1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* SuperVGA display drivers */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxarith.h" /* for ...log2 */
#include "gxdevice.h"
#include "gdevpccm.h"
#include "gdevpcfb.h"
#include "gdevsvga.h"
#include "gsparam.h"
/* The color map for dynamically assignable colors. */
#define first_dc_index 64
static int next_dc_index;
#define dc_hash_size 293 /* prime, >num_dc */
typedef struct {
ushort rgb, index;
} dc_entry;
static dc_entry dynamic_colors[dc_hash_size + 1];
#define num_colors 255
/* Macro for casting gx_device argument */
#define fb_dev ((gx_device_svga *)dev)
/* Procedure records */
#define svga_procs(open) {\
open, NULL /*get_initial_matrix*/,\
NULL /*sync_output*/, NULL /*output_page*/, svga_close,\
svga_map_rgb_color, svga_map_color_rgb,\
svga_fill_rectangle, NULL /*tile_rectangle*/,\
svga_copy_mono, svga_copy_color, NULL /*draw_line*/,\
svga_get_bits, NULL /*get_params*/, svga_put_params,\
NULL /*map_cmyk_color*/, NULL /*get_xfont_procs*/,\
NULL /*get_xfont_device*/, NULL /*map_rgb_alpha_color*/,\
gx_page_device_get_page_device, NULL /*get_alpha_bits*/,\
svga_copy_alpha\
}
/* Save the controller mode */
static int svga_save_mode = -1;
/* ------ Internal routines ------ */
#define regen 0xa000
/* Construct a pointer for writing a pixel. */
/* Assume 64K pages, 64K granularity. */
/* We know that y is within bounds. */
#define set_pixel_ptr(ptr, fbdev, x, y, wnum)\
{ ulong index = (ulong)(y) * fbdev->raster + (uint)(x);\
if ( (uint)(index >> 16) != fbdev->current_page )\
{ (*fbdev->set_page)(fbdev, (fbdev->current_page = index >> 16), wnum);\
}\
ptr = (fb_ptr)MK_PTR(regen, (ushort)index);\
}
#define set_pixel_write_ptr(ptr, fbdev, x, y)\
set_pixel_ptr(ptr, fbdev, x, y, fbdev->wnum_write)
#define set_pixel_read_ptr(ptr, fbdev, x, y)\
set_pixel_ptr(ptr, fbdev, x, y, fbdev->wnum_read)
/* Find the graphics mode for a desired width and height. */
/* Set the mode in the device structure and return 0, */
/* or return an error code. */
int
svga_find_mode(gx_device * dev, const mode_info * mip)
{
for (;; mip++) {
if (mip->width >= fb_dev->width &&
mip->height >= fb_dev->height ||
mip[1].mode < 0
) {
fb_dev->mode = mip;
gx_device_adjust_resolution(dev, mip->width, mip->height, 1);
fb_dev->raster = fb_dev->width;
return 0;
}
}
return_error(gs_error_rangecheck);
}
/* Set the index for writing into the color DAC. */
#define svga_dac_set_write_index(i) outportb(0x3c8, i)
/* Write 6-bit R,G,B values into the color DAC. */
#define svga_dac_write(r, g, b)\
(outportb(0x3c9, r), outportb(0x3c9, g), outportb(0x3c9, b))
/* ------ Common procedures ------ */
#define cv_bits(v,n) (v >> (gx_color_value_bits - n))
/* Initialize the dynamic color table, if any. */
void
svga_init_colors(gx_device * dev)
{
if (fb_dev->fixed_colors)
next_dc_index = num_colors;
else {
memset(dynamic_colors, 0,
(dc_hash_size + 1) * sizeof(dc_entry));
next_dc_index = first_dc_index;
}
}
/* Load the color DAC with the predefined colors. */
static void
svga_load_colors(gx_device * dev)
{
int ci;
svga_dac_set_write_index(0);
if (fb_dev->fixed_colors)
for (ci = 0; ci < num_colors; ci++) {
gx_color_value rgb[3];
pc_8bit_map_color_rgb(dev, (gx_color_index) ci, rgb);
svga_dac_write(cv_bits(rgb[0], 6), cv_bits(rgb[1], 6),
cv_bits(rgb[2], 6));
} else
for (ci = 0; ci < 64; ci++) {
static const byte c2[10] =
{0, 42, 0, 0, 0, 0, 0, 0, 21, 63};
