1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Additional PostScript Level 1 path routines for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gxfixed.h"
#include "gxfarith.h"
#include "gxmatrix.h"
#include "gzstate.h"
#include "gspath.h"
#include "gzpath.h"
#include "gscoord.h" /* gs_itransform prototype */
/* ------ Arcs ------ */
/* Conversion parameters */
#define degrees_to_radians (M_PI / 180.0)
typedef enum {
arc_nothing,
arc_moveto,
arc_lineto
} arc_action;
typedef struct arc_curve_params_s {
/* The following are set once. */
gx_path *ppath;
gs_imager_state *pis;
gs_point center; /* (not used by arc_add) */
double radius;
/* The following may be updated dynamically. */
arc_action action;
segment_notes notes;
gs_point p0, p3, pt;
gs_sincos_t sincos; /* (not used by arc_add) */
double angle; /* (not used by arc_add) */
int fast_quadrant; /* 0 = not calculated, -1 = not fast, */
/* 1 = fast (only used for quadrants) */
/* The following are set once iff fast_quadrant > 0. */
fixed scaled_radius; /* radius * CTM scale */
fixed quadrant_delta; /* scaled_radius * quarter_arc_fraction */
} arc_curve_params_t;
/* Forward declarations */
static int arc_add(const arc_curve_params_t *arc, bool is_quadrant);
static int gs_imager_arc_add(gx_path * ppath, gs_imager_state * pis, bool clockwise,
floatp axc, floatp ayc, floatp arad, floatp aang1, floatp aang2,
bool add_line, gs_point *p3);
int
gx_setcurrentpoint_from_path(gs_imager_state *pis, gx_path *path)
{
gs_point pt;
pt.x = fixed2float(path->position.x);
pt.y = fixed2float(path->position.y);
gx_setcurrentpoint(pis, pt.x, pt.y);
pis->current_point_valid = true;
return 0;
}
static inline int
gs_arc_add_inline(gs_state *pgs, bool cw, floatp xc, floatp yc, floatp rad,
floatp a1, floatp a2, bool add)
{
gs_point p3;
int code = gs_imager_arc_add(pgs->path, (gs_imager_state *)pgs, cw, xc, yc, rad, a1, a2, add, &p3);
if (code < 0)
return code;
#if !PRECISE_CURRENTPOINT
return gx_setcurrentpoint_from_path((gs_imager_state *)pgs, pgs->path);
#else
pgs->current_point_valid = true;
return gs_point_transform(p3.x, p3.y, &ctm_only(pgs), &pgs->current_point);
#endif
}
int
gs_arc(gs_state * pgs,
floatp xc, floatp yc, floatp r, floatp ang1, floatp ang2)
{
return gs_arc_add_inline(pgs, false, xc, yc, r, ang1, ang2, true);
}
int
gs_arcn(gs_state * pgs,
floatp xc, floatp yc, floatp r, floatp ang1, floatp ang2)
{
return gs_arc_add_inline(pgs, true, xc, yc, r, ang1, ang2, true);
}
int
gs_arc_add(gs_state * pgs, bool clockwise, floatp axc, floatp ayc,
floatp arad, floatp aang1, floatp aang2, bool add_line)
{
return gs_arc_add_inline(pgs, clockwise, axc, ayc, arad,
aang1, aang2, add_line);
}
/* Compute the next curve as part of an arc. */
static int
next_arc_curve(arc_curve_params_t * arc, double anext)
{
double x0 = arc->p0.x = arc->p3.x;
double y0 = arc->p0.y = arc->p3.y;
double trad = arc->radius *
tan((anext - arc->angle) *
(degrees_to_radians / 2));
arc->pt.x = x0 - trad * arc->sincos.sin;
arc->pt.y = y0 + trad * arc->sincos.cos;
gs_sincos_degrees(anext, &arc->sincos);
arc->p3.x = arc->center.x + arc->radius * arc->sincos.cos;
arc->p3.y = arc->center.y + arc->radius * arc->sincos.sin;
arc->angle = anext;
return arc_add(arc, false);
}
/*
* Use this when both arc.angle and anext are multiples of 90 degrees,
* and anext = arc.angle +/- 90.
*/
static int
next_arc_quadrant(arc_curve_params_t * arc, double anext)
{
double x0 = arc->p0.x = arc->p3.x;
double y0 = arc->p0.y = arc->p3.y;
if (!arc->fast_quadrant) {
/*
* If the CTM is well-behaved, we can pre-calculate the delta
* from the arc points to the control points.
