return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_a_finish(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_cie_a *pcie = r_ptr(op, gs_cie_a);

    pcie->DecodeA = DecodeA_from_cache;
    pcie->common.DecodeLMN = DecodeLMN_from_cache;
    gs_cie_a_complete(pcie);
    pop(1);
    return 0;
}

/* Common cache code */

static int
cache_abc_common(i_ctx_t *i_ctx_p, gs_cie_abc * pcie,
		 const ref_cie_procs * pcprocs,
		 void *container, gs_ref_memory_t * imem)
{
    int code =
	cie_prepare_cache3(i_ctx_p, &pcie->RangeABC,
			   pcprocs->Decode.ABC.value.const_refs,
			   pcie->caches.DecodeABC.caches, pcie, imem,
			   "Decode.ABC");

    return (code < 0 ? code :
	    cache_common(i_ctx_p, &pcie->common, pcprocs, pcie, imem));
}

static int
cache_common(i_ctx_t *i_ctx_p, gs_cie_common * pcie,
	     const ref_cie_procs * pcprocs,
	     void *container, gs_ref_memory_t * imem)
{
    return cie_prepare_cache3(i_ctx_p, &pcie->RangeLMN,
			      pcprocs->DecodeLMN.value.const_refs,
			      &pcie->caches.DecodeLMN[0], container, imem,
			      "Decode.LMN");
}

/* ------ Internal routines ------ */

/* Prepare to cache the values for one or more procedures. */
static int cie_cache_finish1(i_ctx_t *);
static int cie_cache_finish(i_ctx_t *);
int
cie_prepare_cache(i_ctx_t *i_ctx_p, const gs_range * domain, const ref * proc,
		  cie_cache_floats * pcache, void *container,
		  gs_ref_memory_t * imem, client_name_t cname)
{
    int space = imemory_space(imem);
    gs_sample_loop_params_t lp;
    es_ptr ep;

    gs_cie_cache_init(&pcache->params, &lp, domain, cname);
    pcache->params.is_identity = r_size(proc) == 0;
    check_estack(9);
    ep = esp;
    make_real(ep + 9, lp.A);
    make_int(ep + 8, lp.N);
    make_real(ep + 7, lp.B);
    ep[6] = *proc;
    r_clear_attrs(ep + 6, a_executable);
    make_op_estack(ep + 5, zcvx);
    make_op_estack(ep + 4, zfor_samples);
    make_op_estack(ep + 3, cie_cache_finish);
    esp += 9;
    /*
     * The caches are embedded in the middle of other
     * structures, so we represent the pointer to the cache
     * as a pointer to the container plus an offset.
     */
    make_int(ep + 2, (char *)pcache - (char *)container);
    make_struct(ep + 1, space, container);
    return o_push_estack;
}
/* Note that pc3 may be 0, indicating that there are only 3 caches to load. */
int
cie_prepare_caches_4(i_ctx_t *i_ctx_p, const gs_range * domains,
		     const ref * procs,
		     cie_cache_floats * pc0, cie_cache_floats * pc1,
		     cie_cache_floats * pc2, cie_cache_floats * pc3,
		     void *container,
		     gs_ref_memory_t * imem, client_name_t cname)
{
    cie_cache_floats *pcn[4];
    int i, n, code = 0;

    pcn[0] = pc0, pcn[1] = pc1, pcn[2] = pc2;
    if (pc3 == 0)
	n = 3;
    else
	pcn[3] = pc3, n = 4;
    for (i = 0; i < n && code >= 0; ++i)
	code = cie_prepare_cache(i_ctx_p, domains + i, procs + i, pcn[i],
				 container, imem, cname);
    return code;
}

/* Store the result of caching one procedure. */
static int
cie_cache_finish_store(i_ctx_t *i_ctx_p, bool replicate)
{
    os_ptr op = osp;
    cie_cache_floats *pcache;
    int code;

    check_esp(2);
    /* See above for the container + offset representation of */
    /* the pointer to the cache. */
    pcache = (cie_cache_floats *) (r_ptr(esp - 1, char) + esp->value.intval);

    pcache->params.is_identity = false;	/* cache_set_linear computes this */
    if_debug3('c', "[c]cache 0x%lx base=%g, factor=%g:\n",
	      (ulong) pcache, pcache->params.base, pcache->params.factor);
    if (replicate ||
	(code = float_params(op, gx_cie_cache_size, &pcache->values[0])) < 0
	) {
	/* We might have underflowed the current stack block. */
	/* Handle the parameters one-by-one. */
	uint i;

	for (i = 0; i < gx_cie_cache_size; i++) {
	    code = float_param(ref_stack_index(&o_stack,
			       (replicate ? 0 : gx_cie_cache_size - 1 - i)),
			       &pcache->values[i]);
	    if (code < 0)
		return code;
	}
    }
#ifdef DEBUG
    if (gs_debug_c('c')) {
	int i;

	for (i = 0; i < gx_cie_cache_size; i += 4)
	    dlprintf5("[c]  cache[%3d]=%g, %g, %g, %g\n", i,
		      pcache->values[i], pcache->values[i + 1],
		      pcache->values[i + 2], pcache->values[i + 3]);
    }
#endif
    ref_stack_pop(&o_stack, (replicate ? 1 : gx_cie_cache_size));
    esp -= 2;			/* pop pointer to cache */
    return o_pop_estack;
}
static int
cie_cache_finish(i_ctx_t *i_ctx_p)
{
    return cie_cache_finish_store(i_ctx_p, false);
}
static int
cie_cache_finish1(i_ctx_t *i_ctx_p)
{
    return cie_cache_finish_store(i_ctx_p, true);
}

/* Push a finishing procedure on the e-stack. */
/* ptr will be the top element of the o-stack. */
int
cie_cache_push_finish(i_ctx_t *i_ctx_p, op_proc_t finish_proc,
		      gs_ref_memory_t * imem, void *data)
{
    check_estack(2);
    push_op_estack(finish_proc);
    ++esp;
    make_struct(esp, imemory_space(imem), data);
    return o_push_estack;
}