File: zmath.c

package info (click to toggle)
ghostscript 8.71~dfsg2-9+squeeze1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 79,896 kB
  • ctags: 80,654
  • sloc: ansic: 501,432; sh: 25,689; python: 4,853; cpp: 3,633; perl: 3,597; tcl: 1,480; makefile: 1,187; lisp: 407; asm: 284; xml: 263; awk: 66; csh: 17; yacc: 15
file content (273 lines) | stat: -rw-r--r-- 5,878 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id: zmath.c 9778 2009-06-05 05:55:54Z alexcher $ */
/* Mathematical operators */
#include "math_.h"
#include "ghost.h"
#include "gxfarith.h"
#include "oper.h"
#include "store.h"

/*
 * Many of the procedures in this file are public only so they can be
 * called from the FunctionType 4 interpreter (zfunc4.c).
 */

/*
 * Define the current state of random number generator for operators.  We
 * have to implement this ourselves because the Unix rand doesn't provide
 * anything equivalent to rrand.  Note that the value always lies in the
 * range [0..0x7ffffffe], even if longs are longer than 32 bits.
 *
 * The state must be public so that context switching can save and
 * restore it.  (Even though the Red Book doesn't mention this,
 * we verified with Adobe that this is the case.)
 */
#define zrand_state (i_ctx_p->rand_state)

/* Initialize the random number generator. */
const long rand_state_initial = 1;

/****** NOTE: none of these operators currently ******/
/****** check for floating over- or underflow.	******/

/* <num> sqrt <real> */
int
zsqrt(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double num;
    int code = real_param(op, &num);

    if (code < 0)
	return code;
    if (num < 0.0)
	return_error(e_rangecheck);
    make_real(op, sqrt(num));
    return 0;
}

/* <num> arccos <real> */
static int
zarccos(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double num, result;
    int code = real_param(op, &num);

    if (code < 0)
	return code;
    result = acos(num) * radians_to_degrees;
    make_real(op, result);
    return 0;
}

/* <num> arcsin <real> */
static int
zarcsin(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double num, result;
    int code = real_param(op, &num);

    if (code < 0)
	return code;
    result = asin(num) * radians_to_degrees;
    make_real(op, result);
    return 0;
}

/* <num> <denom> atan <real> */
int
zatan(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double args[2];
    double result;
    int code = num_params(op, 2, args);

    if (code < 0)
	return code;
    code = gs_atan2_degrees(args[0], args[1], &result);
    if (code < 0)
	return code;
    make_real(op - 1, result);
    pop(1);
    return 0;
}

/* <num> cos <real> */
int
zcos(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double angle;
    int code = real_param(op, &angle);

    if (code < 0)
	return code;
    make_real(op, gs_cos_degrees(angle));
    return 0;
}

/* <num> sin <real> */
int
zsin(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double angle;
    int code = real_param(op, &angle);

    if (code < 0)
	return code;
    make_real(op, gs_sin_degrees(angle));
    return 0;
}

/* <base> <exponent> exp <real> */
int
zexp(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double args[2];
    double result;
    double ipart;
    int code = num_params(op, 2, args);

    if (code < 0)
	return code;
    if (args[0] < 0.0 && modf(args[1], &ipart) != 0.0)
	return_error(e_undefinedresult);
    if (args[0] == 0.0 && args[1] == 0.0)
	result = 1.0;		/* match Adobe; can't rely on C library */
    else
	result = pow(args[0], args[1]);
    make_real(op - 1, result);
    pop(1);
    return 0;
}

/* <posnum> ln <real> */
int
zln(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double num;
    int code = real_param(op, &num);

    if (code < 0)
	return code;
    if (num <= 0.0)
	return_error(e_rangecheck);
    make_real(op, log(num));
    return 0;
}

/* <posnum> log <real> */
int
zlog(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double num;
    int code = real_param(op, &num);

    if (code < 0)
	return code;
    if (num <= 0.0)
	return_error(e_rangecheck);
    make_real(op, log10(num));
    return 0;
}

/* - rand <int> */
static int
zrand(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

	/*
	 * We use an algorithm from CACM 31 no. 10, pp. 1192-1201,
	 * October 1988.  According to a posting by Ed Taft on
	 * comp.lang.postscript, Level 2 (Adobe) PostScript interpreters
	 * use this algorithm too:
	 *      x[n+1] = (16807 * x[n]) mod (2^31 - 1)
	 */
#define A 16807
#define M 0x7fffffff
#define Q 127773		/* M / A */
#define R 2836			/* M % A */
    zrand_state = A * (zrand_state % Q) - R * (zrand_state / Q);
    /* Note that zrand_state cannot be 0 here. */
    if (zrand_state <= 0)
	zrand_state += M;
#undef A
#undef M
#undef Q
#undef R
    push(1);
    make_int(op, zrand_state);
    return 0;
}

/* <int> srand - */
static int
zsrand(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    int state;

    check_type(*op, t_integer);
    state = op->value.intval;
    /*
     * The following somewhat bizarre adjustments are according to
     * public information from Adobe describing their implementation.
     */
    if (state < 1)
	state = -(state % 0x7ffffffe) + 1;
    else if (state > 0x7ffffffe)
	state = 0x7ffffffe;
    zrand_state = state;
    pop(1);
    return 0;
}

/* - rrand <int> */
static int
zrrand(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    push(1);
    make_int(op, zrand_state);
    return 0;
}

/* ------ Initialization procedure ------ */

const op_def zmath_op_defs[] =
{
    {"1arccos", zarccos},	/* extension */
    {"1arcsin", zarcsin},	/* extension */
    {"2atan", zatan},
    {"1cos", zcos},
    {"2exp", zexp},
    {"1ln", zln},
    {"1log", zlog},
    {"0rand", zrand},
    {"0rrand", zrrand},
    {"1sin", zsin},
    {"1sqrt", zsqrt},
    {"1srand", zsrand},
    op_def_end(0)
};