*/
const gs_imager_state *pis = arc->pis;
double scale = 0; /* Quiet gcc warning. */
if (is_fzero2(pis->ctm.xy, pis->ctm.yx) ?
(scale = fabs(pis->ctm.xx)) == fabs(pis->ctm.yy) :
is_fzero2(pis->ctm.xx, pis->ctm.yy) ?
(scale = fabs(pis->ctm.xy)) == fabs(pis->ctm.yx) :
0
) {
double scaled_radius = arc->radius * scale;
arc->scaled_radius = float2fixed(scaled_radius);
arc->quadrant_delta =
float2fixed(scaled_radius * quarter_arc_fraction);
arc->fast_quadrant = 1;
} else {
arc->fast_quadrant = -1;
}
}
/*
* We know that anext is a multiple of 90 (as a fixed); we want
* (anext / 90) & 3. The following is much faster than a division.
*/
switch (((int)anext >> 1) & 3) {
case 0:
arc->sincos.sin = 0, arc->sincos.cos = 1;
arc->p3.x = x0 = arc->center.x + arc->radius;
arc->p3.y = arc->center.y;
break;
case 1:
arc->sincos.sin = 1, arc->sincos.cos = 0;
arc->p3.x = arc->center.x;
arc->p3.y = y0 = arc->center.y + arc->radius;
break;
case 2:
arc->sincos.sin = 0, arc->sincos.cos = -1;
arc->p3.x = x0 = arc->center.x - arc->radius;
arc->p3.y = arc->center.y;
break;
case 3:
arc->sincos.sin = -1, arc->sincos.cos = 0;
arc->p3.x = arc->center.x;
arc->p3.y = y0 = arc->center.y - arc->radius;
break;
}
arc->pt.x = x0, arc->pt.y = y0;
arc->angle = anext;
return arc_add(arc, true);
}
static int
gs_imager_arc_add(gx_path * ppath, gs_imager_state * pis, bool clockwise,
floatp axc, floatp ayc, floatp arad, floatp aang1, floatp aang2,
bool add_line, gs_point *p3)
{
double ar = arad;
double ang1 = aang1, ang2 = aang2, anext;
double ang1r; /* reduced angle */
arc_curve_params_t arc;
int code;
arc.ppath = ppath;
arc.pis = pis;
arc.center.x = axc;
arc.center.y = ayc;
if (ar < 0) {
ang1 += 180;
ang2 += 180;
ar = -ar;
}
arc.radius = ar;
arc.action = (add_line ? arc_lineto : arc_moveto);
arc.notes = sn_none;
arc.fast_quadrant = 0;
ang1r = fmod(ang1, 360);
gs_sincos_degrees(ang1r, &arc.sincos);
arc.p3.x = axc + ar * arc.sincos.cos;
arc.p3.y = ayc + ar * arc.sincos.sin;
if (clockwise) {
while (ang1 < ang2)
ang2 -= 360;
if (ang2 < 0) {
double adjust = ceil(-ang2 / 360) * 360;
ang1 += adjust, ang2 += adjust;
}
arc.angle = ang1;
if (ang1 == ang2)
goto last;
/* Do the first part, up to a multiple of 90 degrees. */
if (!arc.sincos.orthogonal) {
anext = floor(arc.angle / 90) * 90;
if (anext < ang2)
goto last;
code = next_arc_curve(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
/* Do multiples of 90 degrees. Invariant: ang1 >= ang2 >= 0. */
while ((anext = arc.angle - 90) >= ang2) {
code = next_arc_quadrant(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
} else {
while (ang2 < ang1)
ang2 += 360;
if (ang1 < 0) {
double adjust = ceil(-ang1 / 360) * 360;
ang1 += adjust, ang2 += adjust;
}
arc.angle = ang1;
if (ang1 == ang2) {
code = next_arc_curve(&arc, ang2);
if (code < 0)
return code;
*p3 = arc.p3;
}
/* Do the first part, up to a multiple of 90 degrees. */
if (!arc.sincos.orthogonal) {
anext = ceil(arc.angle / 90) * 90;
if (anext > ang2)
goto last;
code = next_arc_curve(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
/* Do multiples of 90 degrees. Invariant: 0 <= ang1 <= ang2. */
while ((anext = arc.angle + 90) <= ang2) {
code = next_arc_quadrant(&arc, anext);
if (code < 0)
return code;
arc.action = arc_nothing;
arc.notes = sn_not_first;
}
}
/*
* Do the last curve of the arc, if any.
