1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* C heap allocator */
#include "malloc_.h"
#include "gdebug.h"
#include "gserrors.h"
#include "gstypes.h"
#include "gsmemory.h"
#include "gsmdebug.h"
#include "gsstruct.h" /* for st_bytes */
#include "gsmalloc.h"
#include "gsmemret.h" /* retrying wrapper */
/* ------ Heap allocator ------ */
/*
* An implementation of Ghostscript's memory manager interface
* that works directly with the C heap. We keep track of all allocated
* blocks so we can free them at cleanup time.
*/
/* Raw memory procedures */
static gs_memory_proc_alloc_bytes(gs_heap_alloc_bytes);
static gs_memory_proc_resize_object(gs_heap_resize_object);
static gs_memory_proc_free_object(gs_heap_free_object);
static gs_memory_proc_stable(gs_heap_stable);
static gs_memory_proc_status(gs_heap_status);
static gs_memory_proc_free_all(gs_heap_free_all);
/* Object memory procedures */
static gs_memory_proc_alloc_struct(gs_heap_alloc_struct);
static gs_memory_proc_alloc_byte_array(gs_heap_alloc_byte_array);
static gs_memory_proc_alloc_struct_array(gs_heap_alloc_struct_array);
static gs_memory_proc_object_size(gs_heap_object_size);
static gs_memory_proc_object_type(gs_heap_object_type);
static gs_memory_proc_alloc_string(gs_heap_alloc_string);
static gs_memory_proc_resize_string(gs_heap_resize_string);
static gs_memory_proc_free_string(gs_heap_free_string);
static gs_memory_proc_register_root(gs_heap_register_root);
static gs_memory_proc_unregister_root(gs_heap_unregister_root);
static gs_memory_proc_enable_free(gs_heap_enable_free);
static const gs_memory_procs_t gs_malloc_memory_procs =
{
/* Raw memory procedures */
gs_heap_alloc_bytes,
gs_heap_resize_object,
gs_heap_free_object,
gs_heap_stable,
gs_heap_status,
gs_heap_free_all,
gs_ignore_consolidate_free,
/* Object memory procedures */
gs_heap_alloc_bytes,
gs_heap_alloc_struct,
gs_heap_alloc_struct,
gs_heap_alloc_byte_array,
gs_heap_alloc_byte_array,
gs_heap_alloc_struct_array,
gs_heap_alloc_struct_array,
gs_heap_object_size,
gs_heap_object_type,
gs_heap_alloc_string,
gs_heap_alloc_string,
gs_heap_resize_string,
gs_heap_free_string,
gs_heap_register_root,
gs_heap_unregister_root,
gs_heap_enable_free
};
/* We must make sure that malloc_blocks leave the block aligned. */
/*typedef struct gs_malloc_block_s gs_malloc_block_t; */
#define malloc_block_data\
gs_malloc_block_t *next;\
gs_malloc_block_t *prev;\
uint size;\
gs_memory_type_ptr_t type;\
client_name_t cname
struct malloc_block_data_s {
malloc_block_data;
};
struct gs_malloc_block_s {
malloc_block_data;
/* ANSI C does not allow zero-size arrays, so we need the following */
/* unnecessary and wasteful workaround: */
#define _npad (-size_of(struct malloc_block_data_s) & (ARCH_ALIGN_MEMORY_MOD - 1))
byte _pad[(_npad == 0 ? ARCH_ALIGN_MEMORY_MOD : _npad)];
#undef _npad
};
/* Initialize a malloc allocator. */
static long heap_available(void);
gs_malloc_memory_t *
gs_malloc_memory_init(void)
{
gs_malloc_memory_t *mem =
(gs_malloc_memory_t *)Memento_label(malloc(sizeof(gs_malloc_memory_t)), "gs_malloc_memory_t");
if (mem == NULL)
return NULL;
mem->stable_memory = 0; /* just for tidyness, never referenced */
mem->procs = gs_malloc_memory_procs;
mem->allocated = 0;
mem->limit = max_long;
mem->used = 0;
mem->max_used = 0;
mem->gs_lib_ctx = 0;
mem->non_gc_memory = (gs_memory_t *)mem;
mem->thread_safe_memory = (gs_memory_t *)mem; /* this allocator is thread safe */
/* Allocate a monitor to serialize access to structures within */
mem->monitor = NULL; /* prevent use during initial allocation */
mem->monitor = gx_monitor_alloc((gs_memory_t *)mem);
return mem;
}
/*
* Estimate the amount of available memory by probing with mallocs.
