File: zht2.c

package info (click to toggle)
ghostscript 8.71~dfsg2-9+squeeze1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 79,896 kB
  • ctags: 80,654
  • sloc: ansic: 501,432; sh: 25,689; python: 4,853; cpp: 3,633; perl: 3,597; tcl: 1,480; makefile: 1,187; lisp: 407; asm: 284; xml: 263; awk: 66; csh: 17; yacc: 15
file content (541 lines) | stat: -rw-r--r-- 15,834 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id: zht2.c 10528 2009-12-19 01:16:49Z alexcher $ */
/* Level 2 sethalftone operator */
#include "ghost.h"
#include "oper.h"
#include "gsstruct.h"
#include "gxdevice.h"		/* for gzht.h */
#include "gzht.h"
#include "estack.h"
#include "ialloc.h"
#include "iddict.h"
#include "idparam.h"
#include "igstate.h"
#include "icolor.h"
#include "iht.h"
#include "store.h"
#include "iname.h"
#include "zht2.h"

/* Forward references */
static int dict_spot_params(const ref *, gs_spot_halftone *, ref *, ref *);
static int dict_spot_results(i_ctx_t *, ref *, const gs_spot_halftone *);
static int dict_threshold_params(const ref *, gs_threshold_halftone *,
				  ref *);
static int dict_threshold2_params(const ref *, gs_threshold2_halftone *,
				   ref *, gs_memory_t *);

/*
 * This routine translates a gs_separation_name value into a character string
 * pointer and a string length.
 */
int
gs_get_colorname_string(const gs_memory_t *mem, gs_separation_name colorname_index,
			unsigned char **ppstr, unsigned int *pname_size)
{
    ref nref;

    name_index_ref(mem, colorname_index, &nref);
    name_string_ref(mem, &nref, &nref);
    return obj_string_data(mem, &nref, (const unsigned char**) ppstr, pname_size);
}

/* Dummy spot function */
static float
spot1_dummy(floatp x, floatp y)
{
    return (x + y) / 2;
}

/* <dict> <dict5> .sethalftone5 - */
static int sethalftone_finish(i_ctx_t *);
static int sethalftone_cleanup(i_ctx_t *);
static int
zsethalftone5(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    uint count;
    gs_halftone_component *phtc = 0;
    gs_halftone_component *pc;
    int code = 0;
    int j;
    gs_halftone *pht = 0;
    gx_device_halftone *pdht = 0;
    ref sprocs[GS_CLIENT_COLOR_MAX_COMPONENTS + 1];
    ref tprocs[GS_CLIENT_COLOR_MAX_COMPONENTS + 1];
    gs_memory_t *mem;
    uint edepth = ref_stack_count(&e_stack);
    int npop = 2;
    int dict_enum = dict_first(op);
    ref rvalue[2];
    int cname, colorant_number;
    byte * pname;
    uint name_size;
    int halftonetype, type = 0;
    gs_state *pgs = igs;
    int space_index = r_space_index(op - 1);

    mem = (gs_memory_t *) idmemory->spaces_indexed[space_index];

    check_type(*op, t_dictionary);
    check_dict_read(*op);
    check_type(op[-1], t_dictionary);
    check_dict_read(op[-1]);
 
    /*
     * We think that Type 2 and Type 4 halftones, like
     * screens set by setcolorscreen, adapt automatically to
     * the device color space, so we need to mark them
     * with a different internal halftone type.
     */
    code = dict_int_param(op - 1, "HalftoneType", 1, 100, 0, &type);
    if (code < 0)
          return code;
    halftonetype = (type == 2 || type == 4)
    			? ht_type_multiple_colorscreen
			: ht_type_multiple;

    /* Count how many components that we will actually use. */

    for (count = 0; ;) {
	bool have_default = false;

	/* Move to next element in the dictionary */
	if ((dict_enum = dict_next(op, dict_enum, rvalue)) == -1)
	    break;
	/*
	 * Verify that we have a valid component.  We may have a
	 * /HalfToneType entry.
	 */
  	if (!r_has_type(&rvalue[1], t_dictionary))
	    continue;