svga_dac_write(c2[(ci >> 2) & 9], c2[(ci >> 1) & 9],
c2[ci & 9]);
}
}
/* Initialize the device structure and the DACs. */
int
svga_open(gx_device * dev)
{
fb_dev->x_pixels_per_inch =
fb_dev->y_pixels_per_inch =
fb_dev->height / PAGE_HEIGHT_INCHES;
/* Set the display mode. */
if (svga_save_mode < 0)
svga_save_mode = (*fb_dev->get_mode) ();
(*fb_dev->set_mode) (fb_dev->mode->mode);
svga_init_colors(dev);
svga_load_colors(dev);
fb_dev->current_page = -1;
return 0;
}
/* Close the device; reinitialize the display for text mode. */
int
svga_close(gx_device * dev)
{
if (svga_save_mode >= 0)
(*fb_dev->set_mode) (svga_save_mode);
svga_save_mode = -1;
return 0;
}
/* Map a r-g-b color to a palette index. */
/* The first 64 entries of the color map are set */
/* for compatibility with the older display modes: */
/* these are indexed as 0.0.R0.G0.B0.R1.G1.B1. */
gx_color_index
svga_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
ushort rgb;
gx_color_value r = cv[0], g = cv[1], b = cv[2];
if (fb_dev->fixed_colors) {
gx_color_index ci = pc_8bit_map_rgb_color(dev, cv);
/* Here is where we should permute the index to match */
/* the old color map... but we don't yet. */
return ci;
} {
ushort r5 = cv_bits(r, 5), g5 = cv_bits(g, 5), b5 = cv_bits(b, 5);
static const byte cube_bits[32] =
{0, 128, 128, 128, 128, 128, 128, 128, 128, 128,
8, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
1, 128, 128, 128, 128, 128, 128, 128, 128, 128,
9
};
uint cx = ((uint) cube_bits[r5] << 2) +
((uint) cube_bits[g5] << 1) +
(uint) cube_bits[b5];
/* Check for a color on the cube. */
if (cx < 64)
return (gx_color_index) cx;
/* Not on the cube, check the dynamic color table. */
rgb = (r5 << 10) + (g5 << 5) + b5;
}
{
register dc_entry *pdc;
for (pdc = &dynamic_colors[rgb % dc_hash_size];
pdc->rgb != 0; pdc++
)
if (pdc->rgb == rgb)
return (gx_color_index) (pdc->index);
if (pdc == &dynamic_colors[dc_hash_size]) { /* Wraparound */
for (pdc = &dynamic_colors[0]; pdc->rgb != 0; pdc++)
if (pdc->rgb == rgb)
return (gx_color_index) (pdc->index);
}
if (next_dc_index == num_colors) { /* No space left, report failure. */
return gx_no_color_index;
}
/* Not on the cube, and not in the dynamic table. */
/* Put in the dynamic table if space available. */
{
int i = next_dc_index++;
pdc->rgb = rgb;
pdc->index = i;
svga_dac_set_write_index(i);
svga_dac_write(cv_bits(r, 6), cv_bits(g, 6),
cv_bits(b, 6));
return (gx_color_index) i;
}
}
}
/* Map a color code to r-g-b. */
/* This routine must invert the transformation of the one above. */
/* Since this is practically never used, we just read the DAC. */
int
svga_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
uint cval;
outportb(0x3c7, (byte) color);
#define dacin() (cval = inportb(0x3c9) >> 1,\
((cval << 11) + (cval << 6) + (cval << 1) + (cval >> 4)) >>\
(16 - gx_color_value_bits))
prgb[0] = dacin();
prgb[1] = dacin();
prgb[2] = dacin();
#undef dacin
return 0;
}
/* Fill a rectangle. */
int
svga_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
gx_color_index color)
{
uint raster = fb_dev->raster;
ushort limit = (ushort) - raster;
int yi;
fb_ptr ptr;
fit_fill(dev, x, y, w, h);
set_pixel_write_ptr(ptr, fb_dev, x, y);
/* Most fills are very small and don't cross a page boundary. */
yi = h;
switch (w) {
case 0:
return 0; /* no-op */
case 1:
while (--yi >= 0 && PTR_OFF(ptr) < limit)
ptr[0] = (byte) color,
ptr += raster;