* We may under-estimate by a lot, but that's better than winding up with
* a seriously inflated address space. This is quite a hack!
*/
#define max_malloc_probes 20
#define malloc_probe_size 64000
static long
heap_available()
{
long avail = 0;
void *probes[max_malloc_probes];
uint n;
for (n = 0; n < max_malloc_probes; n++) {
if ((probes[n] = malloc(malloc_probe_size)) == 0)
break;
if_debug2('a', "[a]heap_available probe[%d]=0x%lx\n",
n, (ulong) probes[n]);
avail += malloc_probe_size;
}
while (n)
free(probes[--n]);
return avail;
}
/* Allocate various kinds of blocks. */
static byte *
gs_heap_alloc_bytes(gs_memory_t * mem, uint size, client_name_t cname)
{
gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
byte *ptr = 0;
#ifdef DEBUG
const char *msg;
static const char *const ok_msg = "OK";
# define set_msg(str) (msg = (str))
#else
# define set_msg(str) DO_NOTHING
#endif
/* Exclusive acces so our decisions and changes are 'atomic' */
if (mmem->monitor)
gx_monitor_enter(mmem->monitor);
if (size > mmem->limit - sizeof(gs_malloc_block_t)) {
/* Definitely too large to allocate; also avoids overflow. */
set_msg("exceeded limit");
} else {
uint added = size + sizeof(gs_malloc_block_t);
if (added <= size || mmem->limit - added < mmem->used)
set_msg("exceeded limit");
else if ((ptr = (byte *) Memento_label(malloc(added), cname)) == 0)
set_msg("failed");
else {
gs_malloc_block_t *bp = (gs_malloc_block_t *) ptr;
/*
* We would like to check that malloc aligns blocks at least as
* strictly as the compiler (as defined by ARCH_ALIGN_MEMORY_MOD).
* However, Microsoft VC 6 does not satisfy this requirement.
* See gsmemory.h for more explanation.
*/
set_msg(ok_msg);
if (mmem->allocated)
mmem->allocated->prev = bp;
bp->next = mmem->allocated;
bp->prev = 0;
bp->size = size;
bp->type = &st_bytes;
bp->cname = cname;
mmem->allocated = bp;
ptr = (byte *) (bp + 1);
mmem->used += size + sizeof(gs_malloc_block_t);
if (mmem->used > mmem->max_used)
mmem->max_used = mmem->used;
}
}
if (mmem->monitor)
gx_monitor_leave(mmem->monitor); /* Done with exclusive access */
/* We don't want to 'fill' under mutex to keep the window smaller */
if (ptr)
gs_alloc_fill(ptr, gs_alloc_fill_alloc, size);
#ifdef DEBUG
if (gs_debug_c('a') || msg != ok_msg)
dlprintf6("[a+]gs_malloc(%s)(%u) = 0x%lx: %s, used=%ld, max=%ld\n",
client_name_string(cname), size, (ulong) ptr, msg, mmem->used, mmem->max_used);
#endif
return ptr;
#undef set_msg
}
static void *
gs_heap_alloc_struct(gs_memory_t * mem, gs_memory_type_ptr_t pstype,
client_name_t cname)
{
void *ptr =
gs_heap_alloc_bytes(mem, gs_struct_type_size(pstype), cname);
if (ptr == 0)
return 0;
((gs_malloc_block_t *) ptr)[-1].type = pstype;
return ptr;
}
static byte *
gs_heap_alloc_byte_array(gs_memory_t * mem, uint num_elements, uint elt_size,
client_name_t cname)
{
ulong lsize = (ulong) num_elements * elt_size;
if (lsize != (uint) lsize)
return 0;
return gs_heap_alloc_bytes(mem, (uint) lsize, cname);
}
static void *
gs_heap_alloc_struct_array(gs_memory_t * mem, uint num_elements,
gs_memory_type_ptr_t pstype, client_name_t cname)
{
void *ptr =
gs_heap_alloc_byte_array(mem, num_elements,
gs_struct_type_size(pstype), cname);
if (ptr == 0)
return 0;
((gs_malloc_block_t *) ptr)[-1].type = pstype;
return ptr;
}
static void *
gs_heap_resize_object(gs_memory_t * mem, void *obj, uint new_num_elements,
client_name_t cname)