	/* Get the name of the component  verify that we will use it. */
	cname = name_index(mem, &rvalue[0]);
	code = gs_get_colorname_string(mem, cname, &pname, &name_size);
	if (code < 0)
	    break;
	colorant_number = gs_cname_to_colorant_number(pgs, pname, name_size,
						halftonetype);
	if (colorant_number < 0)
	    continue;
	else if (colorant_number == GX_DEVICE_COLOR_MAX_COMPONENTS) {
	    /* If here then we have the "Default" component */
	    if (have_default)
		return_error(e_rangecheck);
	    have_default = true;
	}

	count++;
	/*
	 * Check to see if we have already reached the legal number of
	 * components.
	 */
	if (count > GS_CLIENT_COLOR_MAX_COMPONENTS + 1) {
	    code = gs_note_error(e_rangecheck);
	    break;
        }
    }
    if (code >= 0) {
        check_estack(5);		/* for sampling Type 1 screens */
        refset_null(sprocs, count);
        refset_null(tprocs, count);
        rc_alloc_struct_0(pht, gs_halftone, &st_halftone,
		          imemory, pht = 0, ".sethalftone5");
        phtc = gs_alloc_struct_array(mem, count, gs_halftone_component,
				     &st_ht_component_element,
				     ".sethalftone5");
        rc_alloc_struct_0(pdht, gx_device_halftone, &st_device_halftone,
		          imemory, pdht = 0, ".sethalftone5");
        if (pht == 0 || phtc == 0 || pdht == 0) {
	    j = 0; /* Quiet the compiler: 
	              gs_note_error isn't necessarily identity, 
		      so j could be left ununitialized. */
	    code = gs_note_error(e_VMerror);
        }
    }
    if (code >= 0) {
        dict_enum = dict_first(op);
	for (j = 0, pc = phtc; ;) {
	    int type;

	    /* Move to next element in the dictionary */
	    if ((dict_enum = dict_next(op, dict_enum, rvalue)) == -1)
	        break;
	    /*
	     * Verify that we have a valid component.  We may have a
	     * /HalfToneType entry.
	     */
  	    if (!r_has_type(&rvalue[1], t_dictionary))
		continue;

	    /* Get the name of the component */
	    cname = name_index(mem, &rvalue[0]);
	    code = gs_get_colorname_string(mem, cname, &pname, &name_size);
	    if (code < 0)
	        break;
	    colorant_number = gs_cname_to_colorant_number(pgs, pname, name_size,
						halftonetype);
	    if (colorant_number < 0)
		continue;		/* Do not use this component */
	    pc->cname = cname;
	    pc->comp_number = colorant_number;

	    /* Now process the component dictionary */
	    check_dict_read(rvalue[1]);
	    if (dict_int_param(&rvalue[1], "HalftoneType", 1, 7, 0, &type) < 0) {
		code = gs_note_error(e_typecheck);
		break;
	    }
	    switch (type) {
		default:
		    code = gs_note_error(e_rangecheck);
		    break;
		case 1:
		    code = dict_spot_params(&rvalue[1], &pc->params.spot,
		    				sprocs + j, tprocs + j);
		    pc->params.spot.screen.spot_function = spot1_dummy;
		    pc->type = ht_type_spot;
		    break;
		case 3:
		    code = dict_threshold_params(&rvalue[1], &pc->params.threshold,
		    					tprocs + j);
		    pc->type = ht_type_threshold;
		    break;
		case 7:
		    code = dict_threshold2_params(&rvalue[1], &pc->params.threshold2,
		    					tprocs + j, imemory);
		    pc->type = ht_type_threshold2;
		    break;
	    }
	    if (code < 0)
		break;
	    pc++;
	    j++;
	}
    }
    if (code >= 0) {
	pht->type = halftonetype;
	pht->params.multiple.components = phtc;
	pht->params.multiple.num_comp = j;
	pht->params.multiple.get_colorname_string = gs_get_colorname_string;
	code = gs_sethalftone_prepare(igs, pht, pdht);
    }
    if (code >= 0) {
	/*
	 * Put the actual frequency and angle in the spot function component dictionaries.
	 */
	dict_enum = dict_first(op);
	for (pc = phtc; ; ) {
	    /* Move to next element in the dictionary */
	    if ((dict_enum = dict_next(op, dict_enum, rvalue)) == -1)
		break;

	    /* Verify that we have a valid component */
	    if (!r_has_type(&rvalue[1], t_dictionary))
		continue;

	    /* Get the name of the component and verify that we will use it. */
	    cname = name_index(mem, &rvalue[0]);
	    code = gs_get_colorname_string(mem, cname, &pname, &name_size);
	    if (code < 0)
	        break;
	    colorant_number = gs_cname_to_colorant_number(pgs, pname, name_size,
						halftonetype);
	    if (colorant_number < 0)
		continue;

	    if (pc->type == ht_type_spot) {
		code = dict_spot_results(i_ctx_p, &rvalue[1], &pc->params.spot);
		if (code < 0)
		    break;
	    }
	    pc++;
	}
    }
    if (code >= 0) {
	/*
	 * Schedule the sampling of any Type 1 screens,
	 * and any (Type 1 or Type 3) TransferFunctions.
	 * Save the stack depths in case we have to back out.
	 */
	uint odepth = ref_stack_count(&o_stack);
	ref odict, odict5;