if (!++yi)
return 0;
break;
case 2:
while (--yi >= 0 && PTR_OFF(ptr) < limit)
ptr[0] = ptr[1] = (byte) color,
ptr += raster;
if (!++yi)
return 0;
break;
case 3:
while (--yi >= 0 && PTR_OFF(ptr) < limit)
ptr[0] = ptr[1] = ptr[2] = (byte) color,
ptr += raster;
if (!++yi)
return 0;
break;
case 4:
while (--yi >= 0 && PTR_OFF(ptr) < limit)
ptr[0] = ptr[1] = ptr[2] = ptr[3] = (byte) color,
ptr += raster;
if (!++yi)
return 0;
break;
default:
if (w < 0)
return 0;
/* Check for erasepage. */
if (w == dev->width && h == dev->height &&
color < first_dc_index
)
svga_init_colors(dev);
}
while (--yi >= 0) {
if (PTR_OFF(ptr) < limit) {
memset(ptr, (byte) color, w);
ptr += raster;
} else if (PTR_OFF(ptr) <= (ushort) (-w)) {
memset(ptr, (byte) color, w);
if (yi > 0)
set_pixel_write_ptr(ptr, fb_dev, x, y + h - yi);
} else {
uint left = (uint) 0x10000 - PTR_OFF(ptr);
memset(ptr, (byte) color, left);
set_pixel_write_ptr(ptr, fb_dev, x + left, y + h - 1 - yi);
memset(ptr, (byte) color, w - left);
ptr += raster - left;
}
}
return 0;
}
/* Copy a monochrome bitmap. The colors are given explicitly. */
/* Color = gx_no_color_index means transparent (no effect on the image). */
int
svga_copy_mono(gx_device * dev,
const byte * base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index czero, gx_color_index cone)
{
uint raster = fb_dev->raster;
ushort limit;
register int wi;
uint skip;
int yi;
register fb_ptr ptr = (fb_ptr) 0;
const byte *srow;
uint invert;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
limit = (ushort) - w;
skip = raster - w + 1;
srow = base + (sourcex >> 3);
#define izero (int)czero
#define ione (int)cone
if (ione == no_color) {
gx_color_index temp;
if (izero == no_color)
return 0; /* no-op */
temp = czero;
czero = cone;
cone = temp;
invert = ~0;
} else
invert = 0;
/* Pre-filling saves us a test in the loop, */
/* and since tiling is uncommon, we come out ahead. */
if (izero != no_color)
svga_fill_rectangle(dev, x, y, w, h, czero);
for (yi = 0; yi < h; yi++) {
const byte *sptr = srow;
uint bits;
int bitno = sourcex & 7;
wi = w;
if (PTR_OFF(ptr) <= skip) {
set_pixel_write_ptr(ptr, fb_dev, x, y + yi);
} else if (PTR_OFF(ptr) > limit) { /* We're crossing a page boundary. */
/* This is extremely rare, so it doesn't matter */
/* how slow it is. */
int xi = (ushort) - PTR_OFF(ptr);
svga_copy_mono(dev, srow, sourcex & 7, sraster,
gx_no_bitmap_id, x, y + yi, xi, 1,
gx_no_color_index, cone);
set_pixel_write_ptr(ptr, fb_dev, x + xi, y + yi);
sptr = srow - (sourcex >> 3) + ((sourcex + xi) >> 3);
bitno = (sourcex + xi) & 7;
wi -= xi;
}
bits = *sptr ^ invert;
switch (bitno) {
#define ifbit(msk)\
if ( bits & msk ) *ptr = (byte)ione;\
if ( !--wi ) break; ptr++
case 0:
bit0:ifbit(0x80);
case 1:
ifbit(0x40);
case 2:
ifbit(0x20);
case 3:
ifbit(0x10);
case 4:
ifbit(0x08);
case 5:
ifbit(0x04);
case 6:
ifbit(0x02);
case 7:
ifbit(0x01);
#undef ifbit
bits = *++sptr ^ invert;
goto bit0;
}
ptr += skip;
srow += sraster;
}
#undef izero
#undef ione
return 0;
}
/* Copy a color pixelmap. This is just like a bitmap, */
/* except that each pixel takes 8 bits instead of 1. */
int
svga_copy_color(gx_device * dev,
const byte * base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h)
{
int xi, yi;
int skip;
const byte *sptr;
fb_ptr ptr;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
skip = sraster - w;
sptr = base + sourcex;
for (yi = y; yi - y < h; yi++) {
ptr = 0;
