1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Halftone bit updating for imaging library */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsbitops.h"
#include "gscdefs.h"
#include "gxbitmap.h"
#include "gxhttile.h"
#include "gxtmap.h"
#include "gxdht.h"
#include "gxdhtres.h"
extern_gx_device_halftone_list();
/*
* Construct a standard-representation order from a threshold array.
*/
static int
construct_ht_order_default(gx_ht_order *porder, const byte *thresholds)
{
gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
uint i;
for (i = 0; i < porder->num_bits; i++)
bits[i].mask = max(1, thresholds[i]);
gx_ht_complete_threshold_order(porder);
return 0;
}
/*
* Construct a short-representation order from a threshold array.
* Uses porder->width, num_levels, num_bits, levels, bit_data;
* sets porder->levels[], bit_data[].
*/
static int
construct_ht_order_short(gx_ht_order *porder, const byte *thresholds)
{
uint size = porder->num_bits;
uint i;
ushort *bits = (ushort *)porder->bit_data;
uint *levels = porder->levels;
uint num_levels = porder->num_levels;
memset(levels, 0, num_levels * sizeof(*levels));
/* Count the number of threshold elements with each value. */
for (i = 0; i < size; i++) {
uint value = max(1, thresholds[i]);
if (value + 1 < num_levels)
levels[value + 1]++;
}
for (i = 2; i < num_levels; ++i)
levels[i] += levels[i - 1];
/* Now construct the actual order. */
{
uint width = porder->width;
uint padding = bitmap_raster(width) * 8 - width;
for (i = 0; i < size; i++) {
uint value = max(1, thresholds[i]);
/* Adjust the bit index to account for padding. */
bits[levels[value]++] = i + (i / width * padding);
}
}
/* Check whether this is a predefined halftone. */
{
const gx_dht_proc *phtrp = gx_device_halftone_list;
for (; *phtrp; ++phtrp) {
const gx_device_halftone_resource_t *const *pphtr = (*phtrp)();
const gx_device_halftone_resource_t *phtr;
while ((phtr = *pphtr++) != 0) {
if (phtr->Width == porder->width &&
phtr->Height == porder->height &&
phtr->elt_size == sizeof(ushort) &&
!memcmp(phtr->levels, levels, num_levels * sizeof(*levels)) &&
!memcmp(phtr->bit_data, porder->bit_data,
size * phtr->elt_size)
) {
/*
* This is a predefined halftone. Free the levels and
* bit_data arrays, replacing them with the built-in ones.
*/
if (porder->data_memory) {
gs_free_object(porder->data_memory, porder->bit_data,
"construct_ht_order_short(bit_data)");
gs_free_object(porder->data_memory, porder->levels,
"construct_ht_order_short(levels)");
}
porder->data_memory = 0;
porder->levels = (uint *)phtr->levels; /* actually const */
porder->bit_data = (void *)phtr->bit_data; /* actually const */
goto out;
}
}
}
}
out:
return 0;
}
/* Return the bit coordinate using the standard representation. */
static int
ht_bit_index_default(const gx_ht_order *porder, uint index, gs_int_point *ppt)
{
const gx_ht_bit *phtb = &((const gx_ht_bit *)porder->bit_data)[index];
uint offset = phtb->offset;
int bit = 0;
while (!(((const byte *)&phtb->mask)[bit >> 3] & (0x80 >> (bit & 7))))
++bit;
ppt->x = (offset % porder->raster * 8) + bit;
ppt->y = offset / porder->raster;
return 0;
}
/* Return the bit coordinate using the short representation. */
static int
ht_bit_index_short(const gx_ht_order *porder, uint index, gs_int_point *ppt)
{
uint bit_index = ((const ushort *)porder->bit_data)[index];
uint bit_raster = porder->raster * 8;
ppt->x = bit_index % bit_raster;
ppt->y = bit_index / bit_raster;
return 0;
}
/* Update a halftone tile using the default order representation. */
static int
render_ht_default(gx_ht_tile *pbt, int level, const gx_ht_order *porder)
{
int old_level = pbt->level;
register const gx_ht_bit *p =
(const gx_ht_bit *)porder->bit_data + old_level;
register byte *data = pbt->tiles.data;
/*
* Invert bits between the two levels. Note that we can use the same
* loop to turn bits either on or off, using xor. The Borland compiler
* generates truly dreadful code if we don't use a temporary, and it
* doesn't hurt better compilers, so we always use one.
