1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Screen (Type 1) halftone processing for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gxarith.h"
#include "gzstate.h"
#include "gxdevice.h" /* for gzht.h */
#include "gzht.h"
/* Define whether to force all halftones to be strip halftones, */
/* for debugging. */
static const bool FORCE_STRIP_HALFTONES = false;
/* Structure descriptors */
private_st_gs_screen_enum();
/* GC procedures */
static
ENUM_PTRS_WITH(screen_enum_enum_ptrs, gs_screen_enum *eptr)
{
if (index < 1 + st_ht_order_max_ptrs) {
gs_ptr_type_t ret =
ENUM_USING(st_ht_order, &eptr->order, sizeof(eptr->order),
index - 1);
if (ret == 0) /* don't stop early */
ENUM_RETURN(0);
return ret;
}
return ENUM_USING(st_halftone, &eptr->halftone, sizeof(eptr->halftone),
index - (1 + st_ht_order_max_ptrs));
}
ENUM_PTR(0, gs_screen_enum, pgs);
ENUM_PTRS_END
static RELOC_PTRS_WITH(screen_enum_reloc_ptrs, gs_screen_enum *eptr)
{
RELOC_PTR(gs_screen_enum, pgs);
RELOC_USING(st_halftone, &eptr->halftone, sizeof(gs_halftone));
RELOC_USING(st_ht_order, &eptr->order, sizeof(gx_ht_order));
}
RELOC_PTRS_END
/* Default AccurateScreens control */
void
gs_setaccuratescreens(gs_memory_t *mem, bool accurate)
{
gs_lib_ctx_t *ctx = gs_lib_ctx_get_interp_instance(mem);
ctx->screen_accurate_screens = accurate;
}
bool
gs_currentaccuratescreens(gs_memory_t *mem)
{
gs_lib_ctx_t *ctx = gs_lib_ctx_get_interp_instance(mem);
return ctx->screen_accurate_screens;
}
void
gs_setminscreenlevels(gs_memory_t *mem, uint levels)
{
gs_lib_ctx_t *ctx = gs_lib_ctx_get_interp_instance(mem);
ctx->screen_min_screen_levels = levels;
}
uint
gs_currentminscreenlevels(gs_memory_t *mem)
{
gs_lib_ctx_t *ctx = gs_lib_ctx_get_interp_instance(mem);
return ctx->screen_min_screen_levels;
}
/* Initialize the screen control statics at startup. */
init_proc(gs_gshtscr_init); /* check prototype */
int
gs_gshtscr_init(gs_memory_t *mem)
{
gs_setaccuratescreens(mem, false);
gs_setminscreenlevels(mem, 1);
return 0;
}
/*
* The following implementation notes complement the general discussion of
* halftone tiles found in gxdht.h.
*
* Currently we allow R(') > 1 (i.e., multiple basic cells per multi-cell)
* only if AccurateScreens is true or if B (the number of pixels in a basic
* cell) < MinScreenLevels; if AccurateScreens is false and B >=
* MinScreenLevels, multi-cells and basic cells are the same.
*
* To find the smallest super-cell for a given multi-cell size, i.e., the
* smallest (absolute value) coordinates where the corners of multi-cells
* lie on the coordinate axes, we compute the values of i and j that give
* the minimum value of W by:
* D = gcd(abs(M'), abs(N)), i = M'/D, j = N/D, W = C / D,
* and similarly
* D' = gcd(abs(M), abs(N')), i' = N'/D', j' = M/D', W' = C / D'.
*/
/* Compute the derived values of a halftone tile. */
void
gx_compute_cell_values(gx_ht_cell_params_t * phcp)
{
const int M = phcp->M, N = phcp->N, M1 = phcp->M1, N1 = phcp->N1;
const uint m = any_abs(M), n = any_abs(N);
const uint m1 = any_abs(M1), n1 = any_abs(N1);
const ulong C = phcp->C = (ulong)m * m1 + (ulong)n * n1;
const int D = phcp->D = igcd(m1, n);
const int D1 = phcp->D1 = igcd(m, n1);
phcp->W = C / D, phcp->W1 = C / D1;
/* Compute the shift value. */
/* If M1 or N is zero, the shift is zero. */
if (M1 && N) {
int h = 0, k = 0, dy = 0;
int shift;
/*
* There may be a faster way to do this: see Knuth vol. 2,
* section 4.5.2, Algorithm X (p. 302) and exercise 15
* (p. 315, solution p. 523).
