File: gsicc_create.c

package info (click to toggle)
ghostscript 9.06~dfsg-2%2Bdeb8u7
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 62,484 kB
  • sloc: ansic: 440,074; python: 4,915; cpp: 3,565; sh: 2,520; tcl: 1,482; perl: 1,374; makefile: 421; lisp: 407; awk: 66; yacc: 18
file content (2081 lines) | stat: -rw-r--r-- 77,616 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
/* Copyright (C) 2001-2012 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134, San Rafael,
   CA  94903, U.S.A., +1(415)492-9861, for further information.
*/


/* This is the code that is used to convert the various PDF and PS CIE
   based color spaces to ICC profiles.  This enables the use of an
   external CMS that is ICC centric to be used for ALL color management.

   The following spaces are handled:

   From PDF

   % Input Spaces

   CalRGB      -->  ICC 1-D LUTS and Matrix
   CalGray     -->  ICC 1-D LUT
   LAB         -->  ICC MLUT with a 2x2 sized table

   From PS

   %% Input Spaces

   CIEBasedABC  --> ICC 1-D LUTs and Matrix
   CIEBasedA    --> ICC 1-D LUT
   CIEBasedDEF  --> 3-D MLUT plus 1-D LUTs
   CIEBasedDEFG --> 4-D MLUT pluse 1-D LUTs

   %% Output Spaces

   Type1 CRD -->  ICC will have MLUT if render table present.

   A few notes:

   Required Tags for ALL profiles include:

       profileDescriptionTag
       copyrightTag
       mediaWhatePointTag
       chromaticAdaptationTag (V4 -  when measurement data is for other than D50)

   For color input profiles:

       Required if N-component LUT-based:

          AToB0Tag   (NOTE ONE WAY! BtoA0Tag is optional. Not true for
                          display profiles.)

       Required if 3 component matrix based:

           redMatrixColumnTag
           greenMatrixColumnTag
           blueMatrixColumnTag
           redTRCTag
           greenTRCTag
           blueTRCTag

       Notes:

       3-component can include AToB0Tag.
       Only CIEXYZ encoding can be used with matrix/TRC models.
       If CIELAB encoding is to be used, we must use LUT-based.

    For Monochrome input:

       Required:
           grayTRCTag

       Optional
           AToB0Tag

    For Color Display Profiles:

        Required if N-Component LUT-Based

            AtoB0Tag
            BToA0Tag   (Note inverse required here).

        Required if 3 component matrix based display profiles

            redMatrixColumnTag
            greenMatrixColumnTag
            blueMatrixColumnTag
            redTRCTag
            greenTRCTag
            blueTRCTag

        Optional

            AtoB0Tag
            BToA0Tag   (Note inverse required here).

    For Monochrome Display Profiles

        Required

            grayTRCTag

        Optional

            AtoB0Tag
            BtoA0Tag

Note: All profile data must be encoded as big-endian

   */

#include "icc34.h"   /* Note this header is needed even if lcms is not
                            compiled as default CMS */
#include "string_.h"
#include "gsmemory.h"
#include "gx.h"
#include "gxistate.h"
#include "gstypes.h"
#include "gscspace.h"
#include "gscie.h"
#include "gsicc_create.h"
#include "gxarith.h"
#include "gsicc_manage.h"
#include "gsicc_cache.h"
#include "math_.h"
#include "gscolor2.h"
#include "gxcie.h"

static void
add_xyzdata(unsigned char *input_ptr, icS15Fixed16Number temp_XYZ[]);

#define SAVEICCPROFILE 0
#define USE_V4 1
#define HEADER_SIZE 128
#define TAG_SIZE 12
#define XYZPT_SIZE 12
#define DATATYPE_SIZE 8
#define CURVE_SIZE 512
#define IDENT_CURVE_SIZE 0
#define NUMBER_COMMON_TAGS 2
#define icMultiUnicodeText 0x6d6c7563           /* 'mluc' v4 text type */
#define icMultiFunctionAtoBType 0x6d414220      /* 'mAB ' v4 lutAtoBtype type */
#define icSigChromaticAdaptationTag 0x63686164  /* 'chad' */
#define D50_X 0.9642f
#define D50_Y 1.0f
#define D50_Z 0.8249f
#define DEFAULT_TABLE_NSIZE 9
#define DEFAULT_TABLE_GRAYSIZE 128

typedef unsigned short u1Fixed15Number;
#if SAVEICCPROFILE
unsigned int icc_debug_index = 0;
#endif

typedef struct cielab_s {
    float lstar;
    float astar;
    float bstar;
} cielab_t;

static const char desc_name[] = "Ghostscript Internal Profile";
static const char copy_right[] = "Copyright Artifex Software 2009";

typedef struct {
    icTagSignature      sig;            /* The tag signature */
    icUInt32Number      offset;         /* Start of tag relative to
                                         * start of header, Spec
                                         * Clause 5 */
    icUInt32Number      size;           /* Size in bytes */
    unsigned char       byte_padding;
} gsicc_tag;
/* In generating 2x2x2 approximations as well as cases
   where we will need to squash components together we
   will go to float and then to 16 bit tables, hence the
   float pointer.  Otherwise we will keep the data
   in the existing byte form that it is in the CIEDEF(G)
   tables of postscript */
typedef struct {
    unsigned short *data_short;
    unsigned char *data_byte;  /* Used for cases where we can
                                   use the table as is */
    int     clut_dims[4];
    int     clut_num_input;
    int     clut_num_output;
    int     clut_num_entries;   /* Number of entries */
    int     clut_word_width;    /* Word width of table, 1 or 2 */
} gsicc_clut;

typedef struct {
    float   *a_curves;
    gsicc_clut *clut;
    float   *m_curves;
    gs_matrix3 *matrix;
    float   *b_curves;
    int num_in;
    int num_out;
    gs_vector3 *white_point;
    gs_vector3 *black_point;
    float *cam;
} gsicc_lutatob;

static int
get_padding(int x)
{
    return( (4 -x%4)%4 );
}

/* For some weird reason I cant link to the one in gscie.c */
static void
gsicc_matrix_init(register gs_matrix3 * mat)
{
    mat->is_identity =
        mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
        mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
        mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
}

static void
gsicc_make_diag_matrix(gs_matrix3 *matrix, gs_vector3 * vec)
{
    matrix->cu.u = vec->u;
    matrix->cv.v = vec->v;
    matrix->cw.w = vec->w;
    matrix->cu.v = 0;
    matrix->cu.w = 0;
    matrix->cw.u = 0;
    matrix->cw.v = 0;
    matrix->cv.u = 0;
    matrix->cv.w = 0;
    matrix->is_identity = (vec->u == 1.0)&&(vec->v == 1.0)&&(vec->w == 1.0);
}

/* This function maps a gs matrix type to an ICC CLUT.
   This is required due to the multiple matrix and 1-D LUT
   forms for postscript management, which the ICC does not
   support (at least the older versions).  clut is allocated
   externally */
static void
gsicc_matrix3_to_mlut(gs_matrix3 *mat, unsigned short *clut)
{
    /* Step through the grid values */
    float grid_points[8][3]={{0,0,0},
                             {0,0,1},
                             {0,1,0},
                             {0,1,1},
                             {1,0,0},
                             {1,0,1},
                             {1,1,0},
                             {1,1,1}};
    int k;
    gs_vector3 input,output;
    unsigned short *curr_ptr = clut, value;
    float valueflt;

    for (k = 0; k < 8; k++) {
        input.u = grid_points[k][0];
        input.v = grid_points[k][1];
        input.w = grid_points[k][2];
        cie_mult3(&input, mat, &output);
        valueflt = output.u;
        if (valueflt < 0) valueflt = 0;
        if (valueflt > 1) valueflt = 1;
        value = (unsigned short) (valueflt*65535.0);
        *curr_ptr ++= value;
        valueflt = output.v;
        if (valueflt < 0) valueflt = 0;
        if (valueflt > 1) valueflt = 1;
        value = (unsigned short) (valueflt*65535.0);
        *curr_ptr ++= value;
        valueflt = output.w;
        if (valueflt < 0) valueflt = 0;
        if (valueflt > 1) valueflt = 1;
        value = (unsigned short) (valueflt*65535.0);
        *curr_ptr ++= value;
    }
}

static u1Fixed15Number
double2u1Fixed15Number(float number_in)
{
    float value;

    value = number_in/(1.0 + (32767.0/32768.0));
    value = value * 65535.0;
    if (value < 0) {
        value = 0;
    }
    if (value > 65535) {
        value = 65535;
    }
    return((u1Fixed15Number) value);
}

/* This function mashes all the elements together into a single CLUT
   for the ICC profile.  This is an approach of last resort, but
   guaranteed to work. */
static int
gsicc_create_clut(const gs_color_space *pcs, gsicc_clut *clut, gs_range *ranges,
                  gs_vector3 *white_point, bool range_adjust, gs_memory_t *memory)
{
    gs_imager_state *pis;
    int code;
    int num_points = clut->clut_num_entries;
    int table_size = clut->clut_dims[0]; /* Same resolution in each direction*/
    int num_components = clut->clut_num_input;
    int j,i,index;
    float *input_samples[4], *fltptr;
    gs_range *curr_range;
    unsigned short *ptr_short;
    gs_client_color cc;
    frac xyz[3];
    float xyz_float[3];
    float temp;
    gs_color_space_index cs_index;