	odict = op[-1];
	odict5 = *op;
	pop(2);
	op = osp;
	esp += 5;
	make_mark_estack(esp - 4, es_other, sethalftone_cleanup);
	esp[-3] = odict;
	make_istruct(esp - 2, 0, pht);
	make_istruct(esp - 1, 0, pdht);
	make_op_estack(esp, sethalftone_finish);
	for (j = 0; j < count; j++) {
	    gx_ht_order *porder = NULL;

	    if (pdht->components == 0)
		porder = &pdht->order;
	    else {
		/* Find the component in pdht that matches component j in
		   the pht; gs_sethalftone_prepare() may permute these. */
		int k;
		int comp_number = phtc[j].comp_number;
		for (k = 0; k < count; k++) {
		    if (pdht->components[k].comp_number == comp_number) {
			porder = &pdht->components[k].corder;
			break;
		    }
		}
	    }
	    switch (phtc[j].type) {
	    case ht_type_spot:
		code = zscreen_enum_init(i_ctx_p, porder,
					 &phtc[j].params.spot.screen,
					 &sprocs[j], 0, 0, space_index);
		if (code < 0)
		    break;
		/* falls through */
	    case ht_type_threshold:
		if (!r_has_type(tprocs + j, t__invalid)) {
		    /* Schedule TransferFunction sampling. */
		    /****** check_xstack IS WRONG ******/
		    check_ostack(zcolor_remap_one_ostack);
		    check_estack(zcolor_remap_one_estack);
		    code = zcolor_remap_one(i_ctx_p, tprocs + j,
					    porder->transfer, igs,
					    zcolor_remap_one_finish);
		    op = osp;
		}
		break;
	    default:	/* not possible here, but to keep */
				/* the compilers happy.... */
		;
	    }
	    if (code < 0) {	/* Restore the stack. */
		ref_stack_pop_to(&o_stack, odepth);
		ref_stack_pop_to(&e_stack, edepth);
		op = osp;
		op[-1] = odict;
		*op = odict5;
		break;
	    }
	    npop = 0;
	}
    }
    if (code < 0) {
	gs_free_object(mem, pdht, ".sethalftone5");
	gs_free_object(mem, phtc, ".sethalftone5");
	gs_free_object(mem, pht, ".sethalftone5");
	return code;
    }
    pop(npop);
    return (ref_stack_count(&e_stack) > edepth ? o_push_estack : 0);
}

/* Install the halftone after sampling. */
static int
sethalftone_finish(i_ctx_t *i_ctx_p)
{
    gx_device_halftone *pdht = r_ptr(esp, gx_device_halftone);
    int code;

    if (pdht->components)
	pdht->order = pdht->components[0].corder;
    code = gx_ht_install(igs, r_ptr(esp - 1, gs_halftone), pdht);
    if (code < 0)
	return code;
    istate->halftone = esp[-2];
    esp -= 4;
    sethalftone_cleanup(i_ctx_p);
    return o_pop_estack;
}
/* Clean up after installing the halftone. */
static int
sethalftone_cleanup(i_ctx_t *i_ctx_p)
{
    gx_device_halftone *pdht = r_ptr(&esp[4], gx_device_halftone);
    gs_halftone *pht = r_ptr(&esp[3], gs_halftone);

    gs_free_object(pdht->rc.memory, pdht,
		   "sethalftone_cleanup(device halftone)");
    gs_free_object(pht->rc.memory, pht,
		   "sethalftone_cleanup(halftone)");
    return 0;
}

/* ------ Initialization procedure ------ */

const op_def zht2_l2_op_defs[] =
{
    op_def_begin_level2(),
    {"2.sethalftone5", zsethalftone5},
		/* Internal operators */
    {"0%sethalftone_finish", sethalftone_finish},
    op_def_end(0)
};

/* ------ Internal routines ------ */

/* Extract frequency, angle, spot function, and accurate screens flag */
/* from a dictionary. */
static int
dict_spot_params(const ref * pdict, gs_spot_halftone * psp,
		 ref * psproc, ref * ptproc)
{
    int code;

    check_dict_read(*pdict);
    if ((code = dict_float_param(pdict, "Frequency", 0.0,
				 &psp->screen.frequency)) != 0 ||
	(code = dict_float_param(pdict, "Angle", 0.0,
				 &psp->screen.angle)) != 0 ||
      (code = dict_proc_param(pdict, "SpotFunction", psproc, false)) != 0 ||
	(code = dict_bool_param(pdict, "AccurateScreens",
				gs_currentaccuratescreens(),
				&psp->accurate_screens)) < 0 ||
      (code = dict_proc_param(pdict, "TransferFunction", ptproc, false)) < 0
	)
	return (code < 0 ? code : e_undefined);
    psp->transfer = (code > 0 ? (gs_mapping_proc) 0 : gs_mapped_transfer);
    psp->transfer_closure.proc = 0;
    psp->transfer_closure.data = 0;
    return 0;
}