*/
while (dy != D)
if (dy > D) {
if (M1 > 0)
++k;
else
--k;
dy -= m1;
} else {
if (N > 0)
++h;
else
--h;
dy += n;
}
shift = h * M + k * N1;
/* We just computed what amounts to a right shift; */
/* what we want is a left shift. */
phcp->S = imod(-shift, phcp->W);
} else
phcp->S = 0;
if_debug12('h', "[h]MNR=(%d,%d)/%d, M'N'R'=(%d,%d)/%d => C=%lu, D=%d, D'=%d, W=%u, W'=%u, S=%d\n",
M, N, phcp->R, M1, N1, phcp->R1,
C, D, D1, phcp->W, phcp->W1, phcp->S);
}
/* Forward references */
static int pick_cell_size(gs_screen_halftone * ph,
const gs_matrix * pmat, ulong max_size, uint min_levels, bool accurate,
gx_ht_cell_params_t * phcp);
/* Allocate a screen enumerator. */
gs_screen_enum *
gs_screen_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
return gs_alloc_struct(mem, gs_screen_enum, &st_gs_screen_enum, cname);
}
/* Set up for halftone sampling. */
int
gs_screen_init(gs_screen_enum * penum, gs_state * pgs,
gs_screen_halftone * phsp)
{
gs_lib_ctx_t *ctx = gs_lib_ctx_get_interp_instance(pgs->memory);
return gs_screen_init_accurate(penum, pgs, phsp,
ctx->screen_accurate_screens);
}
int
gs_screen_init_memory(gs_screen_enum * penum, gs_state * pgs,
gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
{
int code =
gs_screen_order_init_memory(&penum->order, pgs, phsp, accurate, mem);
if (code < 0)
return code;
return
gs_screen_enum_init_memory(penum, &penum->order, pgs, phsp, mem);
}
/* Allocate and initialize a spot screen. */
/* This is the first half of gs_screen_init_accurate. */
int
gs_screen_order_alloc(gx_ht_order *porder, gs_memory_t *mem)
{
uint num_levels = porder->params.W * porder->params.D;
int code;
if (!FORCE_STRIP_HALFTONES &&
((ulong)porder->params.W1 * bitmap_raster(porder->params.W) +
num_levels * sizeof(*porder->levels) +
porder->params.W * porder->params.W1 * sizeof(gx_ht_bit)) <=
porder->screen_params.max_size) {
/*
* Allocate an order for the entire tile, but only sample one
* strip. Note that this causes the order parameters to be
* self-inconsistent until gx_ht_construct_spot_order fixes them
* up: see gxdht.h for more information.
*/
code = gx_ht_alloc_order(porder, porder->params.W,
porder->params.W1, 0,
num_levels, mem);
porder->height = porder->orig_height = porder->params.D;
porder->shift = porder->orig_shift = porder->params.S;
} else {
/* Just allocate the order for a single strip. */
code = gx_ht_alloc_order(porder, porder->params.W,
porder->params.D, porder->params.S,
num_levels, mem);
}
return code;
}
int
gs_screen_order_init_memory(gx_ht_order * porder, const gs_state * pgs,
gs_screen_halftone * phsp, bool accurate,
gs_memory_t * mem)
{
gs_matrix imat;
ulong max_size = gx_ht_cache_default_bits_size();
int code;
gs_lib_ctx_t *ctx = gs_lib_ctx_get_interp_instance(mem);
if (phsp->frequency < 0.1)
return_error(gs_error_rangecheck);
gs_deviceinitialmatrix(gs_currentdevice(pgs), &imat);
code = pick_cell_size(phsp, &imat, max_size,
ctx->screen_min_screen_levels, accurate,
&porder->params);
if (code < 0)
return code;
gx_compute_cell_values(&porder->params);
porder->screen_params.matrix = imat;
porder->screen_params.max_size = max_size;
return gs_screen_order_alloc(porder, mem);
}
/*
* Given a desired frequency, angle, and minimum number of levels, a maximum
* cell size, and an AccurateScreens flag, pick values for M('), N('), and
* R('). We want to get a good fit to the requested frequency and angle,
* provide at least the requested minimum number of levels, and keep
* rendering as fast as possible; trading these criteria off against each
* other is what makes the code complicated.