    /* This completes the joint cache inefficiently so that
       we can sample through it and get our table entries */
    code = gx_cie_to_xyz_alloc(&pis, pcs, memory);
    cs_index = gs_color_space_get_index(pcs);
    if (code < 0)
        return code;
    /* Create the sample indices across the input ranges
       for each color component.  When the concretization/remap occurs
       to be fed into this icc profile, we may will need to apply a linear
       map to the input if the range is something other than 0 to 1 */
    for (i = 0; i < num_components; i++) {
        input_samples[i] = (float*) gs_alloc_bytes(memory,
                                sizeof(float)*table_size,"gsicc_create_clut");
        fltptr = input_samples[i];
        curr_range = &(ranges[i]);
        for (j = 0; j < table_size; j++ ) {
            *fltptr ++= ((float) j/ (float) (table_size-1)) *
                (curr_range->rmax - curr_range->rmin) + curr_range->rmin;
        }
    }
    /* Go through all the entries.
       Uniformly from min range to max range */
    ptr_short = clut->data_short;
    for (i = 0; i < num_points; i++) {
        if (num_components == 1) {
            /* Get the input vector value */
            fltptr = input_samples[0];
            index = i%table_size;
            cc.paint.values[0] = fltptr[index];
        }
        if (num_components == 3) {
            /* The first channel varies least rapidly in the ICC table */
            fltptr = input_samples[2];
            index = i%table_size;
            cc.paint.values[2] = fltptr[index];
            fltptr = input_samples[1];
            index = (unsigned int) floor((float) i/(float) table_size)%table_size;
            cc.paint.values[1] = fltptr[index];
            fltptr = input_samples[0];
            index = (unsigned int) floor((float) i/(float) (table_size*
                                                        table_size))%table_size;
            cc.paint.values[0] = fltptr[index];
        }
        if (num_components == 4) {
            /* The first channel varies least rapidly in the ICC table */
            fltptr = input_samples[3];
            index = i%table_size;
            cc.paint.values[3] = fltptr[index];
            fltptr = input_samples[2];
            index = (unsigned int) floor((float) i/(float) table_size)%table_size;
            cc.paint.values[2] = fltptr[index];
            fltptr = input_samples[1];
            index = (unsigned int) floor((float) i/(float) (table_size*
                                                        table_size))%table_size;
            cc.paint.values[1] = fltptr[index];
            fltptr = input_samples[0];
            index = (unsigned int) floor((float) i/(float) (table_size*
                                        table_size*table_size))%table_size;
            cc.paint.values[0] = fltptr[index];
        }
        /* These special concretizations functions do not go through
           the ICC mapping like the procs associated with the color space */
        switch (cs_index) {
            case gs_color_space_index_CIEA:
                gx_psconcretize_CIEA(&cc, pcs, xyz, pis);
                /* AR forces this case to always be achromatic.  We will
                   do the same even though it does not match the PS
                   specification */
                /* Use the resulting Y value to scale the D50 Illumination.
                   note that we scale to the whitepoint here.  Matrix out
                   handles mapping to CIE D50 */
                xyz_float[1] = frac2float(xyz[1]);
                xyz_float[0] = white_point->u * xyz_float[1];
                xyz_float[2] = white_point->w * xyz_float[1];
                break;
            case gs_color_space_index_CIEABC:
                gx_psconcretize_CIEABC(&cc, pcs, xyz, pis);
                break;
            case gs_color_space_index_CIEDEF:
                gx_psconcretize_CIEDEF(&cc, pcs, xyz, pis);
                break;
            case gs_color_space_index_CIEDEFG:
               gx_psconcretize_CIEDEFG(&cc, pcs, xyz, pis);
               break;
            default:
                break;
        }
        /* Correct for range of ICC CIEXYZ table data */
        for (j = 0; j < 3; j++) {
            if ( cs_index == gs_color_space_index_CIEA) {
                temp = xyz_float[j]/(1 + 32767.0/32768);
            } else {
                temp = frac2float(xyz[j])/(1 + 32767.0/32768);
            }
            if (temp < 0) temp = 0;
            if (temp > 1) temp = 1;
           *ptr_short ++= (unsigned int)(temp * 65535);
        }
    }
    gx_cie_to_xyz_free(pis); /* Free the joint cache we created */
    for (i = 0; i < num_components; i++) {
        gs_free_object(memory, input_samples[i], "gsicc_create_clut");
    }
    return(0);
}

/* This function maps a gs vector type to an ICC CLUT.
   This is used in the CIEA type.  clut is allocated
   externally. We may need to replace this with a range value.
   For now we are mapping to an output between 0 and the vector */
static void
gsicc_vec_to_mlut(gs_vector3 *vec, unsigned short *clut)
{
    unsigned short *curr_ptr = clut;

    *curr_ptr ++= 0;
    *curr_ptr ++= 0;
    *curr_ptr ++= 0;
    *curr_ptr ++= double2u1Fixed15Number(vec->u);
    *curr_ptr ++= double2u1Fixed15Number(vec->v);
    *curr_ptr ++= double2u1Fixed15Number(vec->w);
}

#if SAVEICCPROFILE
/* Debug dump of internally created ICC profile for testing */
static void
save_profile(unsigned char *buffer, char filename[], int buffer_size)
{
    char full_file_name[50];
    FILE *fid;

    sprintf(full_file_name,"%d)Profile_%s.icc",icc_debug_index,filename);
    fid = fopen(full_file_name,"wb");
    fwrite(buffer,sizeof(unsigned char),buffer_size,fid);
    fclose(fid);
    icc_debug_index++;
}
#endif

static void
write_bigendian_4bytes(unsigned char *curr_ptr,ulong input)
{
   *curr_ptr++ = (0xff & (input >> 24));
   *curr_ptr++ = (0xff & (input >> 16));
   *curr_ptr++ = (0xff & (input >> 8));
   *curr_ptr++ = (0xff & input);
}

static void
write_bigendian_2bytes(unsigned char *curr_ptr,ushort input)
{
   *curr_ptr++ = (0xff & (input >> 8));
   *curr_ptr++ = (0xff & input);
}

static void
setdatetime(icDateTimeNumber *datetime)
{
    datetime->day = 0;
    datetime->hours = 0;
    datetime->minutes = 0;
    datetime->month = 0;
    datetime->seconds = 0;
    datetime->year = 0;
}

static icS15Fixed16Number
double2XYZtype(float number_in)
{
    short s;
    unsigned short m;

    if (number_in < 0) {
        number_in = 0;
#ifdef DEBUG
        gs_warn("Negative CIEXYZ in created ICC Profile");
#endif
    }

    s = (short) number_in;
    m = (unsigned short) ((number_in - s) * 65536.0);
    return((icS15Fixed16Number) ((s << 16) | m) );
}

static icS15Fixed16Number
double2icS15Fixed16Number(float number_in)
{
    short s;
    unsigned short m;
    icS15Fixed16Number temp;
    float number;

    if (number_in < 0) {
        number = -number_in;
        s = (short) number;
        m = (unsigned short) ((number - s) * 65536.0);
        temp = (icS15Fixed16Number) ((s << 16) | m);
        temp = -temp;
        return(temp);
    } else {
        s = (short) number_in;
        m = (unsigned short) ((number_in - s) * 65536.0);
        return((icS15Fixed16Number) ((s << 16) | m) );
    }
}

static unsigned short
float2u8Fixed8(float number_in)
{
    unsigned short m;

    m = (unsigned short) (number_in * 256);
    return( m );
}

static
void  init_common_tags(gsicc_tag tag_list[],int num_tags, int *last_tag)
{
 /*    profileDescriptionTag
       copyrightTag  */

    int curr_tag, temp_size;

    if (*last_tag < 0)
        curr_tag = 0;
    else
        curr_tag = (*last_tag)+1;

    tag_list[curr_tag].offset = HEADER_SIZE+num_tags*TAG_SIZE + 4;
    tag_list[curr_tag].sig = icSigProfileDescriptionTag;
    /* temp_size = DATATYPE_SIZE + 4 + strlen(desc_name) + 1 + 4 + 4 + 3 + 67; */
    temp_size = 2*strlen(desc_name) + 28;
    /* +1 for NULL + 4 + 4 for unicode + 3 + 67 script code */
    tag_list[curr_tag].byte_padding = get_padding(temp_size);
    tag_list[curr_tag].size = temp_size + tag_list[curr_tag].byte_padding;

    curr_tag++;

    tag_list[curr_tag].offset = tag_list[curr_tag-1].offset +
                                                    tag_list[curr_tag-1].size;
    tag_list[curr_tag].sig = icSigCopyrightTag;
    /* temp_size = DATATYPE_SIZE + strlen(copy_right) + 1; */
    temp_size = 2*strlen(copy_right) + 28;
    tag_list[curr_tag].byte_padding = get_padding(temp_size);
    tag_list[curr_tag].size = temp_size + tag_list[curr_tag].byte_padding;
    *last_tag = curr_tag;
}

/* Code to write out v4 text type which is a table of unicode text
   for different regions */
static void
add_v4_text_tag(unsigned char *buffer,const char text[], gsicc_tag tag_list[],
                int curr_tag)
{
    unsigned char *curr_ptr;
    int k;

    curr_ptr = buffer;
    write_bigendian_4bytes(curr_ptr,icMultiUnicodeText);
    curr_ptr += 4;
    memset(curr_ptr,0,4);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,1); /* Number of names */
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,12); /* Record size */
    curr_ptr += 4;
    write_bigendian_2bytes(curr_ptr,0x656e); /* ISO 639-1, en */
    curr_ptr += 2;
    write_bigendian_2bytes(curr_ptr,0x5553); /* ISO 3166, US */
    curr_ptr += 2;
    write_bigendian_4bytes(curr_ptr,2*strlen(text)); /* String length */
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,28); /* Offset to string */
    curr_ptr += 4;
    /* String written as UTF-16BE. No NULL */
    for (k = 0; k < strlen(text); k++) {
        *curr_ptr ++= 0;
        *curr_ptr ++= text[k];
    }
    memset(curr_ptr,0,tag_list[curr_tag].byte_padding);  /* padding */
}

static void
add_common_tag_data(unsigned char *buffer,gsicc_tag tag_list[])
{
#if USE_V4
    unsigned char *curr_ptr;

    curr_ptr = buffer;
    add_v4_text_tag(curr_ptr, desc_name, tag_list, 0);
    curr_ptr += tag_list[0].size;
    add_v4_text_tag(curr_ptr, copy_right, tag_list, 1);
#else
    unsigned char *curr_ptr;

    curr_ptr = buffer;
    add_desc_tag(curr_ptr, desc_name, tag_list, 0);
    curr_ptr += tag_list[0].size;
    add_text_tag(curr_ptr, copy_right, tag_list, 1);
#endif
}

static
void  init_tag(gsicc_tag tag_list[], int *last_tag, icTagSignature tagsig,
               int datasize)
{
    /* This should never be called first. Common tags should be taken care of */

    int curr_tag = (*last_tag)+1;

