1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Alpha-compositing implementation */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsalphac.h"
#include "gsiparam.h" /* for gs_image_alpha_t */
#include "gsutil.h" /* for gs_next_ids */
#include "gxalpha.h"
#include "gxcomp.h"
#include "gxdevice.h"
#include "gxgetbit.h"
#include "gxlum.h"
/* ---------------- Internal definitions ---------------- */
/* Define the parameters for a compositing operation. */
typedef struct gs_composite_params_s {
gs_composite_op_t cop;
float delta; /* only for dissolve */
uint source_alpha; /* only if !psource->alpha */
uint source_values[4]; /* only if !psource->data */
} gs_composite_params_t;
/* Define the source or destination for a compositing operation. */
#define pixel_row_fields(elt_type)\
elt_type *data;\
int bits_per_value; /* 1, 2, 4, 8, 12, 16 */\
int initial_x;\
gs_image_alpha_t alpha
typedef struct pixel_row_s {
pixel_row_fields(byte);
} pixel_row_t;
typedef struct const_pixel_row_s {
pixel_row_fields(const byte);
} const_pixel_row_t;
/*
* Composite two arrays of (premultiplied) pixel values. Legal values of
* values_per_pixel are 1-4, not including alpha. Note that if pdest->alpha
* is "none", the alpha value for all destination pixels will be taken as
* unity, and any operation that could generate alpha values other than
* unity will return an error. "Could generate" means that there are
* possible values of the source and destination alpha values for which the
* result has non-unity alpha: the error check does not scan the actual
* alpha data to test whether there are any actual values that would
* generate a non-unity alpha result.
*/
int composite_values(const pixel_row_t * pdest,
const const_pixel_row_t * psource,
int values_per_pixel, uint num_pixels,
const gs_composite_params_t * pcp);
/* ---------------- Alpha-compositing objects ---------------- */
/*
* Define which operations can generate non-unity alpha values in 3 of the 4
* cases of source and destination not having unity alphas. (This is always
* possible in the fourth case, both S & D non-unity, except for CLEAR.) We
* do this with a bit mask indexed by the operation, counting from the LSB.
* The name indicates whether S and/or D has non-unity alphas.
*/
#define alpha_out_notS_notD\
(1<<composite_Dissolve)
#define _alpha_out_either\
(alpha_out_notS_notD|(1<<composite_Satop)|(1<<composite_Datop)|\
(1<<composite_Xor)|(1<<composite_PlusD)|(1<<composite_PlusL))
#define alpha_out_S_notD\
(_alpha_out_either|(1<<composite_Copy)|(1<<composite_Sover)|\
(1<<composite_Din)|(1<<composite_Dout))
#define alpha_out_notS_D\
(_alpha_out_either|(1<<composite_Sin)|(1<<composite_Sout)|\
(1<<composite_Dover)|(1<<composite_Highlight))
/* ------ Object definition and creation ------ */
/* Define alpha-compositing objects. */
static composite_create_default_compositor_proc(c_alpha_create_default_compositor);
static composite_equal_proc(c_alpha_equal);
static composite_write_proc(c_alpha_write);
static composite_read_proc(c_alpha_read);
const gs_composite_type_t gs_composite_alpha_type =
{
GX_COMPOSITOR_ALPHA,
{
c_alpha_create_default_compositor,
c_alpha_equal,
c_alpha_write,
c_alpha_read,
gx_default_composite_adjust_ctm,
gx_default_composite_is_closing,
gx_default_composite_is_friendly,
gx_default_composite_clist_write_update,