*
* We compute trial values u and v from the original values of F and A.
* Normally these will not be integers. We then examine the 4 pairs of
* integers obtained by rounding each of u and v independently up or down,
* and pick the pair U, V that yields the closest match to the requested
* F and A values and doesn't require more than max_size storage for a
* single tile. If no pair
* yields an acceptably small W, we divide both u and v by 2 and try again.
* Then we run the equations backward to obtain the actual F and A.
* This is fairly easy given that we require either xx = yy = 0 or
* xy = yx = 0. In the former case, we have
* U = (72 / F * xx) * cos(A);
* V = (72 / F * yy) * sin(A);
* from which immediately
* A = arctan((V / yy) / (U / xx)),
* or equivalently
* A = arctan((V * xx) / (U * yy)).
* We can then obtain F as
* F = (72 * xx / U) * cos(A),
* or equivalently
* F = (72 * yy / V) * sin(A).
* For landscape devices, we replace xx by yx, yy by xy, and interchange
* sin and cos, resulting in
* A = arctan((U * xy) / (V * yx))
* and
* F = (72 * yx / U) * sin(A)
* or
* F = (72 * xy / V) * cos(A).
*/
/* ph->frequency and ph->angle are input parameters; */
/* the routine sets ph->actual_frequency and ph->actual_angle. */
static int
pick_cell_size(gs_screen_halftone * ph, const gs_matrix * pmat, ulong max_size,
uint min_levels, bool accurate, gx_ht_cell_params_t * phcp)
{
const bool landscape = (pmat->xy != 0.0 || pmat->yx != 0.0);
/* Account for a possibly reflected coordinate system. */
/* See gxstroke.c for the algorithm. */
const bool reflected = pmat->xy * pmat->yx > pmat->xx * pmat->yy;
const int reflection = (reflected ? -1 : 1);
const int rotation =
(landscape ? (pmat->yx < 0 ? 90 : -90) : pmat->xx < 0 ? 180 : 0);
const double f0 = ph->frequency, a0 = ph->angle;
const double T =
fabs((landscape ? pmat->yx / pmat->xy : pmat->xx / pmat->yy));
gs_point uv0;
#define u0 uv0.x
#define v0 uv0.y
int rt = 1;
double f = 0, a = 0;
double e_best = 1000;
bool better;
/*
* We need to find a vector in device space whose length is
* 1 inch / ph->frequency and whose angle is ph->angle.
* Because device pixels may not be square, we can't simply
* map the length to device space and then rotate it;
* instead, since we know that user space is uniform in X and Y,
* we calculate the correct angle in user space before rotation.
*/
/* Compute trial values of u and v. */
{
gs_matrix rmat;
gs_make_rotation(a0 * reflection + rotation, &rmat);
gs_distance_transform(72.0 / f0, 0.0, &rmat, &uv0);
gs_distance_transform(u0, v0, pmat, &uv0);
if_debug10('h', "[h]Requested: f=%g a=%g mat=[%g %g %g %g] max_size=%lu min_levels=%u =>\n u=%g v=%g\n",
ph->frequency, ph->angle,
pmat->xx, pmat->xy, pmat->yx, pmat->yy,
max_size, min_levels, u0, v0);
}
/* Adjust u and v to reasonable values. */
if (u0 == 0 && v0 == 0)
return_error(gs_error_rangecheck);
while ((fabs(u0) + fabs(v0)) * rt < 4)
++rt;
try_size:
better = false;
{
double fm0 = u0 * rt;
double fn0 = v0 * rt;
int m0 = (int)floor(u0 * rt + 0.0001);
int n0 = (int)floor(v0 * rt + 0.0001);
gx_ht_cell_params_t p;
p.R = p.R1 = rt;
for (p.M = m0 + 1; p.M >= m0; p.M--)
for (p.N = n0 + 1; p.N >= n0; p.N--) {
long raster, wt, wt_size;
double fr, ar, ft, at, f_diff, a_diff, f_err, a_err;