for (xi = x; xi - x < w; xi++) {
if (PTR_OFF(ptr) == 0)
set_pixel_write_ptr(ptr, fb_dev, xi, yi);
*ptr++ = *sptr++;
}
sptr += skip;
}
return 0;
}
/* Put parameters. */
int
svga_put_params(gx_device * dev, gs_param_list * plist)
{
int ecode = 0;
int code;
const char *param_name;
if ((code = ecode) < 0 ||
(code = gx_default_put_params(dev, plist)) < 0
) {
}
return code;
}
/* Read scan lines back from the frame buffer. */
int
svga_get_bits(gx_device * dev, int y, byte * data, byte ** actual_data)
{
uint bytes_per_row = dev->width;
ushort limit = (ushort) - bytes_per_row;
fb_ptr src;
if (y < 0 || y >= dev->height)
return gs_error_rangecheck;
set_pixel_read_ptr(src, fb_dev, 0, y);
/* The logic here is similar to fill_rectangle. */
if (PTR_OFF(src) <= limit)
memcpy(data, src, bytes_per_row);
else {
uint left = (uint) 0x10000 - PTR_OFF(src);
memcpy(data, src, left);
set_pixel_read_ptr(src, fb_dev, left, y);
memcpy(data + left, src, bytes_per_row - left);
}
if (actual_data != 0)
*actual_data = data;
return 0;
}
/* Copy an alpha-map to the screen. */
/* Depth is 1, 2, or 4. */
static int
svga_copy_alpha(gx_device * dev, const byte * base, int sourcex,
int sraster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index color, int depth)
{
int xi, yi;
int skip;
const byte *sptr;
byte mask;
int ishift;
/* We fake alpha by interpreting it as saturation, i.e., */
/* alpha = 0 is white, alpha = 1 is the full color. */
byte shades[16];
gx_color_value rgb[3];
int log2_depth = depth >> 1; /* works for 1,2,4 */
int n1 = (1 << depth) - 1;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
shades[0] = (byte) svga_map_rgb_color(dev, gx_max_color_value,
gx_max_color_value,
gx_max_color_value);
shades[n1] = (byte) color;
if (n1 > 1) {
memset(shades + 1, 255, n1 - 1);
svga_map_color_rgb(dev, color, rgb);
}
skip = sraster - ((w * depth) >> 3);
sptr = base + (sourcex >> (3 - log2_depth));
mask = n1;
ishift = (~sourcex & (7 >> log2_depth)) << log2_depth;
for (yi = y; yi - y < h; yi++) {
fb_ptr ptr = 0;
int shift = ishift;
for (xi = x; xi - x < w; xi++, ptr++) {
uint a = (*sptr >> shift) & mask;
if (PTR_OFF(ptr) == 0)
set_pixel_write_ptr(ptr, fb_dev, xi, yi);
map:if (a != 0) {
byte ci = shades[a];
if (ci == 255) { /* Map the color now. */
#define make_shade(v, alpha, n1)\
(gx_max_color_value -\
((ulong)(gx_max_color_value - (v)) * (alpha) / (n1)))
gx_color_value r =
make_shade(rgb[0], a, n1);
gx_color_value g =
make_shade(rgb[1], a, n1);
gx_color_value b =
make_shade(rgb[2], a, n1);
gx_color_index sci =
svga_map_rgb_color(dev, r, g, b);
if (sci == gx_no_color_index) {
a += (n1 + 1 - a) >> 1;
goto map;
}
shades[a] = ci = (byte) sci;
}
*ptr = ci;
}
if (shift == 0)
shift = 8 - depth, sptr++;
else
shift -= depth;
}
sptr += skip;
}
return 0;
}
/* ------ The VESA device ------ */
static dev_proc_open_device(vesa_open);
static const gx_device_procs vesa_procs = svga_procs(vesa_open);
int vesa_get_mode(void);
void vesa_set_mode(int);
static void vesa_set_page(gx_device_svga *, int, int);
gx_device_svga far_data gs_vesa_device =
svga_device(vesa_procs, "vesa", vesa_get_mode, vesa_set_mode, vesa_set_page);
/* Define the structures for information returned by the BIOS. */
#define bits_include(a, m) !(~(a) & (m))
/* Information about the BIOS capabilities. */
typedef struct {
byte vesa_signature[4]; /* "VESA" */
ushort vesa_version;
char *product_info; /* product name string */