    tag_list[curr_tag].offset = tag_list[curr_tag-1].offset +
                                                    tag_list[curr_tag-1].size;
    tag_list[curr_tag].sig = tagsig;
    tag_list[curr_tag].byte_padding = get_padding(DATATYPE_SIZE + datasize);
    tag_list[curr_tag].size = DATATYPE_SIZE + datasize +
                                            tag_list[curr_tag].byte_padding;
    *last_tag = curr_tag;
}

static void
setheader_common(icHeader *header)
{
    /* This needs to all be predefined for a simple copy. MJV todo */
    header->cmmId = 0;
    header->version = 0x04200000;
    setdatetime(&(header->date));
    header->magic = icMagicNumber;
    header->platform = icSigMacintosh;
    header->flags = 0;
    header->manufacturer = 0;
    header->model = 0;
    header->attributes[0] = 0;
    header->attributes[1] = 0;
    header->renderingIntent = 3;
    header->illuminant.X = double2XYZtype((float) 0.9642);
    header->illuminant.Y = double2XYZtype((float) 1.0);
    header->illuminant.Z = double2XYZtype((float) 0.8249);
    header->creator = 0;
    /* Version 4 includes a profile id, field which is an md5 sum */
    memset(header->reserved,0,44);
}

static void
copy_header(unsigned char *buffer,icHeader *header)
{
    unsigned char *curr_ptr;

    curr_ptr = buffer;
    write_bigendian_4bytes(curr_ptr,header->size);
    curr_ptr += 4;
    memset(curr_ptr,0,4);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->version);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->deviceClass);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->colorSpace);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->pcs);
    curr_ptr += 4;

    /* Date and time */
    memset(curr_ptr,0,12);
    curr_ptr += 12;
    write_bigendian_4bytes(curr_ptr,header->magic);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->platform);
    curr_ptr += 4;
    memset(curr_ptr,0,24);
    curr_ptr += 24;
    write_bigendian_4bytes(curr_ptr,header->illuminant.X);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->illuminant.Y);
    curr_ptr += 4;
    write_bigendian_4bytes(curr_ptr,header->illuminant.Z);
    curr_ptr += 4;
    memset(curr_ptr,0,48);
}

static void
copy_tagtable(unsigned char *buffer,gsicc_tag *tag_list, ulong num_tags)
{
    unsigned int k;
    unsigned char *curr_ptr;

    curr_ptr = buffer;
    write_bigendian_4bytes(curr_ptr,num_tags);
    curr_ptr += 4;
    for (k = 0; k < num_tags; k++) {
        write_bigendian_4bytes(curr_ptr,tag_list[k].sig);
        curr_ptr += 4;
        write_bigendian_4bytes(curr_ptr,tag_list[k].offset);
        curr_ptr += 4;
        write_bigendian_4bytes(curr_ptr,tag_list[k].size);
        curr_ptr += 4;
    }
}

static void
get_D50(icS15Fixed16Number XYZ[])
{
    XYZ[0] = double2XYZtype(D50_X);
    XYZ[1] = double2XYZtype(D50_Y);
    XYZ[2] = double2XYZtype(D50_Z);
}

static void
get_XYZ(icS15Fixed16Number XYZ[], gs_vector3 *vector)
{
    XYZ[0] = double2XYZtype(vector->u);
    XYZ[1] = double2XYZtype(vector->v);
    XYZ[2] = double2XYZtype(vector->w);
}

static void
get_XYZ_floatptr(icS15Fixed16Number XYZ[], float *vector)
{
    XYZ[0] = double2XYZtype(vector[0]);
    XYZ[1] = double2XYZtype(vector[1]);
    XYZ[2] = double2XYZtype(vector[2]);
}

static void
scale_matrix(float *matrix_input,float scale_factor)
{
    int k;

    for (k = 0; k < 9; k++) {
        matrix_input[k] = matrix_input[k]/2.0;
    }
}

static void
add_gammadata(unsigned char *input_ptr, unsigned short gamma,
              icTagSignature curveType)
{
    unsigned char *curr_ptr;

    curr_ptr = input_ptr;
    write_bigendian_4bytes(curr_ptr,curveType);
    curr_ptr += 4;
    memset(curr_ptr,0,4);
    curr_ptr += 4;

    /* one entry for gamma */
    write_bigendian_4bytes(curr_ptr, 1);
    curr_ptr += 4;

    /* The encode (8frac8) gamma, with padding */
    write_bigendian_2bytes(curr_ptr, gamma);
    curr_ptr += 2;

    /* pad two bytes */
    memset(curr_ptr,0,2);
}

static void
add_xyzdata(unsigned char *input_ptr, icS15Fixed16Number temp_XYZ[])
{
    int j;
    unsigned char *curr_ptr;

    curr_ptr = input_ptr;
    write_bigendian_4bytes(curr_ptr,icSigXYZType);
    curr_ptr += 4;
    memset(curr_ptr,0,4);
    curr_ptr += 4;
    for (j = 0; j < 3; j++) {
        write_bigendian_4bytes(curr_ptr, temp_XYZ[j]);
        curr_ptr += 4;
    }
}

/* If abc matrix is identity the abc and lmn curves can be mashed together  */
static void
merge_abc_lmn_curves(gx_cie_vector_cache *DecodeABC_caches,
                     gx_cie_scalar_cache *DecodeLMN)
{

}

static void
add_matrixwithbias(unsigned char *input_ptr, float *float_ptr_in, bool has_bias)
{
    unsigned char *curr_ptr;
    float *float_ptr = float_ptr_in;
    int k;

    /* GS Matrix is coming in with data arranged in row ordered form */
    curr_ptr = input_ptr;
    for (k = 0; k < 9; k++ ){
        write_bigendian_4bytes(curr_ptr, double2icS15Fixed16Number(*float_ptr));
        curr_ptr += 4;
        float_ptr++;
    }
    if (has_bias){
        memset(curr_ptr,0,4*3);
    }
}

static void
matrixmult(float leftmatrix[], int nlrow, int nlcol,
           float rightmatrix[], int nrrow, int nrcol, float result[])
{
    float *curr_row;
    int k,l,j,ncols,nrows;
    float sum;

    nrows = nlrow;
    ncols = nrcol;
    if (nlcol == nrrow) {
        for (k = 0; k < nrows; k++) {
            curr_row = &(leftmatrix[k*nlcol]);
            for (l = 0; l < ncols; l++) {
                sum = 0.0;
                for (j = 0; j < nlcol; j++) {
                    sum = sum + curr_row[j] * rightmatrix[j*nrcol+l];
                }
                result[k*ncols+l] = sum;
            }
        }
    }
}

static void
gsicc_create_copy_matrix3(float *src, float *des)
{
    memcpy(des,src,9*sizeof(float));
}

static void
gsicc_create_compute_cam( gs_vector3 *white_src, gs_vector3 *white_des,
                                float *cam)
{
    float cat02matrix[] = {0.7328f, 0.4296f, -0.1624f,
                            -0.7036f, 1.6975f, 0.0061f,
                             0.003f, 0.0136f, 0.9834f};
    float cat02matrixinv[] = {1.0961f, -0.2789f, 0.1827f,
                              0.4544f, 0.4735f, 0.0721f,
                             -0.0096f, -0.0057f, 1.0153f};
    float vonkries_diag[9];
    float temp_matrix[9];
    float lms_wp_src[3], lms_wp_des[3];
    int k;

    matrixmult(cat02matrix,3,3,&(white_src->u),3,1,&(lms_wp_src[0]));
    matrixmult(cat02matrix,3,3,&(white_des->u),3,1,&(lms_wp_des[0]));
    memset(&(vonkries_diag[0]),0,sizeof(float)*9);

    for (k = 0; k < 3; k++) {
        if (lms_wp_src[k] > 0 ) {
            vonkries_diag[k*3+k] = lms_wp_des[k]/lms_wp_src[k];
        } else {
            vonkries_diag[k*3+k] = 1;
        }
    }
    matrixmult(&(vonkries_diag[0]), 3, 3, &(cat02matrix[0]), 3, 3,
                &(temp_matrix[0]));
    matrixmult(&(cat02matrixinv[0]), 3, 3, &(temp_matrix[0]), 3, 3, &(cam[0]));
}

/* Hardcoded chad for D65 to D50. This should be computed on the fly
   based upon the PS specified white point and ICC D50. We don't use
   the chad tag with littleCMS since it takes care of the chromatic
   adaption itself based upon D50 and the media white point.  */
static void
add_chad_data(unsigned char *input_ptr, float *data)
{
    unsigned char *curr_ptr = input_ptr;
  /*  float data[] = {1.04790738171017, 0.0229333845542104, -0.0502016347980104,
                 0.0296059594177168, 0.990456039910785, -0.01707552919587,
                 -0.00924679432678241, 0.0150626801401488, 0.751791232609078};*/

    /* Signature should be sf32 */
    curr_ptr = input_ptr;
    write_bigendian_4bytes(curr_ptr,icSigS15Fixed16ArrayType);
    curr_ptr += 4;
    /* Reserved */
    memset(curr_ptr,0,4);
    curr_ptr += 4;
    add_matrixwithbias(curr_ptr,  &(data[0]), false);
}

static void
add_ident_curves(unsigned char *input_ptr,int number_of_curves)
{
    unsigned char *curr_ptr;
    int k;

    curr_ptr = input_ptr;
    for (k = 0; k < number_of_curves; k++) {
       /* Signature */
        write_bigendian_4bytes(curr_ptr,icSigCurveType);
        curr_ptr += 4;
        /* Reserved */
        memset(curr_ptr,0,4);
        curr_ptr += 4;
        /* Count */
        write_bigendian_4bytes(curr_ptr, 0);
        curr_ptr += 4;
    }
}

static void
add_clutAtoB(unsigned char *input_ptr, gsicc_clut *clut)
{
    unsigned char *curr_ptr = input_ptr;
    int k;
    int num_channels_in = clut->clut_num_input;
    int number_samples = clut->clut_num_entries;