gx_default_composite_clist_read_update,
gx_default_composite_get_cropping
}
};
typedef struct gs_composite_alpha_s {
gs_composite_common;
gs_composite_alpha_params_t params;
} gs_composite_alpha_t;
gs_private_st_simple(st_composite_alpha, gs_composite_alpha_t,
"gs_composite_alpha_t");
/* Create an alpha-compositing object. */
int
gs_create_composite_alpha(gs_composite_t ** ppcte,
const gs_composite_alpha_params_t * params, gs_memory_t * mem)
{
gs_composite_alpha_t *pcte;
pcte = gs_alloc_struct(mem, gs_composite_alpha_t, &st_composite_alpha,
"gs_create_composite_alpha");
if (pcte == NULL)
return_error(gs_error_VMerror);
pcte->type = &gs_composite_alpha_type;
pcte->id = gs_next_ids(mem, 1);
pcte->params = *params;
pcte->idle = false;
*ppcte = (gs_composite_t *) pcte;
return 0;
}
/* ------ Object implementation ------ */
#define pacte ((const gs_composite_alpha_t *)pcte)
static bool
c_alpha_equal(const gs_composite_t * pcte, const gs_composite_t * pcte2)
{
return (pcte2->type == pcte->type &&
#define pacte2 ((const gs_composite_alpha_t *)pcte2)
pacte2->params.op == pacte->params.op &&
(pacte->params.op != composite_Dissolve ||
pacte2->params.delta == pacte->params.delta));
#undef pacte2
}
static int
c_alpha_write(const gs_composite_t * pcte, byte * data, uint * psize, gx_device_clist_writer *cdev)
{
uint size = *psize;
uint used;
if_debug1('v', "[v]c_alpha_write(%d)\n", pacte->params.op);
if (pacte->params.op == composite_Dissolve) {
used = 1 + sizeof(pacte->params.delta);
if (size < used) {
*psize = used;
return_error(gs_error_rangecheck);
}
memcpy(data + 1, &pacte->params.delta, sizeof(pacte->params.delta));
} else {
used = 1;
if (size < used) {
*psize = used;
return_error(gs_error_rangecheck);
}
}
*data = (byte) pacte->params.op;
*psize = used;
return 0;
}
static int
c_alpha_read(gs_composite_t ** ppcte, const byte * data, uint size,
gs_memory_t * mem)
{
gs_composite_alpha_params_t params;
int code, nbytes = 1;
if (size < 1 || *data > composite_op_last)
return_error(gs_error_rangecheck);
params.op = *data;
if_debug1('v', "[v]c_alpha_read(%d)\n", params.op);
if (params.op == composite_Dissolve) {
if (size < 1 + sizeof(params.delta))
return_error(gs_error_rangecheck);
memcpy(¶ms.delta, data + 1, sizeof(params.delta));
nbytes += sizeof(params.delta);
}
code = gs_create_composite_alpha(ppcte, ¶ms, mem);
return code < 0 ? code : nbytes;
}
/* ---------------- Alpha-compositing device ---------------- */
/* Define the default alpha-compositing device. */
typedef struct gx_device_composite_alpha_s {
gx_device_forward_common;
gs_composite_alpha_params_t params;
} gx_device_composite_alpha;
gs_private_st_suffix_add0_final(st_device_composite_alpha,
gx_device_composite_alpha, "gx_device_composite_alpha",
device_c_alpha_enum_ptrs, device_c_alpha_reloc_ptrs, gx_device_finalize,
st_device_forward);
/* The device descriptor. */
static dev_proc_close_device(dca_close);
static dev_proc_fill_rectangle(dca_fill_rectangle);
static dev_proc_map_rgb_color(dca_map_rgb_color);
static dev_proc_map_color_rgb(dca_map_color_rgb);
static dev_proc_copy_mono(dca_copy_mono);
static dev_proc_copy_color(dca_copy_color);
static dev_proc_map_rgb_alpha_color(dca_map_rgb_alpha_color);
static dev_proc_map_color_rgb_alpha(dca_map_color_rgb_alpha);
static dev_proc_copy_alpha(dca_copy_alpha);
static const gx_device_composite_alpha gs_composite_alpha_device =
