1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Alpha-buffering memory devices */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxdevice.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
#include "gzstate.h"
#include "gxdevcli.h"
/* ================ Alpha devices ================ */
/*
* These devices store 2 or 4 bits of alpha. They are a hybrid of a
* monobit device (for color mapping) and a 2- or 4-bit device (for painting).
* Currently, we only use them for character rasterizing, but they might be
* useful for other things someday.
*/
/* We can't initialize the device descriptor statically very well, */
/* so we patch up the image2 or image4 descriptor. */
static dev_proc_map_rgb_color(mem_alpha_map_rgb_color);
static dev_proc_map_color_rgb(mem_alpha_map_color_rgb);
static dev_proc_map_rgb_alpha_color(mem_alpha_map_rgb_alpha_color);
static dev_proc_copy_alpha(mem_alpha_copy_alpha);
void
gs_make_mem_alpha_device(gx_device_memory * adev, gs_memory_t * mem,
gx_device * target, int alpha_bits)
{
gs_make_mem_device(adev, gdev_mem_device_for_bits(alpha_bits),
mem, 0, target);
/* This is a black-and-white device ... */
adev->color_info = gdev_mem_device_for_bits(1)->color_info;
/* ... but it has multiple bits per pixel ... */
adev->color_info.depth = alpha_bits;
adev->graphics_type_tag = target->graphics_type_tag;
/* ... and different color mapping. */
set_dev_proc(adev, map_rgb_color, mem_alpha_map_rgb_color);
set_dev_proc(adev, map_color_rgb, mem_alpha_map_color_rgb);
set_dev_proc(adev, map_rgb_alpha_color, mem_alpha_map_rgb_alpha_color);
set_dev_proc(adev, copy_alpha, mem_alpha_copy_alpha);
}
/* Reimplement color mapping. */
static gx_color_index
mem_alpha_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
gx_color_index color = gx_forward_map_rgb_color(dev, cv);
return (color == 0 || color == gx_no_color_index ? color :
(gx_color_index) ((1 << mdev->log2_alpha_bits) - 1));
}
static int
mem_alpha_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
return
gx_forward_map_color_rgb(dev,
(color == 0 ? color : (gx_color_index) 1),
prgb);
}
static gx_color_index
mem_alpha_map_rgb_alpha_color(gx_device * dev, gx_color_value r,
gx_color_value g, gx_color_value b, gx_color_value alpha)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
gx_color_index color;
gx_color_value cv[3];
cv[0] = r; cv[1] = g; cv[2] = b;
color = gx_forward_map_rgb_color(dev, cv);
return (color == 0 || color == gx_no_color_index ? color :
(gx_color_index) (alpha >> (gx_color_value_bits -
mdev->log2_alpha_bits)));
}
/* Implement alpha copying. */
static int
mem_alpha_copy_alpha(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{ /* Just use copy_color. */
return (color == 0 ?
(*dev_proc(dev, fill_rectangle)) (dev, x, y, width, height,
color) :
(*dev_proc(dev, copy_color)) (dev, data, data_x, raster, id,
x, y, width, height));
}
/* ================ Alpha-buffer device ================ */
/*
* This device converts graphics sampled at a higher resolution to
* alpha values at a lower resolution. It does this by accumulating
* the bits of a band and then converting the band to alphas.
* In order to make this work, the client of the device must promise
* only to visit each band at most once, except possibly for a single
* scan line overlapping the adjacent band, and must promise only to write
* a single color into the output. In particular, this works
* within a single call on gx_fill_path (if the fill loop is constrained
* to process bands of limited height on each pass) or a single masked image
* scanned in Y order, but not across such calls and not for other
* kinds of painting operations.
*
* We implement this device as a subclass of a monobit memory device.
* (We put its state in the definition of gx_device_memory just because
* actual subclassing introduces a lot of needless boilerplate.)
* We only allocate enough bits for one band. The height of the band
* must be a multiple of the Y scale factor; the minimum height
* of the band is twice the Y scale factor.