p.M1 = (int)floor(p.M / T + 0.5);
p.N1 = (int)floor(p.N * T + 0.5);
gx_compute_cell_values(&p);
if_debug3('h', "[h]trying m=%d, n=%d, r=%d\n", p.M, p.N, rt);
wt = p.W;
if (wt >= max_short)
continue;
/* Check the strip size, not the full tile size, */
/* against max_size. */
raster = bitmap_raster(wt);
if (raster > max_size / p.D || raster > max_long / wt)
continue;
wt_size = raster * wt;
/* Compute the corresponding values of F and A. */
if (landscape)
ar = atan2(p.M * pmat->xy, p.N * pmat->yx),
fr = 72.0 * (p.M == 0 ? pmat->xy / p.N * cos(ar) :
pmat->yx / p.M * sin(ar));
else
ar = atan2(p.N * pmat->xx, p.M * pmat->yy),
fr = 72.0 * (p.M == 0 ? pmat->yy / p.N * sin(ar) :
pmat->xx / p.M * cos(ar));
ft = fabs(fr) * rt;
/* Normalize the angle to the requested quadrant. */
at = (ar * radians_to_degrees - rotation) * reflection;
at -= floor(at / 180.0) * 180.0;
at += floor(a0 / 180.0) * 180.0;
f_diff = fabs(ft - f0);
a_diff = fabs(at - a0);
f_err = f_diff / fabs(f0);
/*
* We used to compute the percentage difference here:
* a_err = (a0 == 0 ? a_diff : a_diff / fabs(a0));
* but using the angle difference makes more sense:
*/
a_err = a_diff;
if_debug5('h', " ==> d=%d, wt=%ld, wt_size=%ld, f=%g, a=%g\n",
p.D, wt, bitmap_raster(wt) * wt, ft, at);
{
/*
* Compute the error in position between ideal location.
* and the current integer location.
*/
double error =
(fn0 - p.N) * (fn0 - p.N) + (fm0 - p.M) * (fm0 - p.M);
/*
* Adjust the error by the length of the vector. This gives
* a slight bias toward larger cell sizzes.
*/
error /= p.N * p.N + p.M * p.M;
error = sqrt(error); /* The previous calcs. gave value squared */
if (error > e_best)
continue;
e_best = error;
}
*phcp = p;
f = ft, a = at;
better = true;
if_debug3('h', "*** best wt_size=%ld, f_diff=%g, a_diff=%g\n",
wt_size, f_diff, a_diff);
/*
* We want a maximum relative frequency error of 1% and a
* maximum angle error of 1% (of 90 degrees).
*/
if (f_err <= 0.01 && a_err <= 0.9 /*degrees*/)
goto done;
}
}
if (phcp->C < min_levels) { /* We don't have enough levels yet. Keep going. */
++rt;
goto try_size;
}
if (better) { /* If we want accurate screens, continue till we fail. */
if (accurate) {
++rt;
goto try_size;
}
} else { /*
* We couldn't find an acceptable M and N. If R > 1,
* take what we've got; if R = 1, give up.
*/
if (rt == 1)
return_error(gs_error_rangecheck);
}
/* Deliver the results. */
done:
if_debug5('h', "[h]Chosen: f=%g a=%g M=%d N=%d R=%d\n",
f, a, phcp->M, phcp->N, phcp->R);
ph->actual_frequency = f;
ph->actual_angle = a;
return 0;
#undef u0
#undef v0
}
/* Prepare to sample a spot screen. */
/* This is the second half of gs_screen_init_accurate. */
int
gs_screen_enum_init_memory(gs_screen_enum * penum, const gx_ht_order * porder,
gs_state * pgs, const gs_screen_halftone * phsp,
gs_memory_t * mem)
{
penum->pgs = pgs; /* ensure clean for GC */
if (&penum->order != porder) /* Pacify Valgrind */
penum->order = *porder;
penum->halftone.rc.memory = mem;
penum->halftone.type = ht_type_screen;
penum->halftone.params.screen = *phsp;
penum->x = penum->y = 0;
penum->strip = porder->num_levels / porder->width;
penum->shift = porder->shift;
/*
* We want a transformation matrix that maps the parallelogram
* (0,0), (U,V), (U-V',V+U'), (-V',U') to the square (+/-1, +/-1).
