File: zfsample.c

package info (click to toggle)
ghostscript 8.71~dfsg2-9+squeeze1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 79,896 kB
  • ctags: 80,654
  • sloc: ansic: 501,432; sh: 25,689; python: 4,853; cpp: 3,633; perl: 3,597; tcl: 1,480; makefile: 1,187; lisp: 407; asm: 284; xml: 263; awk: 66; csh: 17; yacc: 15
file content (716 lines) | stat: -rw-r--r-- 22,722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id: zfsample.c 9163 2008-10-17 09:31:35Z ken $ */
/* Sample data to create a type 0 function */
#include "memory_.h"
#include "ghost.h"
#include "oper.h"
#include "gxcspace.h"
#include "estack.h"
#include "ialloc.h"
#include "idict.h"
#include "idparam.h"
#include "ifunc.h"
#include "ostack.h"
#include "store.h"
#include "gsfunc0.h"
#include "gscdevn.h"
#include "zfunc.h"
#include "zcolor.h"

/*
 * We store the data in a string.  Since the max size for a string is 64k,
 * we use that as our max data size.
 */
#define MAX_DATA_SIZE 0x10000
/*
 * We cannot handle more than  16 inputs.  Otherwise the the data will not
 * fit within MAX_DATA_SIZE.
 */
#define MAX_NUM_INPUTS 16
/*
 * This value is rather arbitrary.
 */
#define MAX_NUM_OUTPUTS 128

/* --- Build sampled data function --- */

/*
 * This structure is used to hold data required while collecting samples
 * for a type 0 function (sampled data).
 */
struct gs_sampled_data_enum_s {
    int indexes[MAX_NUM_INPUTS];
    int o_stack_depth;		/* used to verify stack while sampling */
    gs_function_t * pfn;
};

typedef struct gs_sampled_data_enum_s gs_sampled_data_enum;


gs_private_st_ptrs1(st_gs_sampled_data_enum, gs_sampled_data_enum,
		"gs_sampled_data_enum", gs_sampled_data_enum_enum_ptrs,
		gs_sampled_data_enum_reloc_ptrs, pfn);


/* Forward references */

static int cube_build_func0(const ref * pdict,
	gs_function_Sd_params_t * params, gs_memory_t *mem);
static int sampled_data_setup(i_ctx_t *i_ctx_p, gs_function_t *pfn,
	const ref * pproc, int (*finish_proc)(i_ctx_t *),
	gs_memory_t * mem);
static int sampled_data_sample(i_ctx_t *i_ctx_p);
static int sampled_data_continue(i_ctx_t *i_ctx_p);
static int sampled_data_finish(i_ctx_t *i_ctx_p);

static gs_sampled_data_enum * gs_sampled_data_enum_alloc
	(gs_memory_t * mem, client_name_t cname);

/*
 * Collect data for a type 0 (sampled data) function
 * <dict> .buildsampledfunction <function_struct>
 *
 * The following keys are used from the dictionary:
 *    Function (required)
 *    Domain (required)
 *    Range (required)
 *    Size (optional)  If Size is not specified then a default value is determined
 *        based upon the number of inputs and outputs.
 *    BitsPerSample (required) Only 8, 16, 24, and 32 accepted,
 * The remaining keys are ignored.
 */
static int
zbuildsampledfunction(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    const ref * pdict = op;
    ref * pfunc;
    int code = 0;
    gs_function_t *pfn;
    gs_function_Sd_params_t params = {0};

    check_type(*pdict, t_dictionary);
    /* 
     * Check procedure to be sampled.
     */
    if (dict_find_string(pdict, "Function", &pfunc) <= 0)
	return_error(e_rangecheck);
    check_proc(*pfunc);
    /*
     * Set up the hyper cube function data structure.
     */
    code = cube_build_func0(pdict, &params, imemory);
    if (code < 0)
	return code;
    /*
     * This is temporary.  We will call gs_function_Sd_init again after
     * we have collected the cube data.  We are doing it now because we need
     * a function structure created (along with its GC enumeration stuff)
     * that we can use while collecting the cube data.  We will call
     * the routine again after the cube data is collected to correctly
     * initialize the function.
     */
    code = gs_function_Sd_init(&pfn, &params, imemory);
    if (code < 0)
	return code;
    /*
     * Now setup to collect the sample data.
     */
    return sampled_data_setup(i_ctx_p, pfn, pfunc, sampled_data_finish, imemory);
}