*/
if (arc.angle == ang2) {
*p3 = arc.p3;
return 0;
}
last:
code = next_arc_curve(&arc, ang2);
if (code < 0)
return code;
*p3 = arc.p3;
return 0;
}
int
gs_arcto(gs_state * pgs,
floatp ax1, floatp ay1, floatp ax2, floatp ay2, floatp arad, float retxy[4])
{
double xt0, yt0, xt2, yt2;
gs_point up0;
#define ax0 up0.x
#define ay0 up0.y
/* Transform the current point back into user coordinates. */
int code = gs_currentpoint(pgs, &up0);
if (code < 0)
return code;
{
double dx0, dy0, dx2, dy2, sql0, sql2;
/* Now we have to compute the tangent points. */
/* Basically, the idea is to compute the tangent */
/* of the bisector by using tan(x+y) and tan(z/2) */
/* formulas, without ever using any trig. */
dx0 = ax0 - ax1; dy0 = ay0 - ay1;
dx2 = ax2 - ax1; dy2 = ay2 - ay1;
/* Compute the squared lengths from p1 to p0 and p2. */
sql0 = dx0 * dx0 + dy0 * dy0;
sql2 = dx2 * dx2 + dy2 * dy2;
if (sql0 == 0. || sql2 == 0.)
return_error(gs_error_undefinedresult); /* for CET 11-04 */
/* Check for collinear points. */
if (dx0*dy2 == dy0*dx2) {
code = gs_lineto(pgs, ax1, ay1);
xt0 = xt2 = ax1;
yt0 = yt2 = ay1;
} else { /* not collinear */
/* Compute the distance from p1 to the tangent points. */
/* This is the only messy part. */
double num = dy0 * dx2 - dy2 * dx0;
double denom = sqrt(sql0 * sql2) - (dx0 * dx2 + dy0 * dy2);
double dist = fabs(arad * num / denom);
double l0 = dist / sqrt(sql0), l2 = dist / sqrt(sql2);
arc_curve_params_t arc;
arc.ppath = pgs->path;
arc.pis = (gs_imager_state *) pgs;
arc.radius = arad;
arc.action = arc_lineto;
arc.notes = sn_none;
if (arad < 0)
l0 = -l0, l2 = -l2;
arc.p0.x = xt0 = ax1 + dx0 * l0;
arc.p0.y = yt0 = ay1 + dy0 * l0;
arc.p3.x = xt2 = ax1 + dx2 * l2;
arc.p3.y = yt2 = ay1 + dy2 * l2;
arc.pt.x = ax1;
arc.pt.y = ay1;
code = arc_add(&arc, false);
if (code == 0)
code = gx_setcurrentpoint_from_path((gs_imager_state *)pgs, pgs->path);
}
}
if (retxy != 0) {
retxy[0] = xt0;
retxy[1] = yt0;
retxy[2] = xt2;
retxy[3] = yt2;
}
return code;
}
/* Internal routine for adding an arc to the path. */
static int
arc_add(const arc_curve_params_t * arc, bool is_quadrant)
{
gx_path *path = arc->ppath;
gs_imager_state *pis = arc->pis;
double x0 = arc->p0.x, y0 = arc->p0.y;
double xt = arc->pt.x, yt = arc->pt.y;
floatp fraction;
gs_fixed_point p0, p2, p3, pt;
int code;
if ((arc->action != arc_nothing &&
#if !PRECISE_CURRENTPOINT
(code = gs_point_transform2fixed(&pis->ctm, x0, y0, &p0)) < 0) ||
(code = gs_point_transform2fixed(&pis->ctm, xt, yt, &pt)) < 0 ||
(code = gs_point_transform2fixed(&pis->ctm, arc->p3.x, arc->p3.y, &p3)) < 0
#else
(code = gs_point_transform2fixed_rounding(&pis->ctm, x0, y0, &p0)) < 0) ||
(code = gs_point_transform2fixed_rounding(&pis->ctm, xt, yt, &pt)) < 0 ||
(code = gs_point_transform2fixed_rounding(&pis->ctm, arc->p3.x, arc->p3.y, &p3)) < 0
#endif
)
return code;
#if PRECISE_CURRENTPOINT
if (!path_position_valid(path))
gs_point_transform(arc->p0.x, arc->p0.y, &ctm_only(arc->pis), &pis->subpath_start);
#endif
code = (arc->action == arc_nothing ?