{std_device_std_body_open(gx_device_composite_alpha, 0,
"alpha compositor", 0, 0, 1, 1),
{gx_default_open_device,
gx_forward_get_initial_matrix,
gx_default_sync_output,
gx_default_output_page,
dca_close,
dca_map_rgb_color,
dca_map_color_rgb,
dca_fill_rectangle,
gx_default_tile_rectangle,
dca_copy_mono,
dca_copy_color,
gx_default_draw_line,
gx_default_get_bits,
gx_forward_get_params,
gx_forward_put_params,
gx_default_cmyk_map_cmyk_color, /* only called for CMYK */
gx_forward_get_xfont_procs,
gx_forward_get_xfont_device,
dca_map_rgb_alpha_color,
gx_forward_get_page_device,
gx_forward_get_alpha_bits,
dca_copy_alpha,
gx_forward_get_band,
gx_default_copy_rop,
gx_default_fill_path,
gx_default_stroke_path,
gx_default_fill_mask,
gx_default_fill_trapezoid,
gx_default_fill_parallelogram,
gx_default_fill_triangle,
gx_default_draw_thin_line,
gx_default_begin_image,
gx_default_image_data,
gx_default_end_image,
gx_default_strip_tile_rectangle,
gx_default_strip_copy_rop,
gx_forward_get_clipping_box,
gx_default_begin_typed_image,
gx_forward_get_bits_rectangle,
dca_map_color_rgb_alpha,
gx_no_create_compositor
}
};
/* Create an alpha compositor. */
static int
c_alpha_create_default_compositor(const gs_composite_t * pcte,
gx_device ** pcdev, gx_device * dev, gs_imager_state * pis,
gs_memory_t * mem)
{
gx_device_composite_alpha *cdev;
if (pacte->params.op == composite_Copy) {
/* Just use the original device. */
*pcdev = dev;
return 0;
}
cdev =
gs_alloc_struct_immovable(mem, gx_device_composite_alpha,
&st_device_composite_alpha,
"create default alpha compositor");
*pcdev = (gx_device *)cdev;
if (cdev == 0)
return_error(gs_error_VMerror);
gx_device_init((gx_device *)cdev,
(const gx_device *)&gs_composite_alpha_device, mem, true);
gx_device_copy_params((gx_device *)cdev, dev);
/*
* Set the color_info and depth to be compatible with the target,
* but using standard chunky color storage, including alpha.
****** CURRENTLY ALWAYS USE 8-BIT COLOR ******
*/
cdev->color_info.depth =
(dev->color_info.num_components == 4 ? 32 /* CMYK, no alpha */ :
(dev->color_info.num_components + 1) * 8);
cdev->color_info.max_gray = cdev->color_info.max_color = 255;
/* No halftoning will occur, but we fill these in anyway.... */
cdev->color_info.dither_grays = cdev->color_info.dither_colors = 256;
/*
* We could speed things up a little by tailoring the procedures in
* the device to the specific num_components, but for simplicity,
* we'll defer considering that until there is a demonstrated need.
*/
gx_device_set_target((gx_device_forward *)cdev, dev);
cdev->params = pacte->params;
return 0;
}
/* Close the device and free its storage. */
static int
dca_close(gx_device * dev)
{ /*
* Finalization will call close again: avoid a recursion loop.
*/
set_dev_proc(dev, close_device, gx_default_close_device);
gs_free_object(dev->memory, dev, "dca_close");
return 0;
}
/* ------ (RGB) color mapping ------ */
static gx_color_index
dca_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
return dca_map_rgb_alpha_color(dev, cv[0], cv[1], cv[2], gx_max_color_value);
}
static gx_color_index
dca_map_rgb_alpha_color(gx_device * dev,
gx_color_value red, gx_color_value green, gx_color_value blue,
gx_color_value alpha)
{ /*
* We work exclusively with premultiplied color values, so we
* have to premultiply the color components by alpha here.