/* ------- Internal procedures ------- */


#define bits2bytes(x) ((x) >> 3)	/* Convert bit count to byte count */

/*
 * This routine will verify that the requested data hypercube parameters will require
 * a data storage size less than or equal to the MAX_DATA_SIZE.
 */
static bool
valid_cube_size(int num_inputs, int num_outputs, int sample_size, const int Size[])
{
    int i, total_size = num_outputs * sample_size;

    for (i = 0; i < num_inputs; i++) {
	if (Size[i] <= 0 || Size[i] > MAX_DATA_SIZE / total_size)
	    return false;
	total_size *= Size[i];
    }
    return true;
}

/*
 * This routine is used to determine a default value for the sampled data size.
 * As a default, we will build a hyper cube with each side having the same
 * size.  The space requirements for a hypercube grow exponentially with the
 * number of dimensions.  Thus we must use fewer points if our functions has
 * many inputs.  The values returned were chosen simply to given a reasonable
 * tradeoff between keeping storage requirements low but still having enough
 * points per side to minimize loss of information.
 *
 * We do check to see if the data will fit using our initial guess.  If not
 * then we decrement the size of each edge until it fits.  We will return a
 * e_rangecheck error if the cube can not fit into the maximum  size.
 * On exit the Size array contains the cube size (if a valid size was found).
 */
static int
determine_sampled_data_size(int num_inputs, int num_outputs,
				int sample_size, int Size[])
{
    static const int size_list[] = {512, 50, 20, 10, 7, 5, 4, 3};
    int i, size;

    /* Start with initial guess at cube size */
    if (num_inputs > 0 && num_inputs <= 8)
	size = size_list[num_inputs - 1];
    else
	size = 2;
    /*
     * Verify that the cube will fit into MAX_DATA_SIZE.  If not then
     * decrement the cube size until it will fit.
     */
    while (true) {
        /* Fill Size array with value. */
        for (i = 0; i < num_inputs; i++)
            Size[i] = size;

	if (valid_cube_size(num_inputs, num_outputs, sample_size, Size))
	    return 0;		/* We have a valid size */

	if (size == 2)		/* Cannot have less than 2 points per side */
	    return_error(e_rangecheck);
	size--;
    }
}


/*
 * Allocate the enumerator used while collecting sampled data.  This enumerator
 * is used to hold the various state data required while sampling.
 */
static gs_sampled_data_enum *
gs_sampled_data_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
    return gs_alloc_struct(mem, gs_sampled_data_enum,
    				&st_gs_sampled_data_enum, cname);
}

/*
 * This routine will determine the location of a block of data
 * in the hyper cube.  Basically this does an index calculation
 * for an n dimensional cube.
 */
static byte *
cube_ptr_from_index(gs_function_Sd_params_t * params, int indexes[])
{
    int i, sum = indexes[params->m - 1];

    for (i = params->m - 2; i >= 0; i--) {
	sum *= params->Size[i];
	sum += indexes[i];
    }
    return (byte *)(params->DataSource.data.str.data) + 
	sum * params->n * bits2bytes(params->BitsPerSample);
}

/*
 * This routine will increment the index values for the hypercube.  This
 * is used for collecting the data.  If we have incremented the
 * last index beyond its last value then we return a true, else false;
 */
static bool
increment_cube_indexes(gs_function_Sd_params_t * params, int indexes[])
{
    int i = 0;

    while (true) {
	/*
	 * Increment an index value for an edge and test if we have
	 * gone past the final value for the edge.
	 */
	indexes[i]++;
	if (indexes[i] < params->Size[i])
	    /*
	     * We have not reached the end of the edge.  Exit but
	     * indicate that we are not done with the hypercube.
	     */
	    return false;
	/*
	 * We have reached the end of one edge of the hypercube and we
	 * need to increment the next index.
	 */
	indexes[i] = 0;
	i++;
	if (i == params->m)
	    /*
	     * We have finished the last edge of the hyper cube.
	     * We are done.
	     */
	    return true;
    }
}