    /* First write out the dimensions for each channel */
    for (k = 0; k < num_channels_in; k++) {
        memset(curr_ptr, clut->clut_dims[k], 1);
        curr_ptr++;
    }
    /* Set the remainder of the dimenensions */
    memset(curr_ptr, 0, 16-num_channels_in);
    curr_ptr += (16-num_channels_in);
    /* word size */
    memset(curr_ptr, clut->clut_word_width, 1);
    curr_ptr++;
    /* padding */
    memset(curr_ptr, 0, 3);
    curr_ptr += 3;
    if (clut->data_byte != NULL) {
        /* A byte table */
        memcpy(curr_ptr,clut->data_byte,number_samples*3);
    } else {
        /* A float table */
        for ( k = 0; k < number_samples*3; k++ ) {
            write_bigendian_2bytes(curr_ptr,clut->data_short[k]);
            curr_ptr += 2;
        }
    }
}

static void
add_curve(unsigned char *input_ptr, float *curve_data, int num_samples)
{
    unsigned char *curr_ptr;
    unsigned short value;
    int k;

   /* Signature */
    curr_ptr = input_ptr;
    write_bigendian_4bytes(curr_ptr,icSigCurveType);
    curr_ptr += 4;
    /* Reserved */
    memset(curr_ptr,0,4);
    curr_ptr += 4;
    /* Count */
    write_bigendian_4bytes(curr_ptr, num_samples);
    curr_ptr += 4;
    /* Now the data uInt16 Number 0 to 65535.  For now assume input is 0 to 1.
            Need to fix this.  MJV */
    for (k = 0; k < num_samples; k++) {
        if (curve_data[k] < 0) curve_data[k] = 0;
        if (curve_data[k] > 1) curve_data[k] = 1;
        value = (unsigned int) (curve_data[k]*65535.0);
        write_bigendian_2bytes(curr_ptr,value);
        curr_ptr+=2;
    }
}

/* See comments before add_lutAtoBtype about allowable forms, which will
    explain much of these size calculations */
static int
getsize_lutAtoBtype(gsicc_lutatob *lutatobparts)
{
    int data_offset, mlut_size;
    int numout = lutatobparts->num_out;
    int numin = lutatobparts->num_in;
    int pad_bytes;

    data_offset = 32;
    /* B curves always present */
    if (lutatobparts->b_curves != NULL) {
        data_offset += (numout*(CURVE_SIZE*2+12));
    } else {
        data_offset += (numout*(IDENT_CURVE_SIZE*2+12));
    }
    /* M curves present if Matrix is present */
    if (lutatobparts->matrix != NULL ) {
        data_offset += (12*4);
        /* M curves */
        if (lutatobparts->m_curves != NULL) {
            data_offset += (numout*(CURVE_SIZE*2+12));
        } else {
            data_offset += (numout*(IDENT_CURVE_SIZE*2+12));
        }
    }
    /* A curves present if clut is present */
    if (lutatobparts->clut != NULL) {
        /* We may need to pad the clut to make sure we are on a 4 byte boundary */
        mlut_size = lutatobparts->clut->clut_num_entries *
                            lutatobparts->clut->clut_word_width * 3;
        pad_bytes = (4 - mlut_size%4)%4;
        data_offset += (mlut_size + pad_bytes + 20);
        if (lutatobparts->a_curves != NULL) {
            data_offset += (numin*(CURVE_SIZE*2+12));
        } else {
            data_offset += (numin*(IDENT_CURVE_SIZE*2+12));
        }
    }
    return(data_offset);
}

/* Note:  ICC V4 fomat allows ONLY these forms
B
M - Matrix - B
A - CLUT - B
A - CLUT - M - Matrix - B
Other forms are created by making some of these items identity.  In other words
the B curves must always be included.  If CLUT is present, A curves must be present.
Also, if Matrix is present M curves must be present.  A curves cannot be
present if CLUT is not present. */
static void
add_lutAtoBtype(unsigned char *input_ptr, gsicc_lutatob *lutatobparts)
{
/* We need to figure out all the offsets to the various objects based upon
    which ones are actually present */
    unsigned char *curr_ptr;
    long mlut_size;
    int data_offset;
    int k;
    int numout = lutatobparts->num_out;
    int numin = lutatobparts->num_in;
    int pad_bytes = 0;

    /* Signature */
    curr_ptr = input_ptr;
    write_bigendian_4bytes(curr_ptr,icMultiFunctionAtoBType);
    curr_ptr += 4;
    /* Reserved */
    memset(curr_ptr,0,4);
    curr_ptr += 4;
    /* Padded sizes */
    *curr_ptr++ = numin;
    *curr_ptr++ = numout;
    memset(curr_ptr,0,2);
    curr_ptr += 2;
    /* Note if data offset is zero, element is not present */
    /* offset to B curves (last curves) */
    data_offset = 32;
    if (lutatobparts->b_curves == NULL) {
        /* identity curve must be present */
        write_bigendian_4bytes(curr_ptr,data_offset);
        data_offset += (numout*(IDENT_CURVE_SIZE*2+12));
    } else {
        write_bigendian_4bytes(curr_ptr,data_offset);
        data_offset += (numout*(CURVE_SIZE*2+12));
    }
    curr_ptr += 4;
    /* offset to matrix and M curves */
    if (lutatobparts->matrix == NULL) {
        memset(curr_ptr,0,4);  /* Matrix */
        curr_ptr += 4;
        memset(curr_ptr,0,4);  /* M curves */
    } else {
        write_bigendian_4bytes(curr_ptr,data_offset);
        data_offset += (12*4);
        curr_ptr += 4;
        /* offset to M curves (Matrix curves -- only come with matrix) */
        if (lutatobparts->m_curves == NULL) {
            /* identity curve must be present */
            write_bigendian_4bytes(curr_ptr,data_offset);
            data_offset += (numout*(IDENT_CURVE_SIZE*2+12));
        } else {
            write_bigendian_4bytes(curr_ptr,data_offset);
            data_offset += (numout*(CURVE_SIZE*2+12));
        }
    }
    curr_ptr += 4;
    /* offset to CLUT and A curves */
    if (lutatobparts->clut == NULL) {
        memset(curr_ptr,0,4); /* CLUT */
        curr_ptr += 4;
        memset(curr_ptr,0,4); /* A curves */
    } else {
        write_bigendian_4bytes(curr_ptr,data_offset);
        mlut_size = lutatobparts->clut->clut_num_entries *
                    lutatobparts->clut->clut_word_width * 3;
        pad_bytes = (4 - mlut_size%4)%4;
        data_offset += (mlut_size + pad_bytes + 20);
        curr_ptr += 4;
        /* offset to A curves (first curves) */
        if (lutatobparts->a_curves == NULL || lutatobparts->clut == NULL) {
            /* identity curve must be present */
            write_bigendian_4bytes(curr_ptr,data_offset);
            data_offset += (numin*(IDENT_CURVE_SIZE*2+12));
        } else {
            write_bigendian_4bytes(curr_ptr,data_offset);
            data_offset += (numin*(CURVE_SIZE*2+12));
        }
    }
    curr_ptr += 4;
    /* Header is completed */
    /* Now write out the various parts (i.e. curves, matrix and clut) */
    /* First the B curves */
    if (lutatobparts->b_curves != NULL) {
        for (k = 0; k < numout; k++) {
            add_curve(curr_ptr, (lutatobparts->b_curves)+k*CURVE_SIZE, CURVE_SIZE);
            curr_ptr += (12 + CURVE_SIZE*2);
        }
    } else {
        add_ident_curves(curr_ptr,numout);
        curr_ptr += numout*(12 + IDENT_CURVE_SIZE*2);
    }
    /* Then the matrix */
    if (lutatobparts->matrix != NULL) {
        add_matrixwithbias(curr_ptr,&(lutatobparts->matrix->cu.u),true);
        curr_ptr += (12*4);
        /* M curves */
        if (lutatobparts->m_curves != NULL) {
            for (k = 0; k < numout; k++) {
                add_curve(curr_ptr, (lutatobparts->m_curves)+k*CURVE_SIZE, CURVE_SIZE);
                curr_ptr += (12 + CURVE_SIZE*2);
            }
        } else {
            add_ident_curves(curr_ptr,numout);
            curr_ptr += numout*(12 + IDENT_CURVE_SIZE*2);
        }
    }
    /* Then the clut */
    if (lutatobparts->clut != NULL) {
        add_clutAtoB(curr_ptr, lutatobparts->clut);
        curr_ptr += (20 + mlut_size);
        memset(curr_ptr,0,pad_bytes); /* 4 byte boundary */
        curr_ptr += pad_bytes;
        /* The A curves */
        if (lutatobparts->a_curves != NULL) {
            for (k = 0; k < numin; k++) {
                add_curve(curr_ptr, (lutatobparts->a_curves)+k*CURVE_SIZE,
                            CURVE_SIZE);
                curr_ptr += (12 + CURVE_SIZE*2);
            }
        } else {
            add_ident_curves(curr_ptr,numin);
            curr_ptr += numin*(12 + IDENT_CURVE_SIZE*2);
        }

    }
}

/* This creates an ICC profile from the PDF calGray and calRGB definitions */
cmm_profile_t*
gsicc_create_from_cal(float *white, float *black, float *gamma, float *matrix,
                      gs_memory_t *memory, int num_colors)
{
    icProfile iccprofile;
    icHeader  *header = &(iccprofile.header);
    int profile_size,k;
    int num_tags;
    gsicc_tag *tag_list;
    unsigned short encode_gamma;
    unsigned char *curr_ptr;
    int last_tag;
    icS15Fixed16Number temp_XYZ[3];
    int tag_location;
    icTagSignature TRC_Tags[3] = {icSigRedTRCTag, icSigGreenTRCTag,
                                  icSigBlueTRCTag};
    int trc_tag_size;
    unsigned char *buffer;
    cmm_profile_t *result;