* If the coefficients are [a b c d e f] and we let
* u = U = M/R, v = V = N/R,
* r = -V' = -N'/R', s = U' = M'/R',
* then we just need to solve the equations:
* a*0 + c*0 + e = -1 b*0 + d*0 + f = -1
* a*u + c*v + e = 1 b*u + d*v + f = 1
* a*r + c*s + e = -1 b*r + d*s + f = 1
* This has the following solution:
* Q = 2 / (M*M' + N*N')
* a = Q * R * M'
* b = -Q * R' * N
* c = Q * R * N'
* d = Q * R' * M
* e = -1
* f = -1
*/
{
const int M = porder->params.M, N = porder->params.N, R = porder->params.R;
const int M1 = porder->params.M1, N1 = porder->params.N1, R1 = porder->params.R1;
double Q = 2.0 / ((long)M * M1 + (long)N * N1);
penum->mat.xx = Q * (R * M1);
penum->mat.xy = Q * (-R1 * N);
penum->mat.yx = Q * (R * N1);
penum->mat.yy = Q * (R1 * M);
penum->mat.tx = -1.0;
penum->mat.ty = -1.0;
gs_matrix_invert(&penum->mat, &penum->mat_inv);
}
if_debug7('h', "[h]Screen: (%dx%d)/%d [%f %f %f %f]\n",
porder->width, porder->height, porder->params.R,
penum->mat.xx, penum->mat.xy,
penum->mat.yx, penum->mat.yy);
return 0;
}
/* Report current point for sampling */
int
gs_screen_currentpoint(gs_screen_enum * penum, gs_point * ppt)
{
gs_point pt;
int code;
double sx, sy; /* spot center in spot coords (integers) */
gs_point spot_center; /* device coords */
if (penum->y >= penum->strip) { /* all done */
gx_ht_construct_spot_order(&penum->order);
return 1;
}
/* We displace the sampled coordinates very slightly */
/* in order to reduce the likely number of points */
/* for which the spot function returns the same value. */
if ((code = gs_point_transform(penum->x + 0.501, penum->y + 0.498, &penum->mat, &pt)) < 0)
return code;
/* find the spot center in device coords : */
sx = ceil( pt.x / 2 ) * 2;
sy = ceil( pt.y / 2 ) * 2;
if ((code = gs_point_transform(sx, sy, &penum->mat_inv, &spot_center)) < 0)
return code;
/* shift the spot center to nearest pixel center : */
spot_center.x = floor(spot_center.x) + 0.5;
spot_center.y = floor(spot_center.y) + 0.5;
/* compute the spot function arguments for the shifted spot : */
if ((code = gs_distance_transform(penum->x - spot_center.x + 0.501,
penum->y - spot_center.y + 0.498,
&penum->mat, &pt)) < 0)
return code;
pt.x += 1;
pt.y += 1;
if (pt.x < -1.0)
pt.x += ((int)(-ceil(pt.x)) + 1) & ~1;
else if (pt.x >= 1.0)
pt.x -= ((int)pt.x + 1) & ~1;
if (pt.y < -1.0)
pt.y += ((int)(-ceil(pt.y)) + 1) & ~1;
else if (pt.y >= 1.0)
pt.y -= ((int)pt.y + 1) & ~1;
*ppt = pt;
return 0;
}
/* Record next halftone sample */
int
gs_screen_next(gs_screen_enum * penum, floatp value)
{
ht_sample_t sample;
int width = penum->order.width;
gx_ht_bit *bits = (gx_ht_bit *)penum->order.bit_data;
if (value < -1.0 || value > 1.0)
return_error(gs_error_rangecheck);
sample = (ht_sample_t) ((value + 1) * max_ht_sample);
#ifdef DEBUG
if (gs_debug_c('H')) {
gs_point pt;
gs_screen_currentpoint(penum, &pt);
dlprintf6("[H]sample x=%d y=%d (%f,%f): %f -> %u\n",
penum->x, penum->y, pt.x, pt.y, value, sample);
}
#endif
bits[penum->y * width + penum->x].mask = sample;
if (++(penum->x) >= width)
penum->x = 0, ++(penum->y);
return 0;
}
/* Install a fully constructed screen in the gstate. */
int
gs_screen_install(gs_screen_enum * penum)
{
gx_device_halftone dev_ht;
int code;
dev_ht.rc.memory = penum->halftone.rc.memory;
dev_ht.order = penum->order;
dev_ht.components = 0;
if ((code = gx_ht_install(penum->pgs, &penum->halftone, &dev_ht)) < 0)
gx_device_halftone_release(&dev_ht, dev_ht.rc.memory);
return code;
}
|