*
* The bits in storage are actually a sliding window on the true
* oversampled image. To avoid having to copy the bits around when we
* move the window, we adjust the mapping between the client's Y values
* and our own, as follows:
* Client Stored
* ------ ------
* y0..y0+m-1 n-m..n-1
* y0+m..y0+n-1 0..n-m-1
* where n and m are multiples of the Y scale factor and 0 <= m <= n <=
* the height of the band. (In the device structure, m is called
* mapped_start and n is called mapped_height.) This allows us to slide
* the window incrementally in either direction without copying any bits.
*/
/* Procedures */
static dev_proc_close_device(mem_abuf_close);
static dev_proc_copy_mono(mem_abuf_copy_mono);
static dev_proc_fill_rectangle(mem_abuf_fill_rectangle);
static dev_proc_get_clipping_box(mem_abuf_get_clipping_box);
static dev_proc_fill_rectangle_hl_color(mem_abuf_fill_rectangle_hl_color);
/* The device descriptor. */
static const gx_device_memory mem_alpha_buffer_device =
mem_device_hl("image(alpha buffer)", 0, 1,
gx_forward_map_rgb_color, gx_forward_map_color_rgb,
mem_abuf_copy_mono, gx_default_copy_color, mem_abuf_fill_rectangle,
gx_no_strip_copy_rop, mem_abuf_fill_rectangle_hl_color);
/* Make an alpha-buffer memory device. */
/* We use abuf instead of alpha_buffer because */
/* gcc under VMS only retains 23 characters of procedure names. */
void
gs_make_mem_abuf_device(gx_device_memory * adev, gs_memory_t * mem,
gx_device * target, const gs_log2_scale_point * pscale,
int alpha_bits, int mapped_x, bool devn)
{
gs_make_mem_device(adev, &mem_alpha_buffer_device, mem, 0, target);
adev->max_fill_band = 1 << pscale->y;
adev->log2_scale = *pscale;
adev->log2_alpha_bits = alpha_bits >> 1; /* works for 1,2,4 */
adev->mapped_x = mapped_x;
set_dev_proc(adev, close_device, mem_abuf_close);
set_dev_proc(adev, get_clipping_box, mem_abuf_get_clipping_box);
if (!devn)
adev->save_hl_color = NULL; /* This is the test for when we flush the
the buffer as to what copy_alpha type
use */
adev->color_info.anti_alias.text_bits =
adev->color_info.anti_alias.graphics_bits =
alpha_bits;
adev->graphics_type_tag = target->graphics_type_tag;
}
/* Test whether a device is an alpha-buffering device. */
bool
gs_device_is_abuf(const gx_device * dev)
{ /* We can't just compare the procs, or even an individual proc, */
/* because we might be tracing. Instead, check the identity of */
/* the device name. */
return dev->dname == mem_alpha_buffer_device.dname;
}
/* Internal routine to flush a block of the buffer. */
/* A block is a group of scan lines whose initial Y is a multiple */
/* of the Y scale and whose height is equal to the Y scale. */
static int
abuf_flush_block(gx_device_memory * adev, int y)
{
gx_device *target = adev->target;
int block_height = 1 << adev->log2_scale.y;
int alpha_bits = 1 << adev->log2_alpha_bits;
int ddepth =
(adev->width >> adev->log2_scale.x) << adev->log2_alpha_bits;
uint draster = bitmap_raster(ddepth);
int buffer_y = y - adev->mapped_y + adev->mapped_start;
byte *bits;
if (buffer_y >= adev->height)
buffer_y -= adev->height;
bits = scan_line_base(adev, buffer_y);
{/*
* Many bits are typically zero. Save time by computing
* an accurate X bounding box before compressing.