*/
byte a = gx_color_value_to_byte(alpha);
#define premult_(c)\
(((c) * a + gx_max_color_value / 2) / gx_max_color_value)
#ifdef PREMULTIPLY_TOWARDS_WHITE
byte bias = ~a;
# define premult(c) (premult_(c) + bias)
#else
# define premult(c) premult_(c)
#endif
gx_color_index color;
if (dev->color_info.num_components == 1) {
uint lum =
(red * lum_red_weight + green * lum_green_weight +
blue * lum_blue_weight + lum_all_weights / 2) /
lum_all_weights;
if (a == 0xff)
color = gx_color_value_to_byte(lum);
else /* Premultiplication is necessary. */
color = premult(lum);
} else {
if (a == 0xff)
color =
((uint) gx_color_value_to_byte(red) << 16) +
((uint) gx_color_value_to_byte(green) << 8) +
gx_color_value_to_byte(blue);
else /* Premultiplication is necessary. */
color =
(premult(red) << 16) + (premult(green) << 8) + premult(blue);
}
#undef premult
return (color << 8) + a;
}
static int
dca_map_color_rgb(gx_device * dev, gx_color_index color,
gx_color_value prgb[3])
{
gx_color_value red = gx_color_value_from_byte((byte) (color >> 24));
byte a = (byte) color;
#define postdiv_(c)\
(((c) * 0xff + a / 2) / a)
#ifdef PREMULTIPLY_TOWARDS_WHITE
byte bias = ~a;
# define postdiv(c) postdiv_(c - bias)
#else
# define postdiv(c) postdiv_(c)
#endif
if (dev->color_info.num_components == 1) {
if (a != 0xff) {
/* Undo premultiplication. */
if (a == 0)
red = 0;
else
red = postdiv(red);
}
prgb[0] = prgb[1] = prgb[2] = red;
} else {
gx_color_value
green = gx_color_value_from_byte((byte) (color >> 16)),
blue = gx_color_value_from_byte((byte) (color >> 8));
if (a != 0xff) {
/* Undo premultiplication. */
/****** WHAT TO DO ABOUT BIG LOSS OF PRECISION? ******/
if (a == 0)
red = green = blue = 0;
else {
red = postdiv(red);
green = postdiv(green);
blue = postdiv(blue);
}
}
prgb[0] = red, prgb[1] = green, prgb[2] = blue;
}
#undef postdiv
return 0;
}
static int
dca_map_color_rgb_alpha(gx_device * dev, gx_color_index color,
gx_color_value prgba[4])
{
prgba[3] = gx_color_value_from_byte((byte) color);
return dca_map_color_rgb(dev, color, prgba);
}
/* ------ Imaging ------ */
static int
dca_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
gx_color_index color)
{ /* This is where all the real work gets done! */
gx_device_composite_alpha *adev = (gx_device_composite_alpha *) dev;
gx_device *target = adev->target;
byte *std_row;
byte *native_row;
gs_int_rect rect;
gs_get_bits_params_t std_params, native_params;
int code = 0;
int yi;
gs_composite_params_t cp;
const_pixel_row_t source;
pixel_row_t dest;
fit_fill(dev, x, y, w, h);
std_row = gs_alloc_bytes(dev->memory,
(dev->color_info.depth * w + 7) >> 3,
"dca_fill_rectangle(std)");
native_row = gs_alloc_bytes(dev->memory,
(target->color_info.depth * w + 7) >> 3,
"dca_fill_rectangle(native)");
if (std_row == 0 || native_row == 0) {
code = gs_note_error(gs_error_VMerror);
goto out;
}
rect.p.x = x, rect.q.x = x + w;
std_params.options =
GB_COLORS_NATIVE |
(GB_ALPHA_LAST | GB_DEPTH_8 | GB_PACKING_CHUNKY |
GB_RETURN_COPY | GB_RETURN_POINTER | GB_ALIGN_ANY |
GB_OFFSET_0 | GB_OFFSET_ANY | GB_RASTER_STANDARD |
GB_RASTER_ANY);
cp.cop = adev->params.op;
if (cp.cop == composite_Dissolve)