byte capabilities[4]; /* (undefined) */
ushort *mode_list; /* supported video modes, -1 ends */
} vga_bios_info;
/* Information about an individual VESA mode. */
typedef enum {
m_supported = 1,
m_graphics = 0x10
} mode_attribute;
typedef enum {
w_supported = 1,
w_readable = 2,
w_writable = 4
} win_attribute;
typedef struct {
ushort mode_attributes;
byte win_a_attributes;
byte win_b_attributes;
ushort win_granularity;
ushort win_size;
ushort win_a_segment;
ushort win_b_segment;
void (*win_func_ptr) (int, int);
ushort bytes_per_line;
/* Optional information */
ushort x_resolution;
ushort y_resolution;
byte x_char_size;
byte y_char_size;
byte number_of_planes;
byte bits_per_pixel;
byte number_of_banks;
byte memory_model;
byte bank_size;
/* Padding to 256 bytes */
byte _padding[256 - 29];
} vesa_info;
/* Read the device mode */
int
vesa_get_mode(void)
{
registers regs;
regs.h.ah = 0x4f;
regs.h.al = 0x03;
int86(0x10, ®s, ®s);
return regs.rshort.bx;
}
/* Set the device mode */
void
vesa_set_mode(int mode)
{
registers regs;
regs.h.ah = 0x4f;
regs.h.al = 0x02;
regs.rshort.bx = mode;
int86(0x10, ®s, ®s);
}
/* Read information about a device mode */
static int
vesa_get_info(int mode, vesa_info _ss * info)
{
registers regs;
struct SREGS sregs;
regs.h.ah = 0x4f;
regs.h.al = 0x01;
regs.rshort.cx = mode;
segread(&sregs);
sregs.es = sregs.ss;
regs.rshort.di = PTR_OFF(info);
int86x(0x10, ®s, ®s, &sregs);
#ifdef DEBUG
if (regs.h.ah == 0 && regs.h.al == 0x4f)
dlprintf8("vesa_get_info(%x): ma=%x wa=%x/%x wg=%x ws=%x wseg=%x/%x\n",
mode, info->mode_attributes,
info->win_a_attributes, info->win_b_attributes,
info->win_granularity, info->win_size,
info->win_a_segment, info->win_b_segment);
else
dlprintf3("vesa_get_info(%x) failed: ah=%x al=%x\n",
mode, regs.h.ah, regs.h.al);
#endif
return (regs.h.ah == 0 && regs.h.al == 0x4f ? 0 : -1);
}
/* Initialize the graphics mode. */
/* Shared routine to look up a VESA-compatible BIOS mode. */
static int
vesa_find_mode(gx_device * dev, const mode_info * mode_table)
{ /* Select the proper video mode */
vesa_info info;
const mode_info *mip;
for (mip = mode_table; mip->mode >= 0; mip++) {
if (mip->width >= fb_dev->width &&
mip->height >= fb_dev->height &&
vesa_get_info(mip->mode, &info) >= 0 &&
bits_include(info.mode_attributes,
m_supported | m_graphics) &&
info.win_granularity <= 64 &&
(info.win_granularity & (info.win_granularity - 1)) == 0 &&
info.win_size == 64 &&
bits_include(info.win_a_attributes,
w_supported) &&
info.win_a_segment == regen
) { /* Make sure we can both read & write. */
/* Initialize for the default case. */
fb_dev->wnum_read = 0;
fb_dev->wnum_write = 0;
if (bits_include(info.win_a_attributes,
w_readable | w_writable)
)
break;
else if (info.win_b_segment == regen &&
bits_include(info.win_b_attributes,
w_supported) &&
bits_include(info.win_a_attributes |
info.win_b_attributes,
w_readable | w_writable)
) { /* Two superimposed windows. */
if (!bits_include(info.win_a_attributes,
w_writable)
)
fb_dev->wnum_write = 1;
else
fb_dev->wnum_read = 1;
}
break;
}
}
if (mip->mode < 0)
return_error(gs_error_rangecheck); /* mode not available */
fb_dev->mode = mip;
gx_device_adjust_resolution(dev, mip->width, mip->height, 1);
fb_dev->info.vesa.bios_set_page = info.win_func_ptr;
fb_dev->info.vesa.pn_shift = ilog2(64 / info.win_granularity);
/* Reset the raster per the VESA info. */
fb_dev->raster = info.bytes_per_line;