* Unfortunately, in order to deal with alpha nibble swapping
* (see gsbitops.c), we can't expand the box only to pixel
* boundaries:
int alpha_mask = -1 << adev->log2_alpha_bits;
* Instead, we must expand it to byte boundaries,
*/
int alpha_mask = ~7;
gs_int_rect bbox;
int width;
bits_bounding_box(bits, block_height, adev->raster, &bbox);
bbox.p.x &= alpha_mask;
bbox.q.x = (bbox.q.x + ~alpha_mask) & alpha_mask;
width = bbox.q.x - bbox.p.x;
bits_compress_scaled(bits, bbox.p.x, width, block_height,
adev->raster, bits, draster, &adev->log2_scale,
adev->log2_alpha_bits);
/* Set up with NULL when adev initialized */
if (adev->save_hl_color == NULL) {
return (*dev_proc(target, copy_alpha)) (target,
bits, 0, draster, gx_no_bitmap_id,
(adev->mapped_x + bbox.p.x) >>
adev->log2_scale.x,
y >> adev->log2_scale.y,
width >> adev->log2_scale.x, 1,
adev->save_color, alpha_bits);
} else {
return (*dev_proc(target, copy_alpha_hl_color)) (target,
bits, 0, draster, gx_no_bitmap_id,
(adev->mapped_x + bbox.p.x) >>
adev->log2_scale.x,
y >> adev->log2_scale.y,
width >> adev->log2_scale.x, 1,
adev->save_hl_color, alpha_bits);
}
}
}
/* Flush the entire buffer. */
static int
abuf_flush(gx_device_memory * adev)
{
int y, code = 0;
int block_height = 1 << adev->log2_scale.y;
for (y = 0; y < adev->mapped_height; y += block_height)
if ((code = abuf_flush_block(adev, adev->mapped_y + y)) < 0)
return code;
adev->mapped_height = adev->mapped_start = 0;
return 0;
}
/* Close the device, flushing the buffer. */
static int
mem_abuf_close(gx_device * dev)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
int code = abuf_flush(mdev);
if (code < 0)
return code;
return mem_close(dev);
}
/*
* Framework for mapping a requested imaging operation to the buffer.
* For now, we assume top-to-bottom transfers and use a very simple algorithm.
*/
typedef struct y_transfer_s {
int y_next;
int height_left;
int transfer_y;
int transfer_height;
} y_transfer;
static void
y_transfer_init(y_transfer * pyt, gx_device * dev, int ty, int th)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
int bh = 1 << mdev->log2_scale.y;
if (ty < mdev->mapped_y || ty > mdev->mapped_y + mdev->mapped_height) {
abuf_flush(mdev);
mdev->mapped_y = ty & -bh;
mdev->mapped_height = bh;
memset(scan_line_base(mdev, 0), 0, bh * mdev->raster);
}
pyt->y_next = ty;
pyt->height_left = th;
pyt->transfer_height = 0;
}
/* while ( yt.height_left > 0 ) { y_transfer_next(&yt, mdev); ... } */
static int
y_transfer_next(y_transfer * pyt, gx_device * dev)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
int my = mdev->mapped_y, mh = mdev->mapped_height;
int ms = mdev->mapped_start;
int ty = pyt->y_next += pyt->transfer_height;
int th = pyt->height_left;
int bh = 1 << mdev->log2_scale.y;
/* From here on, we know that my <= ty <= my + mh. */
int tby, tbh;
if (ty == my + mh) { /* Add a new block at my1. */
if (mh == mdev->height) {
int code = abuf_flush_block(mdev, my);
if (code < 0)
return code;
mdev->mapped_y = my += bh;
if ((mdev->mapped_start = ms += bh) == mh)
mdev->mapped_start = ms = 0;
} else { /* Because we currently never extend backwards, */
/* we know we can't wrap around in this case. */
mdev->mapped_height = mh += bh;
}
memset(scan_line_base(mdev, (ms == 0 ? mh : ms) - bh),
0, bh * mdev->raster);
}
/* Now we know that my <= ty < my + mh. */
tby = ty - my + ms;
if (tby < mdev->height) {