/* Set actual frequency and angle in a dictionary. */
static int
dict_real_result(i_ctx_t *i_ctx_p, ref * pdict, const char *kstr, floatp val)
{
    int code = 0;
    ref *ignore;

    if (dict_find_string(pdict, kstr, &ignore) > 0) {
	ref rval;

	check_dict_write(*pdict);
	make_real(&rval, val);
	code = idict_put_string(pdict, kstr, &rval);
    }
    return code;
}
static int
dict_spot_results(i_ctx_t *i_ctx_p, ref * pdict, const gs_spot_halftone * psp)
{
    int code;

    code = dict_real_result(i_ctx_p, pdict, "ActualFrequency",
			    psp->screen.actual_frequency);
    if (code < 0)
	return code;
    return dict_real_result(i_ctx_p, pdict, "ActualAngle",
			    psp->screen.actual_angle);
}

/* Extract Width, Height, and TransferFunction from a dictionary. */
static int
dict_threshold_common_params(const ref * pdict,
			     gs_threshold_halftone_common * ptp,
			     ref **pptstring, ref *ptproc)
{
    int code;

    check_dict_read(*pdict);
    if ((code = dict_int_param(pdict, "Width", 1, 0x7fff, -1,
			       &ptp->width)) < 0 ||
	(code = dict_int_param(pdict, "Height", 1, 0x7fff, -1,
			       &ptp->height)) < 0 ||
	(code = dict_find_string(pdict, "Thresholds", pptstring)) <= 0 ||
      (code = dict_proc_param(pdict, "TransferFunction", ptproc, false)) < 0
	)
	return (code < 0 ? code : e_undefined);
    ptp->transfer_closure.proc = 0;
    ptp->transfer_closure.data = 0;
    return code;
}

/* Extract threshold common parameters + Thresholds. */
static int
dict_threshold_params(const ref * pdict, gs_threshold_halftone * ptp,
		      ref * ptproc)
{
    ref *tstring;
    int code =
	dict_threshold_common_params(pdict,
				     (gs_threshold_halftone_common *)ptp,
				     &tstring, ptproc);

    if (code < 0)
	return code;
    check_read_type_only(*tstring, t_string);
    if (r_size(tstring) != (long)ptp->width * ptp->height)
	return_error(e_rangecheck);
    ptp->thresholds.data = tstring->value.const_bytes;
    ptp->thresholds.size = r_size(tstring);
    ptp->transfer = (code > 0 ? (gs_mapping_proc) 0 : gs_mapped_transfer);
    return 0;
}

/* Extract threshold common parameters + Thresholds, Width2, Height2, */
/* BitsPerSample. */
static int
dict_threshold2_params(const ref * pdict, gs_threshold2_halftone * ptp,
		       ref * ptproc, gs_memory_t *mem)
{
    ref *tstring;
    int code =
	dict_threshold_common_params(pdict,
				     (gs_threshold_halftone_common *)ptp,
				     &tstring, ptproc);
    int bps;
    uint size;
    int cw2, ch2;

    if (code < 0 ||
	(code = cw2 = dict_int_param(pdict, "Width2", 0, 0x7fff, 0,
				     &ptp->width2)) < 0 ||
	(code = ch2 = dict_int_param(pdict, "Height2", 0, 0x7fff, 0,
				     &ptp->height2)) < 0 ||
	(code = dict_int_param(pdict, "BitsPerSample", 8, 16, -1, &bps)) < 0
	)
	return code;
    if ((bps != 8 && bps != 16) || cw2 != ch2 ||
	(!cw2 && (ptp->width2 == 0 || ptp->height2 == 0))
	)
	return_error(e_rangecheck);
    ptp->bytes_per_sample = bps / 8;
    switch (r_type(tstring)) {
    case t_string:
	size = r_size(tstring);
	gs_bytestring_from_string(&ptp->thresholds, tstring->value.const_bytes,
				  size);
	break;
    case t_astruct:
	if (gs_object_type(mem, tstring->value.pstruct) != &st_bytes)
	    return_error(e_typecheck);
	size = gs_object_size(mem, tstring->value.pstruct);
	gs_bytestring_from_bytes(&ptp->thresholds, r_ptr(tstring, byte),
				 0, size);
	break;
    default:
	return_error(e_typecheck);
    }
    check_read(*tstring);
    if (size != (ptp->width * ptp->height + ptp->width2 * ptp->height2) *
	ptp->bytes_per_sample)
	return_error(e_rangecheck);
    return 0;
}