(p0.x = path->position.x, p0.y = path->position.y, 0) :
arc->action == arc_lineto && path_position_valid(path) ?
gx_path_add_line(path, p0.x, p0.y) :
/* action == arc_moveto, or lineto with no current point */
gx_path_add_point(path, p0.x, p0.y));
if (code < 0)
return code;
/* Compute the fraction coefficient for the curve. */
/* See gx_path_add_partial_arc for details. */
if (is_quadrant) {
/* one of |dx| and |dy| is r, the other is zero */
fraction = quarter_arc_fraction;
if (arc->fast_quadrant > 0) {
/*
* The CTM is well-behaved, and we have pre-calculated the delta
* from the circumference points to the control points.
*/
fixed delta = arc->quadrant_delta;
if (pt.x != p0.x)
p0.x = (pt.x > p0.x ? p0.x + delta : p0.x - delta);
if (pt.y != p0.y)
p0.y = (pt.y > p0.y ? p0.y + delta : p0.y - delta);
p2.x = (pt.x == p3.x ? p3.x :
pt.x > p3.x ? p3.x + delta : p3.x - delta);
p2.y = (pt.y == p3.y ? p3.y :
pt.y > p3.y ? p3.y + delta : p3.y - delta);
goto add;
}
} else {
double r = arc->radius;
floatp dx = xt - x0, dy = yt - y0;
double dist = dx * dx + dy * dy;
double r2 = r * r;
if (dist >= r2 * 1.0e8) /* almost zero radius; */
/* the >= catches dist == r == 0 */
fraction = 0.0;
else
fraction = (4.0 / 3.0) / (1 + sqrt(1 + dist / r2));
}
p0.x += (fixed)((pt.x - p0.x) * fraction);
p0.y += (fixed)((pt.y - p0.y) * fraction);
p2.x = p3.x + (fixed)((pt.x - p3.x) * fraction);
p2.y = p3.y + (fixed)((pt.y - p3.y) * fraction);
add:
if_debug8('r',
"[r]Arc f=%f p0=(%f,%f) pt=(%f,%f) p3=(%f,%f) action=%d\n",
fraction, x0, y0, xt, yt, arc->p3.x, arc->p3.y,
(int)arc->action);
/* Open-code gx_path_add_partial_arc_notes */
return gx_path_add_curve_notes(path, p0.x, p0.y, p2.x, p2.y, p3.x, p3.y,
arc->notes | sn_from_arc);
}
void
make_quadrant_arc(gs_point *p, const gs_point *c,
const gs_point *p0, const gs_point *p1, double r)
{
p[0].x = c->x + p0->x * r;
p[0].y = c->y + p0->y * r;
p[1].x = c->x + p0->x * r + p1->x * r * quarter_arc_fraction;
p[1].y = c->y + p0->y * r + p1->y * r * quarter_arc_fraction;
p[2].x = c->x + p0->x * r * quarter_arc_fraction + p1->x * r;
p[2].y = c->y + p0->y * r * quarter_arc_fraction + p1->y * r;
p[3].x = c->x + p1->x * r;
p[3].y = c->y + p1->y * r;
}
/* ------ Path transformers ------ */
int
gs_dashpath(gs_state * pgs)
{
gx_path *ppath;
gx_path fpath;
int code;
if (gs_currentdash_length(pgs) == 0)
return 0; /* no dash pattern */
code = gs_flattenpath(pgs);
if (code < 0)
return code;
ppath = pgs->path;
gx_path_init_local(&fpath, ppath->memory);
code = gx_path_add_dash_expansion(ppath, &fpath, (gs_imager_state *)pgs);
if (code < 0) {
gx_path_free(&fpath, "gs_dashpath");
return code;
}
gx_path_assign_free(pgs->path, &fpath);
return 0;
}
int
gs_flattenpath(gs_state * pgs)
{
gx_path *ppath = pgs->path;
gx_path fpath;
int code;
if (!gx_path_has_curves(ppath))
return 0; /* nothing to do */
gx_path_init_local(&fpath, ppath->memory);
code = gx_path_add_flattened_accurate(ppath, &fpath, pgs->flatness,
pgs->accurate_curves);
if (code < 0) {
gx_path_free(&fpath, "gs_flattenpath");
return code;
}
gx_path_assign_free(ppath, &fpath);
return 0;
}
int
gs_reversepath(gs_state * pgs)
{
gx_path *ppath = pgs->path;
gx_path rpath;