return 0;
}
static int
vesa_open(gx_device * dev)
{
static const mode_info mode_table[] =
{
{640, 400, 0x100},
{640, 480, 0x101},
{800, 600, 0x103},
{1024, 768, 0x105},
{1280, 1024, 0x107},
{-1, -1, -1}
};
int code = vesa_find_mode(dev, mode_table);
if (code < 0)
return code;
return svga_open(dev);
}
/* Set the current display page. */
static void
vesa_set_page(gx_device_svga * dev, int pn, int wnum)
{
registers regs;
regs.rshort.dx = pn << dev->info.vesa.pn_shift;
regs.h.ah = 0x4f;
regs.h.al = 5;
regs.rshort.bx = wnum;
int86(0x10, ®s, ®s);
}
/* ------ The ATI Wonder device ------ */
static dev_proc_open_device(atiw_open);
static const gx_device_procs atiw_procs = svga_procs(atiw_open);
static int atiw_get_mode(void);
static void atiw_set_mode(int);
static void atiw_set_page(gx_device_svga *, int, int);
gx_device_svga far_data gs_atiw_device =
svga_device(atiw_procs, "atiw", atiw_get_mode, atiw_set_mode, atiw_set_page);
/* Read the device mode */
static int
atiw_get_mode(void)
{
registers regs;
regs.h.ah = 0xf;
int86(0x10, ®s, ®s);
return regs.h.al;
}
/* Set the device mode */
static void
atiw_set_mode(int mode)
{
registers regs;
regs.h.ah = 0;
regs.h.al = mode;
int86(0x10, ®s, ®s);
}
/* Initialize the graphics mode. */
static int
atiw_open(gx_device * dev)
{ /* Select the proper video mode */
{
static const mode_info mode_table[] =
{
{640, 400, 0x61},
{640, 480, 0x62},
{800, 600, 0x63},
{1024, 768, 0x64},
{-1, -1, -1}
};
int code = svga_find_mode(dev, mode_table);
if (code < 0)
return code; /* mode not available */
fb_dev->info.atiw.select_reg = *(int *)MK_PTR(0xc000, 0x10);
return svga_open(dev);
}
}
/* Set the current display page. */
static void
atiw_set_page(gx_device_svga * dev, int pn, int wnum)
{
int select_reg = dev->info.atiw.select_reg;
byte reg;
disable();
outportb(select_reg, 0xb2);
reg = inportb(select_reg + 1);
outportb(select_reg, 0xb2);
outportb(select_reg + 1, (reg & 0xe1) + (pn << 1));
enable();
}
/* ------ The Trident device ------ */
static dev_proc_open_device(tvga_open);
static const gx_device_procs tvga_procs = svga_procs(tvga_open);
/* We can use the atiw_get/set_mode procedures. */
static void tvga_set_page(gx_device_svga *, int, int);
gx_device_svga far_data gs_tvga_device =
svga_device(tvga_procs, "tvga", atiw_get_mode, atiw_set_mode, tvga_set_page);
/* Initialize the graphics mode. */
static int
tvga_open(gx_device * dev)
{
fb_dev->wnum_read = 1;
fb_dev->wnum_write = 0;
/* Select the proper video mode */
{
static const mode_info mode_table[] =
{
{640, 400, 0x5c},
{640, 480, 0x5d},
{800, 600, 0x5e},
{1024, 768, 0x62},
{-1, -1, -1}
};
int code = svga_find_mode(dev, mode_table);
if (code < 0)
return code; /* mode not available */
return svga_open(dev);
}
}
/* Set the current display page. */
static void
tvga_set_page(gx_device_svga * dev, int pn, int wnum)
{
/* new mode */
outportb(0x3c4, 0x0b);
inportb(0x3c4);
outportb(0x3c4, 0x0e);
outportb(0x3c5, pn ^ 2);
}
/* ------ The Tseng Labs ET3000/4000 devices ------ */
static dev_proc_open_device(tseng_open);
static const gx_device_procs tseng_procs =
svga_procs(tseng_open);
/* We can use the atiw_get/set_mode procedures. */
static void tseng_set_page(gx_device_svga *, int, int);
/* The 256-color Tseng device */
gx_device_svga far_data gs_tseng_device =
svga_device(tseng_procs, "tseng", atiw_get_mode, atiw_set_mode, tseng_set_page);
/* Initialize the graphics mode. */