    /* Fill in the common stuff */
    setheader_common(header);
    header->pcs = icSigXYZData;
    profile_size = HEADER_SIZE;
    header->deviceClass = icSigInputClass;
    if (num_colors == 3) {
        header->colorSpace = icSigRgbData;
        num_tags = 10;  /* common (2) + rXYZ,gXYZ,bXYZ,rTRC,gTRC,bTRC,bkpt,wtpt */
    } else if (num_colors == 1) {
        header->colorSpace = icSigGrayData;
        num_tags = 5;  /* common (2) + GrayTRC,bkpt,wtpt */
        TRC_Tags[0] = icSigGrayTRCTag;
    } else {
        return(NULL);
    }
    tag_list = (gsicc_tag*) gs_alloc_bytes(memory,
                    sizeof(gsicc_tag)*num_tags,"gsicc_create_from_cal");
    /* Let us precompute the sizes of everything and all our offsets */
    profile_size += TAG_SIZE*num_tags;
    profile_size += 4; /* number of tags.... */
    last_tag = -1;
    init_common_tags(tag_list, num_tags, &last_tag);
    if (num_colors == 3) {
        init_tag(tag_list, &last_tag, icSigRedColorantTag, XYZPT_SIZE);
        init_tag(tag_list, &last_tag, icSigGreenColorantTag, XYZPT_SIZE);
        init_tag(tag_list, &last_tag, icSigBlueColorantTag, XYZPT_SIZE);
    }
    init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE);
    init_tag(tag_list, &last_tag, icSigMediaBlackPointTag, XYZPT_SIZE);
    /* 4 for count, 2 for gamma, Extra 2 bytes for 4 byte alignment requirement */
    trc_tag_size = 8;
    for (k = 0; k < num_colors; k++) {
        init_tag(tag_list, &last_tag, TRC_Tags[k], trc_tag_size);
    }
    for(k = 0; k < num_tags; k++) {
        profile_size += tag_list[k].size;
    }
    /* Now we can go ahead and fill our buffer with the data.  Profile
       buffer data is in non-gc memory */
    buffer = gs_alloc_bytes(memory->non_gc_memory,
                            profile_size, "gsicc_create_from_cal");
    curr_ptr = buffer;
    /* The header */
    header->size = profile_size;
    copy_header(curr_ptr,header);
    curr_ptr += HEADER_SIZE;
    /* Tag table */
    copy_tagtable(curr_ptr,tag_list,num_tags);
    curr_ptr += TAG_SIZE*num_tags;
    curr_ptr += 4;
    /* Now the data.  Must be in same order as we created the tag table */
    /* First the common tags */
    add_common_tag_data(curr_ptr, tag_list);
    for (k = 0; k< NUMBER_COMMON_TAGS; k++) {
        curr_ptr += tag_list[k].size;
    }
    tag_location = NUMBER_COMMON_TAGS;
    /* The matrix */
    if (num_colors == 3) {
        for ( k = 0; k < 3; k++ ) {
            get_XYZ_floatptr(temp_XYZ,&(matrix[k*3]));
            add_xyzdata(curr_ptr,temp_XYZ);
            curr_ptr += tag_list[tag_location].size;
            tag_location++;
        }
    }
    /* White and black points */
    /* Need to adjust for the D65/D50 issue */
    get_XYZ_floatptr(temp_XYZ,white);
    add_xyzdata(curr_ptr,temp_XYZ);
    curr_ptr += tag_list[tag_location].size;
    tag_location++;
    /* Black point */
    get_XYZ_floatptr(temp_XYZ,black);
    add_xyzdata(curr_ptr,temp_XYZ);
    curr_ptr += tag_list[tag_location].size;
    tag_location++;
    /* Now the gamma values */
    for ( k = 0; k < num_colors; k++ ) {
        encode_gamma = float2u8Fixed8(gamma[k]);
        add_gammadata(curr_ptr, encode_gamma, icSigCurveType);
        curr_ptr += tag_list[tag_location].size;
        tag_location++;
    }
    result = gsicc_profile_new(NULL, memory, NULL, 0);
    result->buffer = buffer;
    result->buffer_size = profile_size;
    result->num_comps = num_colors;
    if (num_colors == 3) {
        result->data_cs = gsRGB;
        result->default_match = CAL_RGB;
    } else {
        result->data_cs = gsGRAY;
        result->default_match = CAL_GRAY;
    }
    /* Set the hash code  */
    gsicc_get_icc_buff_hash(buffer, &(result->hashcode), result->buffer_size);
    result->hash_is_valid = true;
    /* Free up the tag list */
    gs_free_object(memory, tag_list, "gsicc_create_from_cal");

#if SAVEICCPROFILE
    /* Dump the buffer to a file for testing if its a valid ICC profile */
    if (num_colors == 3)
        save_profile(buffer,"from_calRGB",profile_size);
    else
        save_profile(buffer,"from_calGray",profile_size);
#endif
    return(result);
}

static void
gsicc_create_free_luta2bpart(gs_memory_t *memory, gsicc_lutatob *icc_luta2bparts)
{
    /* Note that white_point, black_point and matrix are not allocated but
       are on the local stack */
    gs_free_object(memory, icc_luta2bparts->a_curves,
                    "gsicc_create_free_luta2bpart");
    gs_free_object(memory, icc_luta2bparts->b_curves,
                    "gsicc_create_free_luta2bpart");
    gs_free_object(memory, icc_luta2bparts->m_curves,
                    "gsicc_create_free_luta2bpart");
    gs_free_object(memory, icc_luta2bparts->cam,
                    "gsicc_create_free_luta2bpart");
    if (icc_luta2bparts->clut) {
        /* Note, data_byte is handled externally.  We do not free that member here */
        gs_free_object(memory, icc_luta2bparts->clut->data_short,
                        "gsicc_create_free_luta2bpart");
        gs_free_object(memory, icc_luta2bparts->clut,
                        "gsicc_create_free_luta2bpart");
    }
}

static void
gsicc_create_init_luta2bpart(gsicc_lutatob *icc_luta2bparts)
{
    icc_luta2bparts->a_curves = NULL;
    icc_luta2bparts->b_curves = NULL;
    icc_luta2bparts->clut = NULL;
    icc_luta2bparts->m_curves = NULL;
    icc_luta2bparts->cam = NULL;
    icc_luta2bparts->matrix = NULL;
    icc_luta2bparts->white_point = NULL;
    icc_luta2bparts->black_point = NULL;
    icc_luta2bparts->num_in = 0;
    icc_luta2bparts->num_out = 0;
}

static void
gsicc_create_initialize_clut(gsicc_clut *clut)
{
    int k;

    clut->clut_num_entries = clut->clut_dims[0];
    for (k = 1; k < clut->clut_num_input; k++) {
        clut->clut_num_entries *= clut->clut_dims[k];
    }
    clut->data_byte =  NULL;
    clut->data_short = NULL;
}

/* A common form used for most of the PS CIE color spaces */
static void
create_lutAtoBprofile(unsigned char **pp_buffer_in, icHeader *header,
                      gsicc_lutatob *lutatobparts, bool yonly,
                      gs_memory_t *memory)
{
    int num_tags = 6;  /* common (2), AToB0Tag,bkpt, wtpt and chad.*/
    int k;
    gsicc_tag *tag_list;
    int profile_size, last_tag, tag_location, tag_size;
    unsigned char *buffer,*curr_ptr;
    icS15Fixed16Number temp_XYZ[3];
    gs_vector3 d50;
    float *cam;
    gs_matrix3 temp_matrix;
    float lmn_vector[3],d50_cieA[3];

    profile_size = HEADER_SIZE;
    tag_list = (gsicc_tag*) gs_alloc_bytes(memory,sizeof(gsicc_tag)*num_tags,
                                            "create_lutAtoBprofile");
    /* Let us precompute the sizes of everything and all our offsets */
    profile_size += TAG_SIZE*num_tags;
    profile_size += 4; /* number of tags.... */
    last_tag = -1;
    init_common_tags(tag_list, num_tags, &last_tag);
    init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE);
    init_tag(tag_list, &last_tag, icSigMediaBlackPointTag, XYZPT_SIZE);

    init_tag(tag_list, &last_tag, icSigChromaticAdaptationTag, 9*4); /* chad tag */

    /* Get the tag size of the A2B0 with the lutAtoBType */
    /* Compensate for init_tag() adding DATATYPE_SIZE */
    tag_size = getsize_lutAtoBtype(lutatobparts) - DATATYPE_SIZE;
    init_tag(tag_list, &last_tag, icSigAToB0Tag, tag_size);
    /* Add all the tag sizes to get the new profile size */
    for(k = 0; k < num_tags; k++) {
        profile_size += tag_list[k].size;
    }
    /* End of tag table information */
    /* Now we can go ahead and fill our buffer with the data.  Profile
       is in non-gc memory */
    buffer = gs_alloc_bytes(memory->non_gc_memory, profile_size,
        "create_lutAtoBprofile");
    curr_ptr = buffer;
    /* The header */
    header->size = profile_size;
    copy_header(curr_ptr,header);
    curr_ptr += HEADER_SIZE;
    /* Tag table */
    copy_tagtable(curr_ptr,tag_list,num_tags);
    curr_ptr += TAG_SIZE*num_tags;
    curr_ptr += 4;
    /* Now the data.  Must be in same order as we created the tag table */
    /* First the common tags */
    add_common_tag_data(curr_ptr, tag_list);
    for (k = 0; k< NUMBER_COMMON_TAGS; k++) {
        curr_ptr += tag_list[k].size;
    }
    tag_location = NUMBER_COMMON_TAGS;
    /* Here we take care of chromatic adapatation.  Compute the
       matrix.  We will need to hit the data with the matrix and
       store it in the profile. */
    d50.u = D50_X;
    d50.v = D50_Y;
    d50.w = D50_Z;
    cam = (float*) gs_alloc_bytes(memory,9*sizeof(float),"create_lutAtoBprofile");
    gsicc_create_compute_cam(lutatobparts->white_point, &(d50), cam);
    lutatobparts->cam = cam;
    get_D50(temp_XYZ); /* See Appendix D6 in spec */
    /* get_XYZ(temp_XYZ,lutatobparts->white_point); */
    add_xyzdata(curr_ptr,temp_XYZ);
    curr_ptr += tag_list[tag_location].size;
    tag_location++;
    get_XYZ(temp_XYZ,lutatobparts->black_point);
    add_xyzdata(curr_ptr,temp_XYZ);
    curr_ptr += tag_list[tag_location].size;
    tag_location++;
    add_chad_data(curr_ptr, cam);
    curr_ptr += tag_list[tag_location].size;
    tag_location++;
    /* Multiply the matrix in the AtoB object by the cam so that the data
       is in D50 */
    if (lutatobparts->matrix == NULL) {
        gsicc_create_copy_matrix3(cam,&(temp_matrix.cu.u));
        lutatobparts->matrix = &temp_matrix;
    } else {
        if (yonly) {
            /* Used for CIEBaseA case.  Studies of CIEBasedA spaces
               and AR rendering of these reveals that they only look
               at the product sum of the MatrixA and the 2nd column of
               the LM Matrix (if there is one).  This is used as a Y
               decode value from which to map between the black point
               and the white point.  The black point is actually ignored
               and a black point of 0 is used. Essentialy we have
               weighted versions of D50 in each column of the matrix
               which ensures we stay on the achromatic axis */
            lmn_vector[0] = lutatobparts->matrix->cv.u;
            lmn_vector[1] = lutatobparts->matrix->cv.v;
            lmn_vector[2] = lutatobparts->matrix->cv.w;
            d50_cieA[0] = D50_X;
            d50_cieA[1] = D50_Y;
            d50_cieA[2] = D50_Z;
            matrixmult(&(d50_cieA[0]),3,1,&(lmn_vector[0]), 1, 3,
                        &(lutatobparts->matrix->cu.u));
        } else {
            matrixmult(cam, 3, 3, &(lutatobparts->matrix->cu.u), 3, 3,
                    &(temp_matrix.cu.u));
            lutatobparts->matrix = &temp_matrix;
        }
    }
    /* Now the AToB0Tag Data. Here this will include the M curves, the matrix
       and the B curves. We may need to do some adustements with respect
       to encode and decode.  For now assume all is between 0 and 1. */
    add_lutAtoBtype(curr_ptr, lutatobparts);
    *pp_buffer_in = buffer;
    gs_free_object(memory, tag_list, "create_lutAtoBprofile");