tbh = mdev->height - ms;
if (tbh > mh)
tbh = mh;
tbh -= tby - ms;
} else { /* wrap around */
tby -= mdev->height;
tbh = ms + mh - dev->height - tby;
}
if_debug7('V',
"[V]abuf: my=%d, mh=%d, ms=%d, ty=%d, th=%d, tby=%d, tbh=%d\n",
my, mh, ms, ty, th, tby, tbh);
if (tbh > th)
tbh = th;
pyt->height_left = th - tbh;
pyt->transfer_y = tby;
pyt->transfer_height = tbh;
return 0;
}
/* Copy a monobit image. */
static int
mem_abuf_copy_mono(gx_device * dev,
const byte * base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
y_transfer yt;
if (zero != gx_no_color_index || one == gx_no_color_index)
return_error(gs_error_undefinedresult);
x -= mdev->mapped_x;
fit_copy_xyw(dev, base, sourcex, sraster, id, x, y, w, h); /* don't limit h */
if (w <= 0 || h <= 0)
return 0;
mdev->save_color = one;
y_transfer_init(&yt, dev, y, h);
while (yt.height_left > 0) {
int code = y_transfer_next(&yt, dev);
if (code < 0)
return code;
(*dev_proc(&mem_mono_device, copy_mono)) (dev,
base + (yt.y_next - y) * sraster,
sourcex, sraster, gx_no_bitmap_id,
x, yt.transfer_y, w, yt.transfer_height,
gx_no_color_index, (gx_color_index) 1);
}
return 0;
}
/* Fill a rectangle. */
static int
mem_abuf_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
gx_color_index color)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
y_transfer yt;
x -= mdev->mapped_x;
fit_fill_xy(dev, x, y, w, h);
fit_fill_w(dev, x, w); /* don't limit h */
/* or check w <= 0, h <= 0 */
mdev->save_color = color;
y_transfer_init(&yt, dev, y, h);
while (yt.height_left > 0) {
int code = y_transfer_next(&yt, dev);
if (code < 0)
return code;
(*dev_proc(&mem_mono_device, fill_rectangle)) (dev,
x, yt.transfer_y, w, yt.transfer_height,
(gx_color_index) 1);
}
return 0;
}
/* Fill a rectangle. */
static int
mem_abuf_fill_rectangle_hl_color(gx_device * dev, const gs_fixed_rect *rect,
const gs_imager_state *pis,
const gx_drawing_color *pdcolor,
const gx_clip_path *pcpath)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
y_transfer yt;
int x = rect->p.x;
int y = rect->p.y;
int w = rect->q.x - rect->p.x;
int h = rect->q.y - rect->p.y;
x -= mdev->mapped_x;
fit_fill_xy(dev, x, y, w, h);
fit_fill_w(dev, x, w); /* don't limit h */
/* or check w <= 0, h <= 0 */
mdev->save_hl_color = pdcolor;
y_transfer_init(&yt, dev, y, h);
while (yt.height_left > 0) {
int code = y_transfer_next(&yt, dev);
if (code < 0)
return code;
(*dev_proc(&mem_mono_device, fill_rectangle)) (dev,
x, yt.transfer_y, w, yt.transfer_height,
(gx_color_index) 1);
}
return 0;
}
/* Get the clipping box. We must scale this up by the number of alpha bits. */
static void
mem_abuf_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
{
gx_device_memory * const mdev = (gx_device_memory *)dev;
gx_device *tdev = mdev->target;
(*dev_proc(tdev, get_clipping_box)) (tdev, pbox);
pbox->p.x <<= mdev->log2_scale.x;
pbox->p.y <<= mdev->log2_scale.y;
pbox->q.x <<= mdev->log2_scale.x;
pbox->q.y <<= mdev->log2_scale.y;
}
/*
* Determine the number of bits of alpha buffer for a stroke or fill.
* We should do alpha buffering iff this value is >1.
*/
int
alpha_buffer_bits(gs_state * pgs)
{
gx_device *dev;
dev = gs_currentdevice_inline(pgs);
if (gs_device_is_abuf(dev)) {
/* We're already writing into an alpha buffer. */
return 0;
}
return (*dev_proc(dev, get_alpha_bits))
(dev, (pgs->in_cachedevice ? go_text : go_graphics));
}
|