/*
 * Fill in the data for a function type 0 parameter object to be used while
 * we collect the data for the data cube.  At the end of the process, we
 * will create a function type 0 object to be used to calculate values
 * as a replacement for the original function.
 */
static int
cube_build_func0(const ref * pdict, gs_function_Sd_params_t * params,
							gs_memory_t *mem)
{
    byte * bytes = 0;
    int code, i;
    int total_size;

    if ((code = dict_int_param(pdict, "Order", 1, 3, 1, &params->Order)) < 0 ||
	(code = dict_int_param(pdict, "BitsPerSample", 1, 32, 0,
			       &params->BitsPerSample)) < 0 ||
	((code = params->m =
	    fn_build_float_array(pdict, "Domain", false, true,
		    			&params->Domain, mem)) < 0 ) ||
	((code = params->n =
	    fn_build_float_array(pdict, "Range", false, true,
		    			&params->Range, mem)) < 0) 
	) {
	goto fail;
    }
    /*
     * The previous logic set the size of m and n to the size of the Domain
     * and Range arrays.  This is twice the actual size.  Correct this and
     * check for valid values.
     */
    params->m >>= 1;
    params->n >>= 1;
    if (params->m == 0 || params->n == 0 ||
        params->m > MAX_NUM_INPUTS || params->n > MAX_NUM_OUTPUTS) {
	code = gs_note_error(e_rangecheck);
        goto fail;
    }
    /*
     * The Size array may or not be specified.  If it is not specified then
     * we need to determine a set of default values for the Size array.
     */
    {
	int *ptr = (int *)
	    gs_alloc_byte_array(mem, params->m, sizeof(int), "Size");

	if (ptr == NULL) {
	    code = gs_note_error(e_VMerror);
	    goto fail;
	}
	params->Size = ptr;
	code = dict_ints_param(mem, pdict, "Size", params->m, ptr);
        if (code < 0)
	    goto fail;
        if (code == 0) {
	    /*
	     * The Size array has not been specified.  Determine a default
	     * set of values.
	     */
            code = determine_sampled_data_size(params->m, params->n,
	     			params->BitsPerSample, (int *)params->Size);
            if (code < 0)
	        goto fail;
        }
	else {			/* Size array specified - verify valid */
	    if (code != params->m || !valid_cube_size(params->m, params->n,
	    				params->BitsPerSample, params->Size))
	        code = gs_note_error(e_rangecheck);
	        goto fail;
	}
    }
    /*
     * Determine space required for the sample data storage.
     */
    total_size = params->n * bits2bytes(params->BitsPerSample);
    for (i = 0; i < params->m; i++)
	total_size *= params->Size[i];
    /*
     * Allocate space for the data cube itself.
     */
    bytes = gs_alloc_byte_array(mem, total_size, 1, "cube_build_func0(bytes)");
    if (!bytes) {
	code = gs_note_error(e_VMerror);
	goto fail;
    }
    data_source_init_bytes(&params->DataSource,
    				(const unsigned char *)bytes, total_size);

    return 0;

fail:
    gs_function_Sd_free_params(params, mem);
    return (code < 0 ? code : gs_note_error(e_rangecheck));
}

/*
 * Layout of stuff pushed on estack while collecting the sampled data.
 * The data is saved there since it is safe from attack by the procedure
 * being sampled and is convient.
 *
 *      finishing procedure (or 0)
 *      procedure being sampled
 *      enumeration structure (as bytes)
 */
#define estack_storage 3
#define esp_finish_proc (*real_opproc(esp - 2))
#define sample_proc esp[-1]
#define senum r_ptr(esp, gs_sampled_data_enum)
/*
 * Sone invalid tint transform functions pop more items off of the stack
 * then they are supposed to use.  This is a violation of the PLRM however
 * this is done by Adobe and we have to handle the situation.  This is
 * a kludge but we set aside some unused stack space below the input
 * variables.  The tint transform can trash this without causing any
 * real problems.
 */
#define O_STACK_PAD 3