}

/* Shared code between all the PS types whereby we mash together all the
   components into a single CLUT.  Not preferable in general but necessary
   when the PS components do not map easily into the ICC forms */
static void
gsicc_create_mashed_clut(gsicc_lutatob *icc_luta2bparts,
                         icHeader *header, gx_color_lookup_table *Table,
                         const gs_color_space *pcs, gs_range *ranges,
                         unsigned char **pp_buffer_in, int *profile_size_out,
                         bool range_adjust, gs_memory_t* memory)
{
    int k;
    int code;
    gsicc_clut *clut;
    gs_matrix3 ident_matrix;
    gs_vector3 ones_vec;

   /* A table is going to be mashed form of all the transform */
    /* Allocate space for the clut */
    clut = (gsicc_clut*) gs_alloc_bytes(memory,sizeof(gsicc_clut),
                                "gsicc_create_mashed_clut");
    icc_luta2bparts->clut = clut;
    if ( icc_luta2bparts->num_in == 1 ) {
        /* Use a larger sample for 1-D input */
        clut->clut_dims[0] = DEFAULT_TABLE_GRAYSIZE;
    } else {
        for (k = 0; k < icc_luta2bparts->num_in; k++) {
            if (Table != NULL && Table->dims[k] > DEFAULT_TABLE_NSIZE ) {
                /* If it has a table use the existing table size if
                   it is larger than our default size */
                clut->clut_dims[k] = Table->dims[k];
            } else {
                /* If not, then use a default size */
                clut->clut_dims[k] = DEFAULT_TABLE_NSIZE;
            }
        }
    }
    clut->clut_num_input = icc_luta2bparts->num_in;
    clut->clut_num_output = 3;  /* CIEXYZ */
    clut->clut_word_width = 2;  /* 16 bit */
    gsicc_create_initialize_clut(clut);
    /* Allocate space for the table data */
    clut->data_short =
        (unsigned short*) gs_alloc_bytes(memory,
        clut->clut_num_entries*3*sizeof(unsigned short),"gsicc_create_mashed_clut");
    /* Create the table */
    code = gsicc_create_clut(pcs, clut, ranges, icc_luta2bparts->white_point,
                             range_adjust, memory);
    /* Initialize other parts. Also make sure acurves are reset since
       they have been mashed into the table. */
    gs_free_object(memory, icc_luta2bparts->a_curves, "gsicc_create_mashed_clut");
    icc_luta2bparts->a_curves = NULL;
    icc_luta2bparts->b_curves = NULL;
    icc_luta2bparts->m_curves = NULL;
    ones_vec.u = 1;
    ones_vec.v = 1;
    ones_vec.w = 1;
    gsicc_make_diag_matrix(&ident_matrix,&ones_vec);
    icc_luta2bparts->matrix = &ident_matrix;
    /* Now create the profile */
    if (icc_luta2bparts->num_in == 1 ) {
        create_lutAtoBprofile(pp_buffer_in, header, icc_luta2bparts, true, memory);
    } else {
        create_lutAtoBprofile(pp_buffer_in, header, icc_luta2bparts, false, memory);
    }

}

/* Shared code by ABC, DEF and DEFG compaction of ABC/LMN parts.  This is used
   when we either MatrixABC is identity, LMN Decode is identity or MatrixLMN
   is identity */
static void
gsicc_create_abc_merge(gsicc_lutatob *atob_parts, gs_matrix3 *matrixLMN,
                       gs_matrix3 *matrixABC, bool has_abc_procs,
                       bool has_lmn_procs, gx_cie_vector_cache *abc_caches,
                       gx_cie_scalar_cache *lmn_caches, gs_memory_t *memory)
{
    gs_matrix3 temp_matrix;
    gs_matrix3 *matrix_ptr;
    float *curr_pos;

    /* Determine the matrix that we will be using */
    if (!(matrixLMN->is_identity) && !(matrixABC->is_identity)){
        /* Use the product of the ABC and LMN matrices, since lmn_procs identity.
           Product must be LMN_Matrix*ABC_Matrix */
        cie_matrix_mult3(matrixLMN, matrixABC, &temp_matrix);
        cie_matrix_transpose3(&temp_matrix, atob_parts->matrix);
    } else {
        /* Either ABC matrix or LMN matrix is identity */
        if (matrixABC->is_identity) {
            matrix_ptr = matrixLMN;
        } else {
            matrix_ptr = matrixABC;
        }
        cie_matrix_transpose3(matrix_ptr, atob_parts->matrix);
    }
    /* Merge the curves */
    if (has_abc_procs && has_lmn_procs && matrixABC->is_identity) {
        /* Merge the curves into the abc curves. no b curves */
        merge_abc_lmn_curves(abc_caches, lmn_caches);
        has_lmn_procs = false;
    }
    /* Figure out what curves get mapped to where.  The only time
       we will use the b curves is if matrixABC is not the identity and we have
       lmn procs */
    if ( !(matrixABC->is_identity) && has_lmn_procs) {
        /* A matrix followed by a curve */
        atob_parts->b_curves = (float*) gs_alloc_bytes(memory,
                            3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge");
        curr_pos = atob_parts->b_curves;
        memcpy(curr_pos,&(lmn_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&(lmn_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&(lmn_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float));
        if (has_abc_procs) {
            /* Also a curve before the matrix */
            atob_parts->m_curves = (float*) gs_alloc_bytes(memory,
                            3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge");
            curr_pos = atob_parts->m_curves;
            memcpy(curr_pos,&(abc_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&(abc_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&(abc_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float));
        }
    } else {
        /* Only one set of curves before a matrix */
        if (has_abc_procs) {
            atob_parts->m_curves = (float*) gs_alloc_bytes(memory,
                            3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge");
            curr_pos = atob_parts->m_curves;
            memcpy(curr_pos,&(abc_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&(abc_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&(abc_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float));
        }
        if (has_lmn_procs) {
            atob_parts->m_curves = (float*) gs_alloc_bytes(memory,
                                3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge");
            curr_pos = atob_parts->m_curves;
            memcpy(curr_pos,&(lmn_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&(lmn_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&(lmn_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float));
        }
    }
    /* Note that if the b_curves are null and we have a matrix we need to scale
       the matrix values by 2. Otherwise an input value of 50% gray, which is
       32767 would get mapped to 32767 by the matrix.  This will be interpreted
       as a max XYZ value (s15.16) when it is eventually mapped to u16.16 due
       to the mapping of X=Y by the identity table.  If there are b_curves
       these have an output that is 16 bit. */
    if (atob_parts->b_curves == NULL) {
        scale_matrix(&(atob_parts->matrix->cu.u),2.0);
    }
}

/* The ABC color space is modeled using the V4 lutAtoBType which has the
   flexibility to model  the various parameters.  Simplified versions are used
   it possible when certain parameters in the ABC color space definition are
   the identity. */
int
gsicc_create_fromabc(const gs_color_space *pcs, unsigned char **pp_buffer_in,
                     int *profile_size_out, gs_memory_t *memory,
                     gx_cie_vector_cache *abc_caches,
                     gx_cie_scalar_cache *lmn_caches, bool *islab)
{
    icProfile iccprofile;
    icHeader  *header = &(iccprofile.header);
#if SAVEICCPROFILE
    int debug_catch = 1;
#endif
    int k;
    gs_matrix3 matrix_input_trans;
    gsicc_lutatob icc_luta2bparts;
    float *curr_pos;
    bool has_abc_procs = !((abc_caches->floats.params.is_identity &&
                         (abc_caches)[1].floats.params.is_identity &&
                         (abc_caches)[2].floats.params.is_identity));
    bool has_lmn_procs = !((lmn_caches->floats.params.is_identity &&
                         (lmn_caches)[1].floats.params.is_identity &&
                         (lmn_caches)[2].floats.params.is_identity));
    gs_cie_abc *pcie = pcs->params.abc;
    bool input_range_ok;

    gsicc_create_init_luta2bpart(&icc_luta2bparts);
    gsicc_matrix_init(&(pcie->common.MatrixLMN));  /* Need this set now */
    gsicc_matrix_init(&(pcie->MatrixABC));          /* Need this set now */
    /* Fill in the common stuff */
    setheader_common(header);

    /* We will use an input type class which keeps us from having to
       create an inverse.  We will keep the data a generic 3 color.
       Since we are doing PS color management the PCS is XYZ */
    header->colorSpace = icSigRgbData;
    header->deviceClass = icSigInputClass;
    header->pcs = icSigXYZData;
    icc_luta2bparts.num_in = 3;
    icc_luta2bparts.num_out = 3;
    icc_luta2bparts.white_point = &(pcie->common.points.WhitePoint);
    icc_luta2bparts.black_point = &(pcie->common.points.BlackPoint);