{
gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
gs_malloc_block_t *ptr = (gs_malloc_block_t *) obj - 1;
gs_memory_type_ptr_t pstype = ptr->type;
uint old_size = gs_object_size(mem, obj) + sizeof(gs_malloc_block_t);
uint new_size =
gs_struct_type_size(pstype) * new_num_elements +
sizeof(gs_malloc_block_t);
gs_malloc_block_t *new_ptr;
if (new_size == old_size)
return obj;
if (mmem->monitor)
gx_monitor_enter(mmem->monitor); /* Exclusive access */
new_ptr = (gs_malloc_block_t *) gs_realloc(ptr, old_size, new_size);
if (new_ptr == 0)
return 0;
if (new_ptr->prev)
new_ptr->prev->next = new_ptr;
else
mmem->allocated = new_ptr;
if (new_ptr->next)
new_ptr->next->prev = new_ptr;
new_ptr->size = new_size - sizeof(gs_malloc_block_t);
mmem->used -= old_size;
mmem->used += new_size;
if (mmem->monitor)
gx_monitor_leave(mmem->monitor); /* Done with exclusive access */
if (new_size > old_size)
gs_alloc_fill((byte *) new_ptr + old_size,
gs_alloc_fill_alloc, new_size - old_size);
return new_ptr + 1;
}
static uint
gs_heap_object_size(gs_memory_t * mem, const void *ptr)
{
return ((const gs_malloc_block_t *)ptr)[-1].size;
}
static gs_memory_type_ptr_t
gs_heap_object_type(const gs_memory_t * mem, const void *ptr)
{
return ((const gs_malloc_block_t *)ptr)[-1].type;
}
static void
gs_heap_free_object(gs_memory_t * mem, void *ptr, client_name_t cname)
{
gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
gs_malloc_block_t *bp;
gs_memory_type_ptr_t pstype;
struct_proc_finalize((*finalize));
if_debug3('a', "[a-]gs_free(%s) 0x%lx(%u)\n",
client_name_string(cname), (ulong) ptr,
(ptr == 0 ? 0 : ((gs_malloc_block_t *) ptr)[-1].size));
if (ptr == 0)
return;
pstype = ((gs_malloc_block_t *) ptr)[-1].type;
finalize = pstype->finalize;
if (finalize != 0) {
if_debug3('u', "[u]finalizing %s 0x%lx (%s)\n",
struct_type_name_string(pstype),
(ulong) ptr, client_name_string(cname));
(*finalize) (mem, ptr);
}
if (mmem->monitor)
gx_monitor_enter(mmem->monitor); /* Exclusive access */
/* Previously, we used to search through every allocated block to find
* the block we are freeing. This gives us safety in that an attempt to
* free an unallocated block will not go wrong. This does radically
* slow down frees though, so we replace it with this simpler code; we
* now assume that the block is valid, and hence avoid the search.
*/
#if 1
bp = &((gs_malloc_block_t *)ptr)[-1];
if (bp->prev)
bp->prev->next = bp->next;
if (bp->next)
bp->next->prev = bp->prev;
if (bp == mmem->allocated) {
mmem->allocated = bp->next;
mmem->allocated->prev = NULL;
}
mmem->used -= bp->size + sizeof(gs_malloc_block_t);
if (mmem->monitor)
gx_monitor_leave(mmem->monitor); /* Done with exclusive access */
gs_alloc_fill(bp, gs_alloc_fill_free,
bp->size + sizeof(gs_malloc_block_t));
free(bp);
#else
bp = mmem->allocated; /* If 'finalize' releases a memory,
this function could be called recursively and
change mmem->allocated. */
if (ptr == bp + 1) {
mmem->allocated = bp->next;
mmem->used -= bp->size + sizeof(gs_malloc_block_t);
if (mmem->allocated)
mmem->allocated->prev = 0;
if (mmem->monitor)
gx_monitor_leave(mmem->monitor); /* Done with exclusive access */
gs_alloc_fill(bp, gs_alloc_fill_free,
bp->size + sizeof(gs_malloc_block_t));
free(bp);
} else {
gs_malloc_block_t *np;
/*
* bp == 0 at this point is an error, but we'd rather have an
* error message than an invalid access.