/*
 * Set up to collect the data for the sampled function.  This is used for
 * those alternate tint transforms that cannot be converted into a
 * type 4 function.
 */
static int
sampled_data_setup(i_ctx_t *i_ctx_p, gs_function_t *pfn,
	const ref * pproc, int (*finish_proc)(i_ctx_t *), gs_memory_t * mem)
{
    os_ptr op = osp;
    gs_sampled_data_enum *penum;
    int i;
    gs_function_Sd_params_t * params = (gs_function_Sd_params_t *)&pfn->params;

    check_estack(estack_storage + 1);		/* Verify space on estack */
    check_ostack(params->m + O_STACK_PAD);	/* and the operand stack */
    check_ostack(params->n + O_STACK_PAD);

    /*
     * Allocate space for the enumerator data structure.
     */
    penum = gs_sampled_data_enum_alloc(imemory, "zbuildsampledfuntion(params)");
    if (penum == NULL)
	return_error(e_VMerror);

    /* Initialize data in the enumeration structure */

    penum->pfn = pfn;
    for(i=0; i< params->m; i++)
        penum->indexes[i] = 0;
    /*
     * Save stack depth for checking the correct number of values on stack
     * after the function, which is being sampled, is called.
     */
    penum->o_stack_depth = ref_stack_count(&o_stack);
    /*
     * Note:  As previously mentioned, we are putting some spare (unused) stack
     * space under the input values in case the function unbalances the stack.
     * It is possible for the function to pop or change values on the stack
     * outside of the input values.  (This has been found to happen with some
     * proc sets from Adobe.)
     */
    push(O_STACK_PAD);
    for (i = 0; i < O_STACK_PAD; i++) 		/* Set space = null */
	make_null(op - i);

    /* Push everything on the estack */

    esp += estack_storage;
    make_op_estack(esp - 2, finish_proc);	/* Finish proc onto estack */
    sample_proc = *pproc;			/* Save function to be sampled */
    make_istruct(esp, 0, penum);		/* Color cube enumeration structure */
    push_op_estack(sampled_data_sample);	/* Start sampling data */
    return o_push_estack;
}

/*
 * Set up to collect the next sampled data value.
 */
static int
sampled_data_sample(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_sampled_data_enum *penum = senum;
    ref proc;
    gs_function_Sd_params_t * params =
    			(gs_function_Sd_params_t *)&penum->pfn->params;
    int num_inputs = params->m;
    int i;

    /* Put set of input values onto the stack. */
    push(num_inputs);
    for (i = 0; i < num_inputs; i++) {
	double dmin = params->Domain[2 * i];
	double dmax = params->Domain[2 * i + 1];

	make_real(op - num_inputs + i + 1, (float) (
	    penum->indexes[i] * (dmax - dmin)/(params->Size[i] - 1) + dmin));
    }

    proc = sample_proc;			    /* Get procedure from storage */
    push_op_estack(sampled_data_continue);  /* Put 'save' routine on estack, after sample proc */
    *++esp = proc;			    /* Put procedure to be executed */
    return o_push_estack;
}

/* 
 * Continuation procedure for processing sampled values.
 */
static int
sampled_data_continue(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_sampled_data_enum *penum = senum;
    gs_function_Sd_params_t * params =
	    (gs_function_Sd_params_t *)&penum->pfn->params;
    int i, j, num_out = params->n;
    int code = 0;
    byte * data_ptr;
    double sampled_data_value_max = (double)((1 << params->BitsPerSample) - 1);
    int bps = bits2bytes(params->BitsPerSample), stack_depth_adjust = 0;