*/
#define INVERT_DATA(i)\
BEGIN\
ht_mask_t *dp = (ht_mask_t *)&data[p[i].offset];\
*dp ^= p[i].mask;\
END
#ifdef DEBUG
# define INVERT(i)\
BEGIN\
if_debug3('H', "[H]invert level=%d offset=%u mask=0x%x\n",\
(int)(p + i - (const gx_ht_bit *)porder->bit_data),\
p[i].offset, p[i].mask);\
INVERT_DATA(i);\
END
#else
# define INVERT(i) INVERT_DATA(i)
#endif
sw:switch (level - old_level) {
default:
if (level > old_level) {
INVERT(0); INVERT(1); INVERT(2); INVERT(3);
p += 4; old_level += 4;
} else {
INVERT(-1); INVERT(-2); INVERT(-3); INVERT(-4);
p -= 4; old_level -= 4;
}
goto sw;
case 7: INVERT(6);
case 6: INVERT(5);
case 5: INVERT(4);
case 4: INVERT(3);
case 3: INVERT(2);
case 2: INVERT(1);
case 1: INVERT(0);
case 0: break; /* Shouldn't happen! */
case -7: INVERT(-7);
case -6: INVERT(-6);
case -5: INVERT(-5);
case -4: INVERT(-4);
case -3: INVERT(-3);
case -2: INVERT(-2);
case -1: INVERT(-1);
}
#undef INVERT_DATA
#undef INVERT
return 0;
}
/* Update a halftone tile using the short representation. */
static int
render_ht_short(gx_ht_tile *pbt, int level, const gx_ht_order *porder)
{
int old_level = pbt->level;
register const ushort *p = (const ushort *)porder->bit_data + old_level;
register byte *data = pbt->tiles.data;
/* Invert bits between the two levels. */
#define INVERT_DATA(i)\
BEGIN\
uint bit_index = p[i];\
byte *dp = &data[bit_index >> 3];\
*dp ^= 0x80 >> (bit_index & 7);\
END
#ifdef DEBUG
# define INVERT(i)\
BEGIN\
if_debug3('H', "[H]invert level=%d offset=%u mask=0x%x\n",\
(int)(p + i - (const ushort *)porder->bit_data),\
p[i] >> 3, 0x80 >> (p[i] & 7));\
INVERT_DATA(i);\
END
#else
# define INVERT(i) INVERT_DATA(i)
#endif
sw:switch (level - old_level) {
default:
if (level > old_level) {
INVERT(0); INVERT(1); INVERT(2); INVERT(3);
p += 4; old_level += 4;
} else {
INVERT(-1); INVERT(-2); INVERT(-3); INVERT(-4);
p -= 4; old_level -= 4;
}
goto sw;
case 7: INVERT(6);
case 6: INVERT(5);
case 5: INVERT(4);
case 4: INVERT(3);
case 3: INVERT(2);
case 2: INVERT(1);
case 1: INVERT(0);
case 0: break; /* Shouldn't happen! */
case -7: INVERT(-7);
case -6: INVERT(-6);
case -5: INVERT(-5);
case -4: INVERT(-4);
case -3: INVERT(-3);
case -2: INVERT(-2);
case -1: INVERT(-1);
}
#undef INVERT_DATA
#undef INVERT
return 0;
}
/* Define the procedure vectors for the order data implementations. */
const gx_ht_order_procs_t ht_order_procs_table[2] = {
{ sizeof(gx_ht_bit), construct_ht_order_default, ht_bit_index_default,
render_ht_default },
{ sizeof(ushort), construct_ht_order_short, ht_bit_index_short,
render_ht_short }
};
|