*/
if (bp) {
for (; (np = bp->next) != 0; bp = np) {
if (ptr == np + 1) {
bp->next = np->next;
if (np->next)
np->next->prev = bp;
mmem->used -= np->size + sizeof(gs_malloc_block_t);
if (mmem->monitor)
gx_monitor_leave(mmem->monitor); /* Done with exclusive access */
gs_alloc_fill(np, gs_alloc_fill_free,
np->size + sizeof(gs_malloc_block_t));
free(np);
return;
}
}
}
if (mmem->monitor)
gx_monitor_leave(mmem->monitor); /* Done with exclusive access */
lprintf2("%s: free 0x%lx not found!\n",
client_name_string(cname), (ulong) ptr);
free((char *)((gs_malloc_block_t *) ptr - 1));
}
#endif
}
static byte *
gs_heap_alloc_string(gs_memory_t * mem, uint nbytes, client_name_t cname)
{
return gs_heap_alloc_bytes(mem, nbytes, cname);
}
static byte *
gs_heap_resize_string(gs_memory_t * mem, byte * data, uint old_num, uint new_num,
client_name_t cname)
{
if (gs_heap_object_type(mem, data) != &st_bytes)
lprintf2("%s: resizing non-string 0x%lx!\n",
client_name_string(cname), (ulong) data);
return gs_heap_resize_object(mem, data, new_num, cname);
}
static void
gs_heap_free_string(gs_memory_t * mem, byte * data, uint nbytes,
client_name_t cname)
{
/****** SHOULD CHECK SIZE IF DEBUGGING ******/
gs_heap_free_object(mem, data, cname);
}
static int
gs_heap_register_root(gs_memory_t * mem, gs_gc_root_t * rp,
gs_ptr_type_t ptype, void **up, client_name_t cname)
{
return 0;
}
static void
gs_heap_unregister_root(gs_memory_t * mem, gs_gc_root_t * rp,
client_name_t cname)
{
}
static gs_memory_t *
gs_heap_stable(gs_memory_t *mem)
{
return mem; /* heap memory is stable */
}
/*
* NB: In a multi-threaded application, this is only a 'snapshot'
* since other threads may change the heap_status. The heap_available()
* probe is just an approximation anyway.
*/
static void
gs_heap_status(gs_memory_t * mem, gs_memory_status_t * pstat)
{
gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
pstat->allocated = mmem->used + heap_available();
pstat->used = mmem->used;
pstat->is_thread_safe = true; /* this allocator has a mutex (monitor) and IS thread safe */
}
static void
gs_heap_enable_free(gs_memory_t * mem, bool enable)
{
if (enable)
mem->procs.free_object = gs_heap_free_object,
mem->procs.free_string = gs_heap_free_string;
else
mem->procs.free_object = gs_ignore_free_object,
mem->procs.free_string = gs_ignore_free_string;
}
/* Release all memory acquired by this allocator. */
static void
gs_heap_free_all(gs_memory_t * mem, uint free_mask, client_name_t cname)
{
gs_malloc_memory_t *const mmem = (gs_malloc_memory_t *) mem;
gx_monitor_t *mon = mmem->monitor;
/*
* We don't perform locking during this process since the 'monitor'
* is contained in this allocator, and will get freed along the way.
* It is only called at exit, and there better not be any threads
* accessing this allocator.