static int
tseng_open(gx_device * dev)
{
fb_dev->wnum_read = 1;
fb_dev->wnum_write = 0;
/* Select the proper video mode */
{
static const mode_info mode_table[] =
{
{640, 350, 0x2d},
{640, 480, 0x2e},
{800, 600, 0x30},
{1024, 768, 0x38},
{-1, -1, -1}
};
int code = svga_find_mode(dev, mode_table);
volatile_fb_ptr p0 = (volatile_fb_ptr) MK_PTR(regen, 0);
if (code < 0)
return code; /* mode not available */
code = svga_open(dev);
if (code < 0)
return 0;
/* Figure out whether we have an ET3000 or an ET4000 */
/* by playing with the segment register. */
outportb(0x3cd, 0x44);
*p0 = 4; /* byte 0, page 4 */
outportb(0x3cd, 0x40);
*p0 = 3; /* byte 0, page 0 */
fb_dev->info.tseng.et_model = *p0;
/* read page 0 if ET3000, */
/* page 4 if ET4000 */
return 0;
}
}
/* Set the current display page. */
static void
tseng_set_page(gx_device_svga * dev, int pn, int wnum)
{ /* The ET3000 has read page = 5:3, write page = 2:0; */
/* the ET4000 has read page = 7:4, write page = 3:0. */
int shift = dev->info.tseng.et_model;
int mask = (1 << shift) - 1;
if (wnum)
pn <<= shift, mask <<= shift;
outportb(0x3cd, (inportb(0x3cd) & ~mask) + pn);
}
/* ------ The Cirrus device (CL-GD54XX) ------ */
/* Written by Piotr Strzelczyk, BOP s.c., Gda\'nsk, Poland, */
/* e-mail contact via B.Jackowski@GUST.org.pl */
static dev_proc_open_device(cirr_open);
static gx_device_procs cirr_procs = svga_procs(cirr_open);
/* We can use the atiw_get/set_mode procedures. */
static void cirr_set_page(gx_device_svga *, int, int);
gx_device_svga gs_cirr_device =
svga_device(cirr_procs, "cirr", atiw_get_mode, atiw_set_mode, cirr_set_page);
/* Initialize the graphics mode. */
static int
cirr_open(gx_device * dev)
{
fb_dev->wnum_read = 1;
fb_dev->wnum_write = 0;
/* Select the proper video mode */
{
static const mode_info mode_table[] =
{
{640, 400, 0x5e},
{640, 480, 0x5f},
{800, 600, 0x5c},
{1024, 768, 0x60},
{-1, -1, -1}
};
int code = svga_find_mode(dev, mode_table);
if (code < 0)
return code; /* mode not available */
outportb(0x3c4, 0x06);
outportb(0x3c5, 0x12);
outportb(0x3ce, 0x0b);
outportb(0x3cf, (inportb(0x3cf) & 0xde));
return svga_open(dev);
}
}
/* Set the current display page. */
static void
cirr_set_page(gx_device_svga * dev, int pn, int wnum)
{
outportb(0x3ce, 0x09);
outportb(0x3cf, pn << 4);
}
/* ------ The Avance Logic device (mostly experimental) ------ */
/* For questions about this device, please contact Stefan Freund */
/* <freund@ikp.uni-koeln.de>. */
static dev_proc_open_device(ali_open);
static const gx_device_procs ali_procs = svga_procs(ali_open);
/* We can use the atiw_get/set_mode procedures. */
static void ali_set_page(gx_device_svga *, int, int);
/* The 256-color Avance Logic device */
gx_device_svga gs_ali_device =
svga_device(ali_procs, "ali", atiw_get_mode, atiw_set_mode,
ali_set_page);
/* Initialize the graphics mode. */
static int
ali_open(gx_device * dev)
{
fb_dev->wnum_read = 1;
fb_dev->wnum_write = 0;
/* Select the proper video mode */
{
static const mode_info mode_table[] =
{
{640, 400, 0x29},
{640, 480, 0x2a},
{800, 600, 0x2c},
{1024, 768, 0x31},
{-1, -1, -1}
};
int code = svga_find_mode(dev, mode_table);
if (code < 0)
return code; /* mode not available */
return svga_open(dev);
}
}
/* Set the current display page. */
static void
ali_set_page(gx_device_svga * dev, int pn, int wnum)
{
outportb(0x3d6, pn); /* read */
outportb(0x3d7, pn); /* write */
}
|