cp.delta = adev->params.delta;
{
gx_color_value rgba[4];
/****** DOESN'T HANDLE CMYK ******/
(*dev_proc(dev, map_color_rgb_alpha)) (dev, color, rgba);
cp.source_values[0] = gx_color_value_to_byte(rgba[0]);
cp.source_values[1] = gx_color_value_to_byte(rgba[1]);
cp.source_values[2] = gx_color_value_to_byte(rgba[2]);
cp.source_alpha = gx_color_value_to_byte(rgba[3]);
}
source.data = 0;
source.bits_per_value = 8;
source.alpha = gs_image_alpha_none;
for (yi = y; yi < y + h; ++yi) {
/* Read a row in standard representation. */
rect.p.y = yi, rect.q.y = yi + 1;
std_params.data[0] = std_row;
code = (*dev_proc(target, get_bits_rectangle))
(target, &rect, &std_params, NULL);
if (code < 0)
break;
/* Do the work. */
dest.data = std_params.data[0];
dest.bits_per_value = 8;
dest.initial_x =
(std_params.options & GB_OFFSET_ANY ? std_params.x_offset : 0);
dest.alpha =
(std_params.options & GB_ALPHA_FIRST ? gs_image_alpha_first :
std_params.options & GB_ALPHA_LAST ? gs_image_alpha_last :
gs_image_alpha_none);
code = composite_values(&dest, &source,
dev->color_info.num_components, w, &cp);
if (code < 0)
break;
if (std_params.data[0] == std_row) {
/* Convert the row back to native representation. */
/* (Otherwise, we had a direct pointer to device data.) */
native_params.options =
(GB_COLORS_NATIVE | GB_PACKING_CHUNKY | GB_RETURN_COPY |
GB_OFFSET_0 | GB_RASTER_ALL | GB_ALIGN_STANDARD);
native_params.data[0] = native_row;
code = gx_get_bits_copy(target, 0, w, 1, &native_params,
&std_params, std_row,
0 /* raster is irrelevant */ );
if (code < 0)
break;
code = (*dev_proc(target, copy_color))
(target, native_row, 0, 0 /* raster is irrelevant */ ,
gx_no_bitmap_id, x, yi, w, 1);
if (code < 0)
break;
}
}
out:gs_free_object(dev->memory, native_row, "dca_fill_rectangle(native)");
gs_free_object(dev->memory, std_row, "dca_fill_rectangle(std)");
return code;
}
static int
dca_copy_mono(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index zero, gx_color_index one)
{
/****** TEMPORARY ******/
return gx_default_copy_mono(dev, data, dx, raster, id, x, y, w, h,
zero, one);
}
static int
dca_copy_color(gx_device * dev, const byte * data,
int dx, int raster, gx_bitmap_id id,
int x, int y, int w, int h)
{
/****** TEMPORARY ******/
return gx_default_copy_color(dev, data, dx, raster, id, x, y, w, h);
}
static int
dca_copy_alpha(gx_device * dev, const byte * data, int data_x,
int raster, gx_bitmap_id id, int x, int y, int width, int height,
gx_color_index color, int depth)
{
/****** TEMPORARY ******/
return gx_default_copy_alpha(dev, data, data_x, raster, id, x, y,
width, height, color, depth);
}
/*
* Composite two arrays of (premultiplied) pixel values.
* See gsdpnext.h for the specification.
*
* The current implementation is simple but inefficient. We'll speed it up
* later if necessary.
*/
int
composite_values(const pixel_row_t * pdest, const const_pixel_row_t * psource,
int values_per_pixel, uint num_pixels, const gs_composite_params_t * pcp)
{
int dest_bpv = pdest->bits_per_value;
int source_bpv = psource->bits_per_value;
/*
* source_alpha_j gives the source component index for the alpha value,
* if the source has alpha.