    /* Detect if the space is CIELAB. We don't have access to pis here though */
    /* *islab = cie_is_lab(pcie); This is not working yet */
    *islab = false;

    /* Check what combination we have with respect to the various
       LMN and ABC parameters. Depending upon the situation we
       may be able to use a standard 3 channel input profile type. If we
       do not have the LMN decode we can mash together the ABC and LMN
       matrix. Also, if ABC is identity we can mash the ABC and LMN
       decode procs.  If we have an ABC matrix, LMN procs and an LMN
       matrix we will need to create a small (2x2x2) CLUT for the ICC format. */
    input_range_ok = check_range(&(pcie->RangeABC.ranges[0]),3);
    if (!input_range_ok) {
        /* We have a range problem at input */
        gsicc_create_mashed_clut(&icc_luta2bparts, header, NULL, pcs,
                                 &(pcie->RangeABC.ranges[0]), pp_buffer_in,
                                 profile_size_out, true, memory);
    } else {
        if (pcie->MatrixABC.is_identity || !has_lmn_procs ||
                            pcie->common.MatrixLMN.is_identity) {
            /* The merging of these parts into the curves/matrix/curves of the
               lutAtoBtype portion can be used by abc, def and defg */
            icc_luta2bparts.matrix = &matrix_input_trans;
            gsicc_create_abc_merge(&(icc_luta2bparts), &(pcie->common.MatrixLMN),
                                    &(pcie->MatrixABC), has_abc_procs,
                                    has_lmn_procs, pcie->caches.DecodeABC.caches,
                                    pcie->common.caches.DecodeLMN, memory);
            icc_luta2bparts.clut =  NULL;
            /* Create the profile.  This is for the common generic form we will use
               for almost everything. */
            create_lutAtoBprofile(pp_buffer_in, header,&icc_luta2bparts,false, memory);
        } else {
            /* This will be a bit more complex as we have an ABC matrix, LMN decode
               and an LMN matrix.  We will need to create an MLUT to handle this properly.
               Any ABC decode will be handled as the A curves.  ABC matrix will be the
               MLUT, LMN decode will be the M curves.  LMN matrix will be the Matrix
               and b curves will be identity. */
            if (has_abc_procs) {
                icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory,
                                3*CURVE_SIZE*sizeof(float),"gsicc_create_fromabc");
                curr_pos = icc_luta2bparts.a_curves;
                memcpy(curr_pos,&(pcie->caches.DecodeABC.caches->floats.values[0]),
                                CURVE_SIZE*sizeof(float));
                curr_pos += CURVE_SIZE;
                memcpy(curr_pos,&((pcie->caches.DecodeABC.caches[1]).floats.values[0]),
                                CURVE_SIZE*sizeof(float));
                curr_pos += CURVE_SIZE;
                memcpy(curr_pos,&((pcie->caches.DecodeABC.caches[2]).floats.values[0]),
                                CURVE_SIZE*sizeof(float));
            }
            if (has_lmn_procs) {
                icc_luta2bparts.m_curves = (float*) gs_alloc_bytes(memory,
                                3*CURVE_SIZE*sizeof(float),"gsicc_create_fromabc");
                curr_pos = icc_luta2bparts.m_curves;
                memcpy(curr_pos,&(pcie->common.caches.DecodeLMN->floats.values[0]),
                                CURVE_SIZE*sizeof(float));
                curr_pos += CURVE_SIZE;
                memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[1]).floats.values[0]),
                                CURVE_SIZE*sizeof(float));
                curr_pos += CURVE_SIZE;
                memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[2]).floats.values[0]),
                                CURVE_SIZE*sizeof(float));
            }
            /* Convert ABC matrix to 2x2x2 MLUT type */
            icc_luta2bparts.clut = (gsicc_clut*) gs_alloc_bytes(memory,
                                        sizeof(gsicc_clut),"gsicc_create_fromabc");
            for (k = 0; k < 3; k++) {
                icc_luta2bparts.clut->clut_dims[k] = 2;
            }
            icc_luta2bparts.clut->clut_num_input = 3;
            icc_luta2bparts.clut->clut_num_output = 3;
            icc_luta2bparts.clut->clut_word_width = 2;
            gsicc_create_initialize_clut(icc_luta2bparts.clut);
            /* 8 grid points, 3 outputs */
            icc_luta2bparts.clut->data_short =
                            (unsigned short*) gs_alloc_bytes(memory,
                            8*3*sizeof(short),"gsicc_create_fromabc");
            gsicc_matrix3_to_mlut(&(pcie->MatrixABC), icc_luta2bparts.clut->data_short);
            /* LMN Matrix */
            cie_matrix_transpose3(&(pcie->common.MatrixLMN), &matrix_input_trans);
            icc_luta2bparts.matrix = &matrix_input_trans;
            /* Create the profile */
            create_lutAtoBprofile(pp_buffer_in, header, &icc_luta2bparts, false, memory);
        }
    }
    gsicc_create_free_luta2bpart(memory, &icc_luta2bparts);
    *profile_size_out = header->size;
#if SAVEICCPROFILE
    /* Dump the buffer to a file for testing if its a valid ICC profile */
    if(debug_catch)
        save_profile(*pp_buffer_in,"fromabc",header->size);
#endif
    return(0);
}

int
gsicc_create_froma(const gs_color_space *pcs, unsigned char **pp_buffer_in,
                   int *profile_size_out, gs_memory_t *memory,
                   gx_cie_vector_cache *a_cache, gx_cie_scalar_cache *lmn_caches)
{
    icProfile iccprofile;
    icHeader  *header = &(iccprofile.header);
#if SAVEICCPROFILE
    int debug_catch = 1;
#endif
    gs_matrix3 matrix_input;
    float *curr_pos;
    bool has_a_proc = !(a_cache->floats.params.is_identity);
    bool has_lmn_procs = !(lmn_caches->floats.params.is_identity &&
                         (lmn_caches)[1].floats.params.is_identity &&
                         (lmn_caches)[2].floats.params.is_identity);
    gsicc_lutatob icc_luta2bparts;
    bool common_range_ok;
    gs_cie_a *pcie = pcs->params.a;
    bool input_range_ok;

    gsicc_create_init_luta2bpart(&icc_luta2bparts);
    /* Fill in the common stuff */
    setheader_common(header);
    /* We will use an input type class which keeps us from having to
       create an inverse.  We will keep the data a generic 3 color.
       Since we are doing PS color management the PCS is XYZ */
    header->colorSpace = icSigGrayData;
    header->deviceClass = icSigInputClass;
    header->pcs = icSigXYZData;
    icc_luta2bparts.num_out = 3;
    icc_luta2bparts.num_in = 1;
    icc_luta2bparts.white_point = &(pcie->common.points.WhitePoint);
    icc_luta2bparts.black_point = &(pcie->common.points.BlackPoint);
    /* Check the range values.  If the internal ranges are outside of
       0 to 1 then we will need to sample as a full CLUT.  The input
       range can be different, but we we will correct for this.  Finally
       we need to worry about enforcing the achromatic constraint for the
       CLUT if we are creating the entire thing. */
    common_range_ok = check_range(&(pcie->common.RangeLMN.ranges[0]),3);
    if (!common_range_ok) {
        input_range_ok = check_range(&(pcie->RangeA),1);
        gsicc_create_mashed_clut(&icc_luta2bparts, header, NULL, pcs,
                                 &(pcie->RangeA), pp_buffer_in, profile_size_out,
                                 !input_range_ok, memory);
    } else {
        /* We do not need to create a massive CLUT.  Try to maintain
           the objects as best we can */
        /* Since we are going from 1 gray input to 3 XYZ values, we will need
           to include the MLUT for the 1 to 3 conversion applied by the matrix A.
           Depending upon the other parameters we may have simpiler forms, but this
           is required even when Matrix A is the identity. */
        if (has_a_proc) {
            icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory,
                CURVE_SIZE*sizeof(float),"gsicc_create_froma");
                memcpy(icc_luta2bparts.a_curves,
                    &(pcie->caches.DecodeA.floats.values[0]),
                    CURVE_SIZE*sizeof(float));
        }
        if (has_lmn_procs) {
            icc_luta2bparts.m_curves = (float*) gs_alloc_bytes(memory,
                3*CURVE_SIZE*sizeof(float),"gsicc_create_froma");
            curr_pos = icc_luta2bparts.m_curves;
            memcpy(curr_pos,&(pcie->common.caches.DecodeLMN->floats.values[0]),
                        CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[1]).floats.values[0]),
                        CURVE_SIZE*sizeof(float));
            curr_pos += CURVE_SIZE;
            memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[2]).floats.values[0]),
                        CURVE_SIZE*sizeof(float));
        }
        /* Convert diagonal A matrix to 2x1 MLUT type */
        icc_luta2bparts.clut = (gsicc_clut*) gs_alloc_bytes(memory,
            sizeof(gsicc_clut),"gsicc_create_froma"); /* 2 grid points 3 outputs */
        icc_luta2bparts.clut->clut_dims[0] = 2;
        icc_luta2bparts.clut->clut_num_input = 1;
        icc_luta2bparts.clut->clut_num_output = 3;
        icc_luta2bparts.clut->clut_word_width = 2;
        gsicc_create_initialize_clut(icc_luta2bparts.clut);
        /* 2 grid points 3 outputs */
        icc_luta2bparts.clut->data_short = (unsigned short*)
                    gs_alloc_bytes(memory,2*3*sizeof(short),"gsicc_create_froma");
        /*  Studies of CIEBasedA spaces
            and AR rendering of these reveals that they only look
            at the product sum of the MatrixA and the 2nd column of
            the LM Matrix (if there is one).  This is used as a Y
            decode value from which to map between the black point
            and the white point.  The black point is actually ignored
            and a black point of 0 is used. */
        gsicc_vec_to_mlut(&(pcie->MatrixA), icc_luta2bparts.clut->data_short);
        cie_matrix_transpose3(&(pcie->common.MatrixLMN), &matrix_input);
        icc_luta2bparts.matrix = &matrix_input;
        icc_luta2bparts.num_in = 1;
        icc_luta2bparts.num_out = 3;
        /* Create the profile */
        /* Note Adobe only looks at the Y value for CIEBasedA spaces.
           we will do the same */
        create_lutAtoBprofile(pp_buffer_in, header, &icc_luta2bparts, true, memory);
    }
    *profile_size_out = header->size;
    gsicc_create_free_luta2bpart(memory, &icc_luta2bparts);
#if SAVEICCPROFILE
    /* Dump the buffer to a file for testing if its a valid ICC profile */
    if(debug_catch)
        save_profile(*pp_buffer_in,"froma",header->size);
#endif
    return(0);
}