    /*
     * Check to make sure that the procedure produced the correct number of
     * values.  If not, move the stack back to where it belongs and abort
     */
    if (num_out + O_STACK_PAD + penum->o_stack_depth != ref_stack_count(&o_stack)) {
	stack_depth_adjust = ref_stack_count(&o_stack) - penum->o_stack_depth;
	
	if (stack_depth_adjust < 0) {
	    /*
	     * If we get to here then there were major problems.  The function
	     * removed too many items off of the stack.  We had placed extra
	     * (unused) stack stack space to allow for this but the function
	     * exceeded even that.  Data on the stack may have been lost.
	     * The only thing that we can do is move the stack pointer back and
	     * hope.  (We have not seen real Postscript files that have this
	     * problem.)
	     */
	    push(-stack_depth_adjust);
	    ifree_object(penum->pfn, "sampled_data_continue(pfn)");
	    ifree_object(penum, "sampled_data_continue((enum)");
	    return_error(e_undefinedresult);
	}
    }
    
    /* Save data from the given function */
    data_ptr = cube_ptr_from_index(params, penum->indexes);
    for (i=0; i < num_out; i++) {
	ulong cv;
        double value;
	double rmin = params->Range[2 * i];
	double rmax = params->Range[2 * i + 1];

        code = real_param(op + i - num_out + 1, &value);
        if (code < 0)
	    return code;
	if (value < rmin)
	    value = rmin;
	else if (value > rmax)
	    value = rmax;
	value = (value - rmin) / (rmax - rmin);		/* Convert to 0 to 1.0 */
	cv = (int) (value * sampled_data_value_max + 0.5);
	for (j = 0; j < bps; j++)
	    data_ptr[bps * i + j] = (byte)(cv >> ((bps - 1 - j) * 8));	/* MSB first */
    }
    pop(num_out);		    /* Move op to base of result values */
    
    /* Check if we are done collecting data. */

    if (increment_cube_indexes(params, penum->indexes)) {
	if (stack_depth_adjust == 0)
	    pop(O_STACK_PAD);	    /* Remove spare stack space */
	else
	    pop(stack_depth_adjust - num_out);
	/* Execute the closing procedure, if given */
	code = 0;
	if (esp_finish_proc != 0)
	    code = esp_finish_proc(i_ctx_p);

	return code;
    } else {
	if (stack_depth_adjust) {
	    stack_depth_adjust -= num_out;
	    push(O_STACK_PAD - stack_depth_adjust);
	    for (i=0;i<O_STACK_PAD - stack_depth_adjust;i++)
		make_null(op - i);
	}
    }

    /* Now get the data for the next location */

    return sampled_data_sample(i_ctx_p);
}

/*
 * We have collected all of the sample data.  Create a type 0 function stucture.
 */
static int
sampled_data_finish(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_sampled_data_enum *penum = senum;
    /* Build a type 0 function using the given parameters */
    gs_function_Sd_params_t * params =
	(gs_function_Sd_params_t *)&penum->pfn->params;
    gs_function_t * pfn;
    ref cref;			/* closure */
    int code = gs_function_Sd_init(&pfn, params, imemory);

    if (code < 0)
	return code;

    code = ialloc_ref_array(&cref, a_executable | a_execute, 2,
			    "sampled_data_finish(cref)");
    if (code < 0)
	return code;

    make_istruct_new(cref.value.refs, a_executable | a_execute, pfn);
    make_oper_new(cref.value.refs + 1, 0, zexecfunction);
    ref_assign(op, &cref);

    esp -= estack_storage;
    ifree_object(penum->pfn, "sampled_data_finish(pfn)");
    ifree_object(penum, "sampled_data_finish(enum)");
    return o_pop_estack;
}

int make_sampled_function(i_ctx_t * i_ctx_p, ref *arr, ref *pproc, gs_function_t **func)
{
    int code = 0, *ptr, i, total_size, num_components, CIESubst;
    byte * bytes = 0;
    float *fptr;
    gs_function_t *pfn = *func;
    gs_function_Sd_params_t params = {0};
    ref alternatespace, *palternatespace = &alternatespace;
    PS_colour_space_t *space, *altspace;