*/
int source_alpha_j =
(psource->alpha == gs_image_alpha_last ? values_per_pixel :
psource->alpha == gs_image_alpha_first ? 0 : -1);
/* dest_alpha_j does the same for the destination. */
int dest_alpha_j =
(pdest->alpha == gs_image_alpha_last ? values_per_pixel :
pdest->alpha == gs_image_alpha_first ? 0 : -1);
/* dest_vpp is the number of stored destination values. */
int dest_vpp = values_per_pixel + (dest_alpha_j >= 0);
/* source_vpp is the number of stored source values. */
int source_vpp = values_per_pixel + (source_alpha_j >= 0);
bool constant_colors = psource->data == 0;
uint highlight_value = (1 << dest_bpv) - 1;
sample_load_declare(sptr, sbit);
sample_store_declare(dptr, dbit, dbyte);
{
uint xbit = pdest->initial_x * dest_bpv * dest_vpp;
sample_store_setup(dbit, xbit & 7, dest_bpv);
dptr = pdest->data + (xbit >> 3);
}
{
uint xbit = psource->initial_x * source_bpv * source_vpp;
sbit = xbit & 7;
sptr = psource->data + (xbit >> 3);
}
{
uint source_max = (1 << source_bpv) - 1;
uint dest_max = (1 << dest_bpv) - 1;
/*
* We could save a little work by only setting up source_delta
* and dest_delta if the operation is Dissolve.
*/
float source_delta = pcp->delta * dest_max / source_max;
float dest_delta = 1.0 - pcp->delta;
uint source_alpha = pcp->source_alpha;
uint dest_alpha = dest_max;
#ifdef PREMULTIPLY_TOWARDS_WHITE
uint source_bias = source_max - source_alpha;
uint dest_bias = 0;
uint result_bias = 0;
#endif
uint x;
if (!pdest->alpha) {
uint mask =
(psource->alpha || source_alpha != source_max ?
alpha_out_S_notD : alpha_out_notS_notD);
if ((mask >> pcp->cop) & 1) {
/*
* The operation could produce non-unity alpha values, but
* the destination can't store them. Return an error.
*/
return_error(gs_error_rangecheck);
}
}
/* Preload the output byte buffer if necessary. */
sample_store_preload(dbyte, dptr, dbit, dest_bpv);
for (x = 0; x < num_pixels; ++x) {
int j;
uint result_alpha = dest_alpha;
/* get_value does not increment the source pointer. */
#define get_value(v, ptr, bit, bpv, vmax)\
sample_load16(v, ptr, bit, bpv)
/* put_value increments the destination pointer. */
#define put_value(v, ptr, bit, bpv, bbyte)\
sample_store_next16(v, ptr, bit, bpv, bbyte)
#define advance(ptr, bit, bpv)\
sample_next(ptr, bit, bpv)
/* Get destination alpha value. */
if (dest_alpha_j >= 0) {
int dabit = dbit + dest_bpv * dest_alpha_j;
const byte *daptr = dptr + (dabit >> 3);
get_value(dest_alpha, daptr, dabit & 7, dest_bpv, dest_max);
#ifdef PREMULTIPLY_TOWARDS_WHITE
dest_bias = dest_max - dest_alpha;
#endif
}
/* Get source alpha value. */
if (source_alpha_j >= 0) {
int sabit = sbit;
const byte *saptr = sptr;
if (source_alpha_j == 0)
advance(sptr, sbit, source_bpv);
else
advance(saptr, sabit, source_bpv * source_alpha_j);
get_value(source_alpha, saptr, sabit, source_bpv, source_max);
#ifdef PREMULTIPLY_TOWARDS_WHITE
source_bias = source_max - source_alpha;
#endif
}
/*
* We are always multiplying a dest value by a source value to compute a
* dest value, so the denominator is always source_max. (Dissolve is the
* one exception.)
*/
#define fr(v, a) ((v) * (a) / source_max)
#define nfr(v, a, maxv) ((v) * (maxv - (a)) / source_max)
/*
* Iterate over the components of a single pixel.
* j = 0 for alpha, 1 .. values_per_pixel for color
* components, regardless of the actual storage order;
* we arrange things so that sptr/sbit and dptr/dbit
* always point to the right place.