int code;
gx_path_init_local(&rpath, ppath->memory);
code = gx_path_copy_reversed(ppath, &rpath);
if (code < 0) {
gx_path_free(&rpath, "gs_reversepath");
return code;
}
if (pgs->current_point_valid) {
/* Not empty. */
gx_setcurrentpoint(pgs, fixed2float(rpath.position.x),
fixed2float(rpath.position.y));
if (rpath.first_subpath != 0) {
pgs->subpath_start.x = fixed2float(rpath.segments->contents.subpath_current->pt.x);
pgs->subpath_start.y = fixed2float(rpath.segments->contents.subpath_current->pt.y);
}
}
gx_path_assign_free(ppath, &rpath);
return 0;
}
/* ------ Accessors ------ */
int
gs_upathbbox(gs_state * pgs, gs_rect * pbox, bool include_moveto)
{
gs_fixed_rect fbox; /* box in device coordinates */
gs_rect dbox;
int code = gx_path_bbox_set(pgs->path, &fbox);
if (code < 0)
return code;
/* If the path ends with a moveto and include_moveto is true, */
/* include the moveto in the bounding box. */
if (path_last_is_moveto(pgs->path) && include_moveto) {
gs_fixed_point pt;
code = gx_path_current_point_inline(pgs, &pt);
if (code < 0)
return code;
if (pt.x < fbox.p.x)
fbox.p.x = pt.x;
if (pt.y < fbox.p.y)
fbox.p.y = pt.y;
if (pt.x > fbox.q.x)
fbox.q.x = pt.x;
if (pt.y > fbox.q.y)
fbox.q.y = pt.y;
}
/* Transform the result back to user coordinates. */
dbox.p.x = fixed2float(fbox.p.x);
dbox.p.y = fixed2float(fbox.p.y);
dbox.q.x = fixed2float(fbox.q.x);
dbox.q.y = fixed2float(fbox.q.y);
return gs_bbox_transform_inverse(&dbox, &ctm_only(pgs), pbox);
}
/* ------ Enumerators ------ */
/* Start enumerating a path */
int
gs_path_enum_copy_init(gs_path_enum * penum, const gs_state * pgs, bool copy)
{
gs_memory_t *mem = pgs->memory;
if (copy) {
gx_path *copied_path =
gx_path_alloc(mem, "gs_path_enum_init");
int code;
if (copied_path == 0)
return_error(gs_error_VMerror);
code = gx_path_copy(pgs->path, copied_path);
if (code < 0) {
gx_path_free(copied_path, "gs_path_enum_init");
return code;
}
gx_path_enum_init(penum, copied_path);
penum->copied_path = copied_path;
} else {
gx_path_enum_init(penum, pgs->path);
}
penum->memory = mem;
gs_currentmatrix(pgs, &penum->mat);
return 0;
}
/* Enumerate the next element of a path. */
/* If the path is finished, return 0; */
/* otherwise, return the element type. */
int
gs_path_enum_next(gs_path_enum * penum, gs_point ppts[3])
{
gs_fixed_point fpts[3];
int pe_op = gx_path_enum_next(penum, fpts);
int code;
switch (pe_op) {
case 0: /* all done */
case gs_pe_closepath:
break;
case gs_pe_curveto:
if ((code = gs_point_transform_inverse(
fixed2float(fpts[1].x),
fixed2float(fpts[1].y),
&penum->mat, &ppts[1])) < 0 ||
(code = gs_point_transform_inverse(
fixed2float(fpts[2].x),
fixed2float(fpts[2].y),
&penum->mat, &ppts[2])) < 0)
return code;
/* falls through */
case gs_pe_moveto:
case gs_pe_lineto:
case gs_pe_gapto:
if ((code = gs_point_transform_inverse(
fixed2float(fpts[0].x),
fixed2float(fpts[0].y),
&penum->mat, &ppts[0])) < 0)
return code;
default: /* error */
break;
}
return pe_op;
}
/* Clean up after a pathforall. */
void
gs_path_enum_cleanup(gs_path_enum * penum)
{
if (penum->copied_path != 0) {
gx_path_free(penum->copied_path, "gs_path_enum_cleanup");
penum->path = 0;
penum->copied_path = 0;
}
}
|