    code = get_space_object(i_ctx_p, arr, &space);
    if (code < 0)
	return code;
    if (!space->alternateproc)
	return e_typecheck;
    code = space->alternateproc(i_ctx_p, arr, &palternatespace, &CIESubst);
    if (code < 0)
	return code;
    code = get_space_object(i_ctx_p, palternatespace, &altspace);
    if (code < 0)
	return code;
    /*
     * Set up the hyper cube function data structure.
     */
    params.Order = 3;
    params.BitsPerSample = 16;

    code = space->numcomponents(i_ctx_p, arr, &num_components);    
    if (code < 0)
	return code;
    fptr = (float *)gs_alloc_byte_array(imemory, num_components * 2, sizeof(float), "make_sampled_function(Domain)");
    if (!fptr)
	return e_VMerror;
    code = space->domain(i_ctx_p, arr, fptr);    
    if (code < 0) {
	gs_free_const_object(imemory, fptr, "make_sampled_function(Domain)");
	return code;
    }
    params.Domain = fptr;
    params.m = num_components;

    code = altspace->numcomponents(i_ctx_p, palternatespace, &num_components);    
    if (code < 0) {
	gs_free_const_object(imemory, params.Domain, "make_type4_function(Domain)");
	return code;
    }
    fptr = (float *)gs_alloc_byte_array(imemory, num_components * 2, sizeof(float), "make_sampled_function(Range)");
    if (!fptr) {
	gs_free_const_object(imemory, params.Domain, "make_sampled_function(Domain)");
	return e_VMerror;
    }
    code = altspace->range(i_ctx_p, palternatespace, fptr);    
    if (code < 0) {
	gs_free_const_object(imemory, params.Domain, "make_sampled_function(Domain)");
	gs_free_const_object(imemory, fptr, "make_sampled_function(Range)");
	return code;
    }
    params.Range = fptr;
    params.n = num_components;

    /*
     * The Size array may or not be specified.  If it is not specified then
     * we need to determine a set of default values for the Size array.
     */
    ptr = (int *)gs_alloc_byte_array(imemory, params.m, sizeof(int), "Size");
    if (ptr == NULL) {
	code = gs_note_error(e_VMerror);
	goto fail;
    }
    params.Size = ptr;
    /*
     * Determine a default
     * set of values.
     */
    code = determine_sampled_data_size(params.m, params.n,
     			params.BitsPerSample, (int *)params.Size);
    if (code < 0)
	goto fail;
    /*
     * Determine space required for the sample data storage.
     */
    total_size = params.n * bits2bytes(params.BitsPerSample);
    for (i = 0; i < params.m; i++)
	total_size *= params.Size[i];
    /*
     * Allocate space for the data cube itself.
     */
    bytes = gs_alloc_byte_array(imemory, total_size, 1, "cube_build_func0(bytes)");
    if (!bytes) {
	code = gs_note_error(e_VMerror);
	goto fail;
    }
    data_source_init_bytes(&params.DataSource,
    				(const unsigned char *)bytes, total_size);

    /*
     * This is temporary.  We will call gs_function_Sd_init again after
     * we have collected the cube data.  We are doing it now because we need
     * a function structure created (along with its GC enumeration stuff)
     * that we can use while collecting the cube data.  We will call
     * the routine again after the cube data is collected to correctly
     * initialize the function.
     */
    code = gs_function_Sd_init(&pfn, &params, imemory);
    if (code < 0)
	return code;
    /*
     * Now setup to collect the sample data.
     */
    return sampled_data_setup(i_ctx_p, pfn, pproc, sampled_data_finish, imemory);

fail:
    gs_function_Sd_free_params(&params, imemory);
    return (code < 0 ? code : gs_note_error(e_rangecheck));
}

/* ------ Initialization procedure ------ */

const op_def zfsample_op_defs[] =
{
    op_def_begin_level2(),
    {"1.buildsampledfunction", zbuildsampledfunction},
    op_def_end(0)
};