*/
for (j = 0; j <= values_per_pixel; ++j) {
uint dest_v, source_v, result;
#define set_clamped(r, v)\
BEGIN if ( (r = (v)) > dest_max ) r = dest_max; END
if (j == 0) {
source_v = source_alpha;
dest_v = dest_alpha;
} else {
if (constant_colors)
source_v = pcp->source_values[j - 1];
else {
get_value(source_v, sptr, sbit, source_bpv, source_max);
advance(sptr, sbit, source_bpv);
}
get_value(dest_v, dptr, dbit, dest_bpv, dest_max);
#ifdef PREMULTIPLY_TOWARDS_WHITE
source_v -= source_bias;
dest_v -= dest_bias;
#endif
}
switch (pcp->cop) {
case composite_Clear:
/*
* The NeXT documentation doesn't say this, but the CLEAR
* operation sets not only alpha but also all the color
* values to 0.
*/
result = 0;
break;
case composite_Copy:
result = source_v;
break;
case composite_PlusD:
/*
* This is the only case where we have to worry about
* clamping a possibly negative result.
*/
result = source_v + dest_v;
result = (result < dest_max ? 0 : result - dest_max);
break;
case composite_PlusL:
set_clamped(result, source_v + dest_v);
break;
case composite_Sover:
set_clamped(result, source_v + nfr(dest_v, source_alpha, source_max));
break;
case composite_Dover:
set_clamped(result, nfr(source_v, dest_alpha, dest_max) + dest_v);
break;
case composite_Sin:
result = fr(source_v, dest_alpha);
break;
case composite_Din:
result = fr(dest_v, source_alpha);
break;
case composite_Sout:
result = nfr(source_v, dest_alpha, dest_max);
break;
case composite_Dout:
result = nfr(dest_v, source_alpha, source_max);
break;
case composite_Satop:
set_clamped(result, fr(source_v, dest_alpha) +
nfr(dest_v, source_alpha, source_max));
break;
case composite_Datop:
set_clamped(result, nfr(source_v, dest_alpha, dest_max) +
fr(dest_v, source_alpha));
break;
case composite_Xor:
set_clamped(result, nfr(source_v, dest_alpha, dest_max) +
nfr(dest_v, source_alpha, source_max));
break;
case composite_Highlight:
/*
* Bizarre but true: this operation converts white and
* light gray into each other, and leaves all other values
* unchanged. We only implement it properly for gray-scale
* devices.
*/
if (j != 0 && !((source_v ^ highlight_value) & ~1))
result = source_v ^ 1;
else
result = source_v;
break;
case composite_Dissolve:
/*
* In this case, and only this case, we need to worry about
* source and dest having different bpv values. For the
* moment, we wimp out and do everything in floating point.
*/
result = (uint) (source_v * source_delta + dest_v * dest_delta);
break;
default:
return_error(gs_error_rangecheck);
}
/*
* Store the result. We don't have to worry about
* destinations that don't store alpha, because we don't
* even compute an alpha value in that case.
*/
#ifdef PREMULTIPLY_TOWARDS_WHITE
if (j == 0) {
result_alpha = result;
result_bias = dest_max - result_alpha;
if (dest_alpha_j != 0)
continue;
} else {
result += result_bias;
}
#else
if (j == 0 && dest_alpha_j != 0) {
result_alpha = result;
continue;
}
#endif
put_value(result, dptr, dbit, dest_bpv, dbyte);
}
/* Skip a trailing source alpha value. */
if (source_alpha_j > 0)
advance(sptr, sbit, source_bpv);
/* Store a trailing destination alpha value. */
if (dest_alpha_j > 0)
put_value(result_alpha, dptr, dbit, dest_bpv, dbyte);
#undef get_value
#undef put_value
#undef advance
}
/* Store any partial output byte. */
sample_store_flush(dptr, dbit, dest_bpv, dbyte);
}
return 0;
}
|