*/
mmem->monitor = NULL; /* delete reference to this monitor */
gx_monitor_free(mon); /* free the monitor */
#ifndef MEMENTO
/* Normally gs calls this on closedown, and it frees every block that
* has ever been allocated. This is not helpful for leak checking. */
if (free_mask & FREE_ALL_DATA) {
gs_malloc_block_t *bp = mmem->allocated;
gs_malloc_block_t *np;
for (; bp != 0; bp = np) {
np = bp->next;
if_debug3('a', "[a]gs_heap_free_all(%s) 0x%lx(%u)\n",
client_name_string(bp->cname), (ulong) (bp + 1),
bp->size);
gs_alloc_fill(bp + 1, gs_alloc_fill_free, bp->size);
free(bp);
}
}
#endif
if (free_mask & FREE_ALL_ALLOCATOR)
free(mem);
}
/* ------ Wrapping ------ */
/* Create the retrying and the locked wrapper for the heap allocator. */
int
gs_malloc_wrap(gs_memory_t **wrapped, gs_malloc_memory_t *contents)
{
# ifdef USE_RETRY_MEMORY_WRAPPER
/*
* This is deprecated since 'retry' for clist reversion/cycling
* will ONLY work for monochrome, simple PS or PCL, not for a
* color device and not for PDF or XPS with transparency
*/
{
gs_memory_retrying_t *rmem;
rmem = (gs_memory_retrying_t *)
gs_alloc_bytes_immovable((gs_memory_t *)lmem,
sizeof(gs_memory_retrying_t),
"gs_malloc_wrap(retrying)");
if (rmem == 0) {
gs_memory_locked_release(lmem);
gs_free_object(cmem, lmem, "gs_malloc_wrap(locked)");
return_error(gs_error_VMerror);
}
code = gs_memory_retrying_init(rmem, (gs_memory_t *)lmem);
if (code < 0) {
gs_free_object((gs_memory_t *)lmem, rmem, "gs_malloc_wrap(retrying)");
gs_memory_locked_release(lmem);
gs_free_object(cmem, lmem, "gs_malloc_wrap(locked)");
return code;
}
*wrapped = (gs_memory_t *)rmem;
}
# endif /* retrying */
return 0;
}
/* Get the wrapped contents. */
gs_malloc_memory_t *
gs_malloc_wrapped_contents(gs_memory_t *wrapped)
{
#ifdef USE_RETRY_MEMORY_WRAPPER
gs_memory_retrying_t *rmem = (gs_memory_retrying_t *)wrapped;
return (gs_malloc_memory_t *)gs_memory_retrying_target(rmem);
#else /* retrying */
return (gs_malloc_memory_t *)wrapped;
#endif /* retrying */
}
/* Free the wrapper, and return the wrapped contents. */
gs_malloc_memory_t *
gs_malloc_unwrap(gs_memory_t *wrapped)
{
#ifdef USE_RETRY_MEMORY_WRAPPER
gs_memory_retrying_t *rmem = (gs_memory_retrying_t *)wrapped;
gs_memory_t *contents = gs_memory_retrying_target(rmem);
gs_free_object(wrapped rmem, "gs_malloc_unwrap(retrying)");
return (gs_malloc_memory_t *)contents;
#else
return (gs_malloc_memory_t *)wrapped;
#endif
}
/* Create the default allocator, and return it. */
gs_memory_t *
gs_malloc_init(void)
{
gs_malloc_memory_t *malloc_memory_default = gs_malloc_memory_init();
gs_memory_t *memory_t_default;
if (malloc_memory_default == NULL)
return NULL;
if (gs_lib_ctx_init((gs_memory_t *)malloc_memory_default) != 0)
return NULL;
#if defined(USE_RETRY_MEMORY_WRAPPER)
gs_malloc_wrap(&memory_t_default, malloc_memory_default);
#else
memory_t_default = (gs_memory_t *)malloc_memory_default;
#endif
memory_t_default->stable_memory = memory_t_default;
return memory_t_default;
}
/* Release the default allocator. */
void
gs_malloc_release(gs_memory_t *mem)
{
#ifdef USE_RETRY_MEMORY_WRAPPER
gs_malloc_memory_t * malloc_memory_default = gs_malloc_unwrap(mem);
#else
gs_malloc_memory_t * malloc_memory_default = (gs_malloc_memory_t *)mem;
#endif
gs_malloc_memory_release(malloc_memory_default);
}
|