/* Common code shared by def and defg generation */
static int
gsicc_create_defg_common(gs_cie_abc *pcie, gsicc_lutatob *icc_luta2bparts,
                         bool has_lmn_procs, bool has_abc_procs,
                         icHeader *header, gx_color_lookup_table *Table,
                         const gs_color_space *pcs, gs_range *ranges,
                         unsigned char **pp_buffer_in, int *profile_size_out,
                         gs_memory_t* memory)
{
    gs_matrix3 matrix_input_trans;
    int k;
    bool input_range_ok;

    gsicc_matrix_init(&(pcie->common.MatrixLMN));  /* Need this set now */
    gsicc_matrix_init(&(pcie->MatrixABC));          /* Need this set now */
    setheader_common(header);

    /* We will use an input type class which keeps us from having to
       create an inverse.  We will keep the data a generic 3 color.
       Since we are doing PS color management the PCS is XYZ */
    header->deviceClass = icSigInputClass;
    header->pcs = icSigXYZData;
    icc_luta2bparts->num_out = 3;
    icc_luta2bparts->white_point = &(pcie->common.points.WhitePoint);
    icc_luta2bparts->black_point = &(pcie->common.points.BlackPoint);

    /* question now is, can we keep the table as it is, or do we need to merge
     some of the def(g) parts.  Some merging or operators into the table must occur
     if we have MatrixABC, LMN Decode and Matrix LMN, otherwise we can encode
     the table directly and squash the rest into the curves matrix curve portion
     of the ICC form */
    if ( (!(pcie->MatrixABC.is_identity) && has_lmn_procs &&
                   !(pcie->common.MatrixLMN.is_identity)) || 1 ) {
        /* Table must take over some of the other elements. We are going to
           go to a 16 bit table in this case.  For now, we are going to
           mash all the elements in the table.  We may want to revisit this later. */
        /* We must complete the defg or def decode function such that it is within
           the HIJ(K) range AND is scaled to index into the CLUT properly */
        if (gs_color_space_get_index(pcs) == gs_color_space_index_CIEDEF) {
            input_range_ok = check_range(&(pcs->params.def->RangeDEF.ranges[0]),3);
        } else {
            input_range_ok = check_range(&(pcs->params.defg->RangeDEFG.ranges[0]),4);
        }
        gsicc_create_mashed_clut(icc_luta2bparts, header, Table,
                            pcs, ranges, pp_buffer_in, profile_size_out,
                            !input_range_ok, memory);
    } else {
        /* Table can stay as is. Handle the ABC/LMN portions via the curves
           matrix curves operation */
        icc_luta2bparts->matrix = &matrix_input_trans;
        gsicc_create_abc_merge(icc_luta2bparts, &(pcie->common.MatrixLMN),
                                &(pcie->MatrixABC), has_abc_procs,
                                has_lmn_procs, pcie->caches.DecodeABC.caches,
                                pcie->common.caches.DecodeLMN, memory);
        /* Get the table data */
        icc_luta2bparts->clut = (gsicc_clut*) gs_alloc_bytes(memory,
                            sizeof(gsicc_clut),"gsicc_create_defg_common");
        for (k = 0; k < icc_luta2bparts->num_in; k++) {
            icc_luta2bparts->clut->clut_dims[k] = Table->dims[k];
        }
        icc_luta2bparts->clut->clut_num_input = icc_luta2bparts->num_in;
        icc_luta2bparts->clut->clut_num_output = 3;
        icc_luta2bparts->clut->clut_word_width = 1;
        gsicc_create_initialize_clut(icc_luta2bparts->clut);
        /* Get the PS table data directly */
        icc_luta2bparts->clut->data_byte = (byte*) Table->table->data;
        /* Create the profile. */
        create_lutAtoBprofile(pp_buffer_in, header, icc_luta2bparts, false, memory);
    }
    gsicc_create_free_luta2bpart(memory, icc_luta2bparts);
    *profile_size_out = header->size;
    return(0);
}

/* If we have an ABC matrix, a DecodeLMN and an LMN matrix we have to mash
   together the table, Decode ABC (if present) and ABC matrix. */
int
gsicc_create_fromdefg(const gs_color_space *pcs, unsigned char **pp_buffer_in,
                      int *profile_size_out, gs_memory_t *memory,
                      gx_cie_vector_cache *abc_caches,
                      gx_cie_scalar_cache *lmn_caches,
                      gx_cie_scalar_cache *defg_caches)
{
    gs_cie_defg *pcie = pcs->params.defg;
    gsicc_lutatob icc_luta2bparts;
    icProfile iccprofile;
    icHeader  *header = &(iccprofile.header);
#if SAVEICCPROFILE
    int debug_catch = 1;
#endif
    float *curr_pos;
    bool has_abc_procs = !((abc_caches->floats.params.is_identity &&
                         (abc_caches)[1].floats.params.is_identity &&
                         (abc_caches)[2].floats.params.is_identity));
    bool has_lmn_procs = !((lmn_caches->floats.params.is_identity &&
                         (lmn_caches)[1].floats.params.is_identity &&
                         (lmn_caches)[2].floats.params.is_identity));
    bool has_defg_procs = !((defg_caches->floats.params.is_identity &&
                         (defg_caches)[1].floats.params.is_identity &&
                         (defg_caches)[2].floats.params.is_identity &&
                         (defg_caches)[3].floats.params.is_identity));
    int code;

    /* Fill in the uncommon stuff */
    gsicc_create_init_luta2bpart(&icc_luta2bparts);
    header->colorSpace = icSig4colorData;
    icc_luta2bparts.num_in = 4;

    /* The a curves stored as def procs */
    if (has_defg_procs) {
        icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory,
            4*CURVE_SIZE*sizeof(float),"gsicc_create_fromdefg");
        curr_pos = icc_luta2bparts.a_curves;
        memcpy(curr_pos,&(pcie->caches_defg.DecodeDEFG->floats.values[0]),
                CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&((pcie->caches_defg.DecodeDEFG[1]).floats.values[0]),
                CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&((pcie->caches_defg.DecodeDEFG[2]).floats.values[0]),
                CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&((pcie->caches_defg.DecodeDEFG[3]).floats.values[0]),
                CURVE_SIZE*sizeof(float));
    }
    /* Note the recast.  Should be OK since we only access common stuff in there */
    code = gsicc_create_defg_common((gs_cie_abc*) pcie, &icc_luta2bparts,
                                    has_lmn_procs, has_abc_procs,
                                    header, &(pcie->Table), pcs,
                                    &(pcie->RangeDEFG.ranges[0]),
                                    pp_buffer_in, profile_size_out, memory);
#if SAVEICCPROFILE
    /* Dump the buffer to a file for testing if its a valid ICC profile */
    if(debug_catch)
        save_profile(*pp_buffer_in,"fromdefg",header->size);
#endif
    return(code);
}

int
gsicc_create_fromdef(const gs_color_space *pcs, unsigned char **pp_buffer_in,
                     int *profile_size_out, gs_memory_t *memory,
                     gx_cie_vector_cache *abc_caches,
                     gx_cie_scalar_cache *lmn_caches,
                     gx_cie_scalar_cache *def_caches)
{
    gs_cie_def *pcie = pcs->params.def;
    gsicc_lutatob icc_luta2bparts;
    icProfile iccprofile;
    icHeader  *header = &(iccprofile.header);
#if SAVEICCPROFILE
    int debug_catch = 1;
#endif
    float *curr_pos;
    bool has_abc_procs = !((abc_caches->floats.params.is_identity &&
                         (abc_caches)[1].floats.params.is_identity &&
                         (abc_caches)[2].floats.params.is_identity));
    bool has_lmn_procs = !((lmn_caches->floats.params.is_identity &&
                         (lmn_caches)[1].floats.params.is_identity &&
                         (lmn_caches)[2].floats.params.is_identity));
    bool has_def_procs = !((def_caches->floats.params.is_identity &&
                         (def_caches)[1].floats.params.is_identity &&
                         (def_caches)[2].floats.params.is_identity));
    int code;

    gsicc_create_init_luta2bpart(&icc_luta2bparts);

    header->colorSpace = icSig3colorData;
    icc_luta2bparts.num_in = 3;

    /* The a curves stored as def procs */
    if (has_def_procs) {
        icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory,
                        3*CURVE_SIZE*sizeof(float),"gsicc_create_fromdef");
        curr_pos = icc_luta2bparts.a_curves;
        memcpy(curr_pos,&(pcie->caches_def.DecodeDEF->floats.values[0]),
                CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&((pcie->caches_def.DecodeDEF[1]).floats.values[0]),
                CURVE_SIZE*sizeof(float));
        curr_pos += CURVE_SIZE;
        memcpy(curr_pos,&((pcie->caches_def.DecodeDEF[2]).floats.values[0]),
                CURVE_SIZE*sizeof(float));
    }
    code = gsicc_create_defg_common((gs_cie_abc*) pcie, &icc_luta2bparts,
                                    has_lmn_procs, has_abc_procs, header,
                                    &(pcie->Table), pcs, &(pcie->RangeDEF.ranges[0]),
                                    pp_buffer_in, profile_size_out, memory);
#if SAVEICCPROFILE
    /* Dump the buffer to a file for testing if its a valid ICC profile */
    if(debug_catch)
        save_profile(*pp_buffer_in,"fromdef",header->size);
#endif
    return(code);
}

void
gsicc_create_fromcrd(unsigned char *buffer, gs_memory_t *memory)
{
    icProfile iccprofile;
    icHeader  *header = &(iccprofile.header);

    